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PREFACE

This text is designed as a course of mathematics for higher technical 
schools. It contains many worked examples that illustrate the theoretical 
material and serve as models for solving problems.

The first two chapters “Number. Variable. Function’* and “Limit. Conti* 
nuity of a Function” have been made as short as possible. Some of the ques
tions that are usually discussed in these chapters have been put in the third 
and subsequent chapters without loss of continuity. This has made it possible 
to take up very early the basic concept of differential calculus—the deriva
tive— which is required in the study of technical subjects. Experience has 
shown this arrangement of the material to be the best and most convenient 
for the student.

A large number of problems have been included, many of which illust
rate the interrelationships of mathematics and other disciplines. The problems 
are specially selected (and in sufficient number) for each section of the course 
thus helping the student to master the theoretical material. To a large extent, 
this makes the use of a separate book of problems unnecessary and extends 
the usefulness of this text as a course of mathematics for self-instruction.

N. S. Piskunov





CHAPTER I

NUMBER. VARIABLE. FUNCTION

SEC. 1. REAL NUMBERS. REAL NUMBERS AS POINTS ON A 
NUMBER SCALE

Number is one of the basic concepts of mathematics. It originated 
in ancient times and has undergone expansion and generalisation 
over the centuries.

Whole numbers and fractions, both positive and negative, together 
with the number zero are called rational numbers. Every rational
number may be represented in the form of a ratio, —, of two
integers p and q; for example,

In particular, the integer p may be regarded as a ratio of the 
integers -- ; for example,

Rational numbers may be represented in the form of periodic 
terminating or nonterminating fractions. Numbers represented by 
nonterminating, but nonperiodic, decimal fractions are called 
irrational numbers', such are the nurfibers Y 2, V 3, 5 —]/2, etc.

The collection of all rational and irrational numbers makes up 
the set of real numbers. The real numbers are ordered in magnitude', 
that is to say, for each pair of real numbers x and y there is one, 
and only one, of the following relations:

x < y , x = y, x > y .
Real numbers may be depicted as points on a number scale. 

A number scale is an infinite straight line on which are chosen:
1) a certain point 0 called the origin, 2) a positive direction 
indicated by an arrow, and 3) a suitable unit of length. We shall' 
usually make the number scale horizontal and take the 
positive direction to be from left to right.

If the number xt is positive, it is depicted as a point M, at 
a distance OMt = x, to the right of the origin O', if the number xx 
is negative, it is represented by a point M, to the left of 0  at a
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distance 0M 2 = — x2 (Fig. 1). The point 0 represents the number 
zero. It is obvious that every real number is represented by a 
definite point on the number scale. Two different real numbers are 
represented by different points on the number scale.

The following assertion is also true: each point on the number 
scale represents only one real number (rational or irrational).

To summarise, all real numbers and all points on the number 
scale are in one-to-one correspondence: to each number there cor
responds only one point, and conversely, to each point there cor
responds only one number. This frequently enables us to regard “the 
number x” and “the point x” as, in a certain sense, equivalent

expressions. We shall make wide use
m2 , , | | t Mi of this circumstance in our course.

' -2-1 12 3 ° We state without proof the follow-
Fia j ing important property of the set

** ' of real numbers: both rational and
irrational numbers may be found 

between any two arbitrary real numbers. In geometrical terms, 
this proposition reads thus: both rational and irrational points may 
be found between any two arbitrary points on the number scale.

In conclusion we give the following theorem, which, in a certain 
sense, represents a bridge between theory and practice.

Theorem. Every irrational number a may be expressed, to any 
degree of precision, with the aid of rational numbers.

Indeed, let the irrational number a > 0  and let it be required
to evaluate a with an accuracy of ~  ^for example, and so

forth
No matter what a is, it lies between two integral numbers N 

and N + l .  We divide the segment between N and N 1 into n 
parts; then a will lie somewhere between the rational numbers
N +  — and Since their difference is equal to , each
of them expresses a to the given degree of accuracy, the former 
being smaller and the latter greater.

Example. The irrational number Y 2 is expressed by rational numbers: 
1.4 and 1.5 to one decimal place,
1.41 and 1.42 to two decimal places,
1.414 and 1.415 to three decimal places, etc.

SEC. 2. THE ABSOLUTE VALUE OF A REAL NUMBER

Let us introduce a concept which we shall need later on: the 
absolute value of a real number.
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Definition. The absolute value (or modulus) of a real number x 
(written \x\) is a nonnegative real number that satisfies the con
ditions

\x\ = x i f * ^ 0;
\x\ = — x i f a :< 0.

Examples. |2 |  =  2; | — 5 | =  5; |0 |= 0 .

From the definition it follows that the relationship x x (holds 
for any x.

Let us examine some of the properties of absolute values.
1. The absolute value of an algebraic sum of several real numbers 

is no greater than the sum of the absolute values of the terms

Proof. Let Jt +  t/SsO, then
l* + «/l =  * + l /< l* l  +\y\  (since and t/<[r/|).

Let x -j- y <. 0, then
Ix + y I = — (*+#) = (— *H-(—y) ^  Ix I + 1 y I-

This completes the proof.
The foregoing proof is readily extended to any number of terms.
Examples.

, |  — 2 +  3 | < | —2| +  |3 | = 2  +  3 =  5 or 1 < 5 ;
| _ 3 —5 | =  | —3 | +  |— 5 1 = 3  +  5 =  8 or 8 =  8.

2. The absolute value of a difference is no less than the 
difference of the absolute values of the minuend and subtrahend:

\ x—y \ ^ \ x \  — \y\.
Proof. Let x —y = z, then x = y-\-z and from what has been 

proved
l*l = lf /+ 2 l ŝ l*/l +  l2 l =  lf/l +  lj:—y l>

whence
1* 1—I t / K I *—yl

thus completing the proof.
3. The absolute value of a product is equal to the product of 

the absolute values of the factors:
\xyzI = l*| \y\ M-

4. The absolute value of a quotient is equal to the quotient 
of the absolute values of the dividend and the divisor:

|£
I y \ y \ '

The latter two properties follow directly from the definition of 
absolute value.
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SEC. 3. VARIABLES AND CONSTANTS

The numerical values of such physical quantities as time, length, 
area, volume, mass, velocity, pressure, temperature, etc., are deter
mined by measurement. Mathematics deals with quantities divested 
of any specific content. From now on, when speaking of quantities, 
we shall have in view their numerical values. In various phenomena, 
the numerical values of certain quantities vary, while the numerical 
values of others remain fixed. For instance, in uniform motion of 
a point, time and distance change, while the velocity remains constant.

A variable is a quantity that takes on various numerical values. 
A constant is a quantity whose numerical values remain fixed. We
shall use the letters *, y, z, u.........etc., to designate variables,
and the letters a, b, c, . . .  ,etc., to designate constants.

Note. In mathematics, a constant is frequently regarded as a 
special case of variable whose numerical values are the same.

It should be noted that when considering specific physical pheno
mena it may happen that one and the same quantity in one pheno
menon is a constant while in another it is a variable. For example, 
the velocity of uniform motion is a constant, while the velocity of 
uniformly accelerated motion is a variable. Quantities that have 
the same value under all circumstances are called absolute constants.. 
For example, the ratio of the circumference of a circle to its dia
meter is an absolute constant: « =  3.14159.

As we shall see throughout this course, the concept of a variable 
quantity is the basic concept of differential and integral calculus. 
In “Dialectics of Nature”, Friedrich Engels wrote: “The turning 
point in mathematics was Descartes’ variable magnitude. With 
that came motion and hence dialectics in mathematics, and at 
once, too, of necessity the differential and integral calculus.”

SEC. 4. THE RANGE OF A VARIABLE

A variable takes on a series of numerical values. The collection 
of these values may differ depending on the character of the prob
lem. For example, the temperature of water heated under ordinary 
conditions will vary from room temperature (15-18°C) to the 
boiling point, 100°C. The variable quantity x =  cos a can take on 
all values from—1 t o + 1.

The values of a variable are geometrically depicted as points on 
a number scale. For instance, the values of the variable x =  cos a  
for all possible values of a are depicted as the set of points of an 
interval on the number scale, from — 1 to 1, including the points 
—1 and 1 (Fig. 2).
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Definition. The set of all numerical values of a variable quantity 
is called the range of the variable.

We shall now define the following ranges of a variable that will 
be frequently used later on.

An open interval is the collection of 
all numbers x lying between and excluding 
the given numbers a and b (a<b)\  it 
is denoted (a, b) or by means of the 
inequalities a < x < b .

A closed interval is the set of all 
numbers x lying between and including 
the two given numbers a and 6; it is 
denoted [a, b] or, by means of inequali
ties, a ^ x ^ b .

If one of the numbers a or b (say, a) belongs to the interval, 
while the other does not, we have a partly closed interval, which 
may be given by the inequalities

a ^ x <  b

and is denoted [a, b). If the number b belongs to the set and a 
does not, we have the partly closed interval (a, b], which may be 
given by the inequalities

a < x ^ b .

If the variable x assumes all possible values greater than a, such 
an interval is denoted (a, co) and is represented by the conditional 
inequalities

a < * <  oo.

In the same way we regard the infinite intervals and partly closed infi
nite intervals represented by the conditional inequalities a ^ *<oo; 
— oo <  * <  c; — o o < jf< c ;  — oo<; x <  oo.

Example. The range of the variable x =  cosa for all possible values of a 
is the interval [— 1, 1] and is defined by the inequalities—

The foregoing definitions may be formulated for a “ p o i n t ” in 
place of a “number”.

An interval is the set of all points* lying between the given points 
a and b {the end points) and is called closed or open accordingly 
as it does or does not .include its end points.

The neighbourhood of a given point x0 is an arbitrary interval 
(a, b) containing this point within it; that is, the .interval (a, b) 
whose end points satisfy the condition One often
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0

Fig• 3.

considers the neighbourhood (a, b) 
of the point x0 for which x0 is the 
midpoint. Then xQ is called the 
centre of the neighbourhood and
the quantity the radius of

the neighbourhood. Fig. 3 shows the neighbourhood (x0 — e, jt0+e) 
of the point x0 with radius e.

SEC. 5. ORDERED VARIABLES.
INCREASING AND DECREASING VARIABLES. BOUNDED VARIABLES

We shall say that the variable x is an ordered variable quantity 
if its range is known and if about each- of any two of its values 
it may be said which value is the preceding one and which is the 
following one. Here, the notions “preceding” and “following” are 
not connected with time, but serve as a way to “order” the values 
of the variable, i. e., to establish the order of the respective values 
of the variable.

Definition 1. A variable is called increasing if each subsequent 
value of it is greater than the preceding value. A variable is called 
decreasing if each subsequent value is less than the preceding value.

Increasing variable quantities and decreasing variable quantities 
are called monotonically varying variables or simply monotonic 
quantities.

Example. When the number of sides of a regular polygon inscribed in a 
circle is doubled, the area s of the polygon is an increasing variable. The 
area of a regular polygon circumscribed about a circle, when the number of 
sides is doubled, is a decreasing variable. It may be noted that not every 
variable quantity is necessarily increasing or decreasing. Thus, if a is an 
increasing variable over the interval [0, 2jt], the variable * =  sina is not a 
monotonic quantity. It first increases from 0 to 1, then decreases from 1 to 
— 1, and then increases from — 1 to 0.

Definition 2. The variable x is called bounded if there exists a 
constant M >  0 such that all subsequent values of the variable, 
after a certain one, satisfy the condition

— Af <  x sg M, that is, |x |< A f.
In other words, a variable is called bounded if it is possible to 
indicate an interval [— M, M] such that all subsequent values of 
the variable, after a certain one, will belong to this interval. 
However, one should not think that the variable will necessarily 
assume all values of the interval [— M, M], For example, the 
variable that assumes all possible rational values on the interval 
(—2, 2] is bounded, and nevertheless it does not assume all values 
on [— 2, 2], namely, the irrational values.



Function 19

SEC. 6. FUNCTION

In the study of natural phenomena and the solution of technical 
and mathematical problems, one finds it necessary to consider the 
variation of one quantity as dependent on the variation of another. 
For instance, in studies of motion, the path traversed is regarded 
as a variable which varies with time. Here, the path traversed is 
a function of the time.

Let us consider another example. We know that the area of a 
circle, in terms of the radius, is Q = nR \ If the radius R takes 
on a variety of numerical values, the area Q will also assume 
various numerical values. Thus, the variation of one variable brings 
about a variation in the other. Here, the area of a circle Q is a 
function of the radius R. Let us formulate a definition of the con
cept “function”.

Definition 1. If to each value of the variable x (within a certain 
range) there corresponds one definite value of another variable y, 
then y is a function of x or, in functional notation, y = f(x), y = y(x), 
and so forth.

The variable x is called the independent variable or argument. 
The relation between the variables x and y is called a functional 
relation. The letter f in the functional notation y = f(x) indicates 
that some kind of operations must be performed on the value of 
a: in order to obtain the value of y. In place of the notation 
y = f(x), w =  (p(jc), etc., one occasionally finds y = y(x), u = u(x), 
etc., the letters y, u designating both the dependent variable and the 
symbol of the totality of operations to be performed on x.

The notation y = Cy where C is a constant, denotes a function 
whose value for any value of x is the same and is equal to C.

Definition 2. The set of values of x for which the values of the 
function y are determined by virtue of the rule f (x) is called the 
domain of definition of the function.

Example 1. The function y =  s\nx is defined for all values of x . Therefore, 
its domain of definition is the infinite interval — o o < x < o o .

Note 1. If we have a functional relation of two variable quan
tities x and y=f(x)  and if x and y = f(x) are regarded as ordered 
variables, then of the two values of the function y* = f (x*) and 
y** = f (***) corresponding to two values of the argument at* and 
x**y the subsequent value of the function will be that one which 
corresponds to the subsequent value of the argument. The following 
definition is, therefore, natural.

Definition 3. If the function y = f(x) is such that to a greater 
value of the argument^ x there corresponds a greater value of the
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function, then the function y = f(x) is called iticreasing. A decreas
ing function is similarly defined.

Example 2. The function Q = ji/? J for 0 <  <  c» is an increasing function
because to a greater value of R there corresponds a greater value of Q.

Note 2. The definition of function is sometimes broadened so 
that to each value of x , within a certain range, there corresponds 
not one but several values of y or even an infinitude of values 
of y. In this case we have a multiple-valued, function in contrast 
to the one defined above, which is called a single-valued function. 
Henceforward, when speaking of a function, we shall have in view 
only single-valued functions. If it becomes necessary to deal with 
multiple-valued functions we shall specify this fact.

SEC. 7. WAYS OF REPRESENTING FUNCTIONS

I. Tabular representation of a function
Here, the values of the argument x2.........xn. and the cor

responding values of the function yv yt, . . . , y n are written out 
in a definite order.

X X2 x n

y y\ y  2 y n

Examples are tables of trigonometric functions, tables of 
logarithms, and so on.

An experimental study of phenomena can result in tables that 
express a functional relation between the measured quantities. For 
example, temperature measurements of the air at a meteorological 
station on a definite day yield a table like the following.

The temperature T (in degrees) is dependent on the time 
t (in hours).

t 1 2 3 4 5 6 7 8 9

T 0 - i —2 —2 - 0 .5 1 3 3.5 4

This table defines T as a function of t.
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II. Graphical representation of a function

If in a rectangular coordinate system on a plane we have a set 
of points M (x , y), and no two points lie on a straight line parallel 
to the y-axis, this set of points defines 
a certain single-valued function y =
=/(*); the abscissas of the points 
are the values of the argument, the 
corresponding ordinates are the values 
of the function (Fig. 4).

The collection of points in the 
xy-plane whose abscissas are the 
values of the independent variable 
and whose ordinates are the corresponding values of the function 
is called a graph of the given function.

' III. Analytical representation of a function
Let us first explain what “analytical expression” means. By ana

lytical expression we will understand a series of symbols denoting 
a totality of known mathematical operations that are performed in 
a definite sequence on numbers and letters which designate constant 
or variable quantities.

By totality of known mathematical operations we mean not only 
the mathematical operations familiar from the course of secondary 
school (addition, subtraction, extraction of roots, etc.) but also 
those which will be defined as we proceed in this course.

The following are examples of analytical expressions:

X*—2; l0̂ - ii“  ; 2 '-> /5 T 3 T ,
etc.

If the functional relation y = f(x) is such that f denotes an 
analytical expression, we say that the function y of x is represented 
analytically.

Examples of functions represented analytically are: 1) y = x4—2;
2) y = > 3) y = V  1— x 2; 4) y=  sin*; 5) Q== nR2, and so forth.

Here, the functions are represented analytically by means of a 
single formula (a formula is understood to be the equality of two 
analytical expressions). In such cases one may speak of the natural 
domain of definition of the function.

The set of values of * for which the analytical expression on 
the right-hand side has a fully definite value is the natural domain
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of definition of a function represented analytically. Thus, the natu
ral domain of definition of the function y — x4,—2 is the infinite 
interval—o o < jc< o o , because the function is defined for all

x 4-1values of x. The function */ =  -—  is defined for all values of xf* x— 1
with thfe exception of x = l t because for this value of x the deno
minator vanishes. For the function y = V I —*2, the natural domain 

2 of definition is the closed interval— I ^ j k ^ I ,  
y*x and so on.

I Note. It is sometimes necessary to consider 
/ only a part of the natural domain of a function,
/ and not the whole domain. For instance, the
I 1 dependence of the area Q of a circle upon the
/; radius R is defined by the function Q = nR2.

/  The domain of this function, when considering
/  a given geometrical problem, is the infinite

interval 0<C/?<C +  oo. But the natural domain 
of this function is the infinite interval — oo <  

Fig. 5. <C R <C +  ° ° -
If the function y = f(x) is represented analy

tically, it may be shown graphically on a coordinate *y-plane. 
Thus, the graph of the function y = x2 is a parabola as shown in 
Fig. 5.

SEC. 8. BASIC ELEMENTARY FUNCTIONS. ELEMENTARY FUNCTIONS

The basic elementary functions are the following analytically 
represented functions.

I. Power function: y = x*t where a is a real number.*)
II. Exponential function: y = axt where a is a positive number 

not equal to unity.
III. Logarithmic function: y = \ogax , where the base of logarithms 

a is a positive number not equal to unity.
IV. Trigonometric functions: y =  sin x} y =  cosx, y =  tan x ,

r/ =  cotx, y = secx, y = cscx.
V. Inverse trigonometric functions:

y =  arc sin jc, y =  arc cos a;, y =  arc tan*, 
r/== arc cot x% y =  arc sec jc, y = arc esc a;.

Let us consider the domains of definition and the graphs of the 
basic elementary functions.

*) If a is irrational, this function is evaluated by taking logarithms and 
antilogarithms: log y =  a log x. It is assumed that * >  0.
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Power function y  =  x*.
1. a is a positive integer. The function is defined in the infi

nite interval—o o < x < +  oo. In this case, the graphs of the func
tion for certain values of a have the form shown in Figs. 6 
and 7.

2. a  is a negative integer. In this case, the function is defined 
for all values of x with the exception of x = 0. The graphs of the 
functions for certain values of a 
have the form shown in Figs. 8 
and 9.

Fig. 9.

Figs. 10, 11, and 12 show graphs of a power function with 
fractional rational values of a.



24 Number. Variable. Fund ion

Exponential function, y ~ a x, a > 0 a n d a ^ l .  This function is 
defined for a ll  values of a:. Its graph is shown in Figs. 13 and 14.

Logarithmic function, y = \ogax, a > 0 and a #  1. This function 
is defined for * > 0 .  Its graph is shown in Fig. 15.

Trigonometric functions. In the formulas # = s in * , etc., the 
independent variable x is expressed in radians. All the enumerated

trigonometric functions are periodic. 
Let us give a general definition of a 
periodic function.

Definition 1. The function y = f(x) 
is called periodic if there exists a con
stant C, which, when added to (or sub
tracted from) the argument x, does not 
change the value of the function: 
f(x-\-C) = f(x). The least such number 
is called the period of the function; it 
will henceforward be designated as 21. 

From the definition it follows directly 
that //= s in x  is a periodic function with a period 2n: sinx =  
=  sin (x +  2jt). The period of cos* is likewise 2n. The functions 
t/ =  tanx and y =  cot* have a period equal to n.

The functions i/=sinx:, y — cosx are defined for all values of x\ 
the functions y = tan x and y = sec* are defined everywhere except
the points x = {2k-\-\) — 1, 2, . . .) ;  the functions j/ =  cotx
and y = cscx are defined for all values of x except the points 
x = kn(k = 0, 1, 2, . . . ) .  Graphs of trigonometric functions are 
shown in Figs. 16, 17, 18, and 19.

The inverse trigonometric functions will be discussed in more 
detail later on.
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Fig. 16.

Let us now introduce the concept of a function of a function. 
If y is a function of u, and u (in turn) is dependent on the var
iable x, then y is also dependent on x. Let

y = F (a) 
u =  9 (x).

We get y as a function of x

y = F[  <P (■*)]•
This function is called a function of a function or a composite 

function.

Example 1. Let y =  sinu, u =  x2. The function y = s in (x 2) is a composite 
function of x.

Note. The domain of definition of the function y = F [<p(x)] is 
either the entire domain of the function, u = <p(x), or that part
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of it in which those values of u are defined that do not go beyond 
the domain of the function F (u).

Example 2. The domain of definition of the function y = } / r \ — x 2( y = y ru > 
u — 1— x 2) is the closed interval [ — 1, 1], because when | x  | >  1 u <  0 and, conse. 
quently, the function V u  is not defined (although the function u — 1— x 2 is 
defined for all values of x). The graph of this function is the upper half of 
a circle with centre at the origin of the coordinate system and with radius 
unity.

The operation “function of a function” may be performed any 
number of times. For instance, the function y = In [sin (a:2 -f-1)] is 
obtained as a result of the following operations (defining the 
following functions):

v = x2+ l ,  u = sin u, y = \nu.
Let us now define an elementary function.

Definition 2. An elementary function is 
a function which may be represented by 
a single formula of the type y = f(x)t 
where the expression on the right-hand 
side is made up of basic elementary func
tions and constants by means of a finite 
number of operations of addition, 
subtraction, multiplication, division and 
taking the function of a function.

From the definition it follows that elementary functions are 
functions represented analytically.

Examples of elementary functions:

u =  V~l 4-4 sin*-r '0g *  +  4 V x +  2 U n x  .y -  v 1 + 4 sin y -  ,Qx _ ;c4: 10

and the like.
Examples of non-elementary functions:
1. The function y — 1 - 2 - 3 . . . -n [y =  f (n)] is not elementary because the 

number of operations that must be performed to obtain y increases with n> 
that is to say, it is not bounded.

2. The function given in Fig. 20 is not elementary either because it is 
represented by means of two formulas:

f (x) =  x, if 0 <  jc <  1,
f (x) =  2x— 1, if 1 x C  2.

SEC. 9. ALGEBRAIC FUNCTIONS

Algebraic functions include elementary functions of the following 
kind:
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I. The rational integral function, or polynomial
y =  a,xn +  a, xn an,

where a0, a,, . . . , a n are constants called coefficients, and n is a 
nonnegative integer called the degree of the polynomial. It is 
obvious that this function is defined for all values of x, that is, 
it is defined in an infinite interval.

Examples: 1. y =  ax +  b is a linear 
function. When b =  0, the linear function 
y =  ax expresses y as being directly pro
portional to x. For a =  0, y =  b, the 
function is a constant.

2. y = a x 2-\- bx-\-c is a quadratic
function. The graph of a quadratic func
tion is a parabola (Fig. 21). These 
functions are considered in detail in 
analytic geomet ry. Fig. 21.

M. Fractional rational function. This function is defined as the 
ratio of two polynomials:

a0xn +  aixn- '  +  . . . + a n 
b0xm +  blxm~' +  . . . + b m -

For example, the following is a fractional rational function:

y x i

it expresses inverse variation. Its graph is shown in Fig. 22. It is 
obvious that a fractional rational function is defined for all values

of x with the exception

a<0

(b)
Fig. 22.

of those for which the 
denominator becomes 
zero.

111. Irrational func
tion. If in the formula 
y = f (x)t operations of 
addition, subtraction, 
multiplication, division 
and raising to a power 
with rational non-inte
gral exponents are per
formed on the right-

hand side, the function y = f(x) is called irrational. Examples
2x ̂ y

of irrational functions are: y = - rZJ==^: y = V  x; etc.
V 1 +  5*1 *
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Note 1. The above-mentioned three types of algebraic functions 
do not exhaust all algebraic functions. An algebraic function is any 
function y = f(x) which satisfies an equation of the form

P 0 (x) yn +  P, (x) yn~' +  . . .  +  Pn (x) = 0, (1)
where P„(x), P, (x), . . . ,  Pn(x) are certain polynomials in x.

It may be proved that each of the enumerated three types of 
function satisfies a certain equation of type(l), but not every func
tion that satisfies an equation like (1) is a function of one of 
the three types given above.

Note 2. A function which is not algebraic is called transcendental. 
Examples of transcendental functions are: 

y = cos a:; y — 10**
and the like.

M

SEC. 10. POLAR COORDINATE SYSTEM
The position of a point in a plane may be determined by means 

of a so-called polar coordinate system.
We choose a point 0  in a plane and call it the pole; the half

line issuing from this point is called the polar axis. The position 
of the point M in the plane may be specified by two numbers: 
the number q, which expresses the distance of M from the pole, 

and the number 9 , which is the angle formed 
by the line segment OM and the polar axis. 
The positive direction of the angle 9 is 
reckoned counterclockwise. The numbers q 
and 9 are called, the polar coordinates of the 
point M (Fig. 23).

We will always consider the radius vector 
q nonnegative. If the polar angle 9 is taken 
within the limits 0 ^ 9 < 2ji, then to each 

point of the plane (with the exception of the pole) there corre
sponds a definite number pair e and 9. For the pole, q =  0 and 9 
is arbitrary.

Let us now see how the polar and rectangular Cartesian coordi
nates are related. Let the origin of the rectangular coordinate 
system coincide with the pole, and the positive direction of the 
x-axis, with the polar axis. We establish a relationship between 
the rectangular and polar coordinates of one and the same point. 
From Fig.. 24 it follows directly that

x =  qcos9 , i/ =  QSin9
and, conversely, that

Q = Vx* + y*, tan9 =  —-.
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Note. To find q>, it is necessary to take into account the quad
rant in which the point is located and then take the correspond

ing value of cp. The equation q =  F ((p) in polar coordinates defines 
a certain line.

Example 1. Equation Q =  a, where a =  const, defines in polar coordinates 
a circle with centre in the pole and with radius a. The equation of this 
circle in a rectangular coordinate system situated as shown in Fig. 24 is

\ r x2 +  y 2 =  a or x2 +  y 2 =  a2
(Fig. 25).

Example 2. Q =  a<p, where a =  const.
Let us tabulate the values of q for certain values of <p

<P 0 ji
T

JT
2"

C
O

a ji 3 
2 n 2n 3ji 4jt

Q 0 ^ 0.78a =̂ r 1.57a 2.36a =^3.14a =*4.71 a ^:6.28a =^=9.42a % 12.56a

The corresponding curve is shown in Fig. 26. It is called the spiral of Archi
medes.

Example 3.
q =  2a cos <p.

This is the equation of a circle of radius a , the centre of which is at the 
point Q0 =  a, <p =  0 (Fig. 27). Let us write the equation of this circle in rect-
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angular coordinates. Substituting Q = Y x 2-\-y2, coscp =  

ven equation, we get

x
7 ^ + P

into the gi-

or

V x ‘ +  y i =  2a X

V ^ + 7 2

xi -\-yt — 2ax =  0.

Exercises on Chapter I

1. Given the function / ( x ) = x 2-}-6x—4. Verify the equalities /(1) =  3, 
/(3) =  23.

2. /(x) =  x2 +  1. Evaluate: a) /(4). Ans. 17. b) /(1^2). Ans. 3. c ) / ( a + l) .  
Ans. a2 +  2a +  2. d) / ( a ) + l .  Ans. a2 +  2. e) /(a 2). Ans. a4+ 1. f) [/(a)]2. 
Ans. a4 +  2a2+ l -  g) /(2a). -4/is. 4a2+ l .^_j

3. <p (x) =  . Write the expressions (p
1—x . 1 _  3 (x) +  5

“"3 +  5X* cp (x) 1 —x
4. i|) (x )=  |^ x2 +  4. Write the expressions *i|) (2x) and o|) (0). o|)(2x) =

=  2 V"3^hFTT (0) =  2.
5. / (0) =  tan 0. Verify the equality /  (26) =  .

6. (p(x) =  lo g L = ^ . Verify the equality <p(a) +  cp(&) =  (P •
7. / (x) =  log x; cp (x) =  x3. Write the expressions: a) /|cp(2)]. Ans. 3 log 2. 

b) /[cp(a)]. Ans. 3 log a. c) <p[/(a)]. Ans. [log a]3.
8. Find the natural domain of definition of the function y =  2x2+ l  Ans.

— oo <  x <  +  o°- _____
9. Find the natural domains of definition of the functions: a) Y 1 —x2. 

Ans. — l« ^ x < ; + l .  b) j /3  +  x + p ^ 7 —x. Ans. —3 c x ^ 7 .  c) \ Y x +  a —

\Yx  — b. Ans. — oo < x < ~|~ oo. d) • Ans. x ^  a. e) arc sin2x. Ans.
— l ^ x ^ l .  f) y =  logx. Ans. x >  0. g) y =  a * ( a >  0). Ans. — oo < x <  +  oo. 

Construct the graphs of the functions:
10. y =  — 3x +  5. 11. j/ =  -^-x2 + 1. 12. y =  3 — 2x2. 13. y =  x2+-2x— 1.

14. y — ——j-. 15. y =  sin 2x. 16. y =  cos 3x. 17. y — x2—4x +  6. 18. y =   ̂'_LX2

19. £/ =  sin ^  x  +  - ^  • 20* y =  cos ^  • 21* y =  tanY  x- 22« y =  cot -  x.

23. y =  3x. 24. c/ =  2 - * \  25. 0 =  log2- L  26. j/ =  x3+ l .  27. */ =  4—x3. 28. */ =
i j_ 2

29. y = x'. 30. y = x‘ . 31. =  32. y = x~ 1 . 33. 0 =  * ’ . 34. j / = | j k |.

35. y =  logj)jr|. 36. i/ =  lo g ,( l—x). 37. y =  3 sin ^2* +  - ^  . 38. y =

(i and <p(x) Ans ■ < ¥ ) =
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=  4cos  ̂ * +  • 39. The function /(*) is defined on the interval [ — 1, 1]
as follows:

f(x) =  1+jr fo r — 1 <  jc <  0; 
f (x) — \ —2x f o r 0 ^ * < l .

40. The function f (x) is defined on the interval [0, 2] as follows: 
f(x) =  x8 f o r 0 < * < l ;
l (x) =  x for 1

Plot the curves given by the polar equations: 41. q =  -̂ - (hyperbolic spi

ral). 42. Q =  a? (logarithmic spiral). 43. Q =  aJ^cos2<p (lemniscate). 44. q =a 
=  a ( l — coscp) (cardioid). 45. Q =  a sin 3cp.



C H A P T E R  II

LIMIT. CONTINUITY OF A FUNCTION

SEC. I. THE LIMIT OF A VARIABLE.
AN INFINITELY LARGE VARIABLE

In this section we shall consider ordered variables that vary in 
a special way defined as follows: “the variable approaches a 
limit”. Throughout the remainder of the course, the concept of 
limit of a variable will play a fundamental role, for it is intimate
ly bound up with the basic concepts of mathematical analysis, 
such as derivative, integral, etc.

Definition 1. A constant number a is said to be the limit of a 
variable x, if for every preassigned arbitrarily small positive num
ber e it is possible to indicate a value of the variable x such 
that all subsequent values of the variable will satisfy the inequality

\x—a | < e .
If the number a is the limit of the variable x, one says that x 

approaches the limit a; in symbols we have
x —<-a or limjc =  a.

In geometric terms, limit may be defined as follows.
2 The constant number a is the limit

>- of the variable x if for any preassigned
0 q T |  £ arbitrarily small neighbourhood with

x~a centre in the point a and with radius
Fi8- %8- e there is a value of x such that all

points corresponding to subsequent values 
of the variable will be within this neighbourhood (Fig. 23). Let us 
consider several cases of variables approaching limits.

Example 1. The variable x takes on successive values:

Jr,— 2 ; xt2 =  1-^- ;  X j = l - ^ - ; . . . , A : n = l — , . . .

We shall prove that this variable has unity as its limit. We have

For any e, all subsequent values of the variable begin with n, where
— < e ,  or n >  — will satisfy the inequality | at„ — 1 [ < e and the proof is
n e

complete.
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It will be noted here that the variable quantity decreases as it approaches 
the limit.

Example 2. The variable x takes on successive values: — 1 — y  ; xz =>

~ 1 “1" 22 » =  ̂ 2*" * **  ̂ 2* » • • •»  ̂ ^ ' * * *
This variable has a limit of unity. Indeed,

K - i |  =  | ( i  + ( -D n^ ) ~ i
1

For any e, beginning with n, which satisfies the relation

1
2n <e’

from which it follows that

2" > —, e

n log 2 >  log —o
or

log — 

n >  lo g T ’

all subsequent values of x will satisfy the relation

\*n — l | < e .

It will be noted here that the values of the variable are greater than or 
less than the limit, and the variable approaches its limit by "oscillating 
about it”.

Note 1. As was pointed out in Sec. 3 (see Ch. 1), a constant 
quantity c is frequently regarded as a variable whose values 
all coincide: x = c.

Obviously, the limit of a constant is equal to the constant 
itself, since we always have the inequality \x —c \= \c —c| =  0 < e  
for any e.

Note 2. From the definition of a limit it follows that a vari
able cannot have two limits. Indeed, if limjt =  a and limjc= 
— b(a<ib), then x must satisfy, at one and the same time, two 
inequalities:

\x—o |< e  and \x —6 |< e

for an arbitrarily small e; but this is impossible if e <
(Fig. 29).
2—3388
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Note 3. One should not think that every variable has a limit. 
Let the variable x take on the following successive values:

*1 =
\_
2

.X2k 1 2ift * 22*+1
(Fig. 30). For k sufficiently large, the value *2*and all subsequent 
values with even labels will differ from unity by as small a

X ^ r
2e C<-^2

Fig. 29.

2e

Fig. 30.

number as we please, while the next value xtk+l and all subse
quent values of x with odd labels will differ from zero by as 
small a number as we please. Consequently, the variable x does 
not approach a limit.

In the definition of a limit it is stated that if the variable 
approaches the limit a, then a is a constant. But the word “appro
aches” is used also to describe another type of variation of a 
variable, as will be'seen from the following definition.

Definition 2. A variable x approaches infinity if for every 
preassigned positive number M it is possible to indicate a value 
of x such that, beginning with this value, all subsequent values 
of the variable will satisfy the inequality

If the variable x approaches infinity, it is called an infinitely 
large variable and we write x —►<».

Example 3. The variable x takes on the values

Xj =  — 1, x% =  —2, x$ —— 3, . . .  i xn =  ( 1) n . . .

This is an infinitely large variable quantity, since for an arbitrary M >  0 all 
values of the variable, beginning with a certain one, are, in absolute 
magnitude, greater than M.

<tfThe variable x “approaches plus infinity”, x —*+oo, if for an 
arbitrary M >  0 all subsequent values of the .variable, beginning 
with a certain one, satisfy the inequality M < x .

An example of a variable quantity approaching plus infinity is the variable 
x that takes on the values *j =  l, *t =  2......... xn — n , . . .
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A variable approaches minus infinity, x —►—oo, if for an arbi
trary M > 0, all subsequent values of the variable, beginning with 
a certain one, satisfy the inequality x<. — M.

For example, a variable x that assumes the values xx= — 1, x2 =  — 2, 
xn= —n...........  approaches minus infinity.

SEC. 2. THE LIMIT OF A FUNCTION

In this section we shall consider certain cases of the variation 
of a function when the argument x approaches a certain limit a 
or infinity.

Definition 1. Let the function y = f(x) be defined in a certain 
neighbourhood of the point a or at certain points of this neigh
bourhood. The function y = f (x) approaches the limit b (y—► £) as x 
approaches a (x —>-a), if for every positive number e, no matter 
how small, it is possible to indicate a positive number 6 such 
that for all x, different from a and satisfying the inequality*)

\x— a |< 8 ,
we have the inequality

\f(x)— b\<E.

If b is the limit of the function f(x) as x —*a, we write 

lim f(x) =  b

or f{x) —► b as x —► a.
If f (x)—*b as a:— this is 

illustrated on the graph of the 
function y = f(x) as follows 
(Fig. 31).

Since from the inequality 
\x—a |< 6  there follows the 
inequality \f(x)—-6 |< e ,  this 
means that for all points x

*) Here we mean the values of x that satisfy the inequality 
| x —a | <  6 and belong to the domain of definition of the function. We shall 
encounter similar circumstances in the future. For instance, when considering 
the behaviour of a function as x — ►(», it may happen that the function is 
defined only for positive integral values of x. And so in this case x —>.oo, 
assuming only positive integral values. We shall not specify this when it 
comes up later on.

2*
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that are not more distant from the point a than 6, the points 
M of the graph of the function y = f(x) lie within a band of 
width 2e bounded by the lines y = b  — e and y = b  + &.

Note 1. We may define the limit of the function f(x) as x —<-a 
as follows.

Let a variable x assume values such (that is, ordered in such 
fashion) that if

|**— a | >  Ix** — a l>
then x** is the subsequent value and x* is the preceding value; 
but if _ _

\x* — a | =  | jc** — a | and **<***,
then x** is the subsequent value and x* is the preceding value.

In other words, of two points on a number scale, the subsequent 
one is that which is closer to the point a; at equal distances, the 
subsequent one is that which is to the right of the point a.

Let a variable quantity x ordered in this fashion approach the 
limit a[ x—*a or lim.ic =  a].

Let us further consider the variable y=f (x) .  We shall here and 
henceforward consider that of the two values of a function, the 
subsequent one is that which corresponds to the subsequent value 
of the argument.

If, as x —>-0, a variable y thus defined approaches a certain 
limit b, we shall write

\im f(x) — b

and we shall say that the function y = f(x) approaches the limit 
b as x —>-a.

It is easy to prove that both 
definitions of the limit of a function 
are equivalent.

Note 2. If f(x) approaches the limit 
6, as jc approaches a certain number 
a, so that x takes on only values less 
than a, we write lim f(x) = bl and

x-+a-Q
call bx the limit of the function f(x) 
on the left of the point a. If x takes 
on only values greater than a, we 
write lim f{x) = bt and call 6* the

x-*a + o
limit of the function on the right of the point a (Fig. 32).

It can be proved that if the limit on the right and the limit on 
the left exist and are equal, that is, b1 = bi = b, then b will be
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the limit in the sense of the foregoing definition of a limit at the 
point a. And conversely, if there exists a limit b of a function at 
the point a, then there exist limits of the function at the point a 
both on the right and on the left and they are equal.

Example 1. Let us prove that lim ( 3 x + 1) = 7 . Indeed, let an arbitrary
X->2

c >  0 be given; for the inequality | (3*+  H — 7 | <  e to be fulfilled it is neces
sary to have the following inequalities fulfilled:

|3 * —6 1< e, \x —2 \ <  y ,  — j < x —2 < y -

0
Thus, given any e, for all values of x satisfying the inequality | x —2 |< - j  =
=  5, the value of the function 3 x + l  will differ from 7 by less than e. And 
this means that 7 is the limit of the function as x — >-2.

Note 3. For a function to have a limit as x —-a, it is not ne?
cessary that the function be defined at the point x = a. When find
ing the limit we consider the values of the function in the
neighbourhood of the point a that are different from a; this is
clearly illustrated in the following case.

_4 x^__4Example 2. We shall prove that lim ------ ^  = 4 .  Here, the function-------^X-*-2 X  * x   *
is not defined for x =  2.

It is necessary to prove that for an arbitrary 8, there will be a 6 such 
that the following inequality will be fulfilled:

x2—4 
x—2 4 < 8 ( 1 )

if \ x —2 \ < 6 .  But when x ^ 2  inequality (1) is equivalent to the inequality

I (* — 2)(* + 2) ^ (x +  2)— 4 | <  e

I x — 2 1 <  e. (2)

Thus, for an arbitrary e, inequality (1) will be fulfilled if inequality (2) 
is fulfilled (here, 6 =  e), which means that the given function has the 
number 4 as its limit as x —>2.

Let us now consider certain cases of variation of a function 
as x-+ oo .

Definition 2. The function J(x) approaches the limit b a9k-+ oo  
if for each arbitrarily small positive number e it is possible to 
indicate a positive number N such that for all values of x that 
satisfy the inequality the inequality \ f (x)— 6 |< e  will
be fulfilled.
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Example 3. To prove that

lim
X - >  CD

(1+ t)!
It is necessary to prove that, for an arbitrary e, the following inequality 
will be fulfilled

<8, (3)

piovided \ x \ >  N, where N is determined by the choice of e. Inequality (3) 
is equivalent to the following inequality: |- ^ - |< e ,  which will be fulfilled if

1*1 > 7  = " '
And this means that lim (1 -f —) =  lim =  l (Fig. 33).

X - + 0 0 \  X  }  X  -+  CD X

Knowing the meanings of the symbols x-+  oo and x -+■— oo the meanings 
ol the following expressions are obvious: 

uf (x) approaches b as x —►-J-oo” and 
“/  (x) approaches b as x - + — oo”, or, in symbols,

lim f (*) =  &,X-+ + 00
lim f(x) =  b .

*-*-00

SEC. 3. A FUNCTION THAT APPROACHES INFINITY.
BOUNDED FUNCTIONS

We have considered cases when the function f(x) approaches a 
certain limit b as x-+ a or as x-+ oo.

Let us now take the case when the function y = f(x) approaches 
infinity when the argument varies in some way.
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Definition 1. The function f (x) approaches infinity as* -*  a, 
i.e., it is an infinitely large quantity as x-+a,  if for each 
positive number Mt no matter how large, it is possible to find 
a 6 > 0  such that for all values of x different from a and satisfying 
the condition \x — a |< 6 ,  we have the inequality \ f ( x) \ >M.

If f(x) approaches infinity as x-+a> we write
lim f(x) = oo
x~+ a

or f(x)-+ oo as x-~+ a.
If f (x) approaches infinity as x-+a  and, in the process, assumes 

only positive or only negative values, the appropriate notation is 
lim / (x) =  +  oo or lim f(x) = — oo.

x -* a x  —► o

Example 1. We shall prove that lim 1
(1-*)-a = +  oo. Indeed, for any

M >  0 we will have 

provided

1

(i— *)j>

( 1  — X)*  <  - T J -  > I 1 — * |  <  - 4 =  =  f i -M V  M

The function ^__xy  assumes only positive values (Fig. 34).

Example 2. We shall prove that lim ( ---- = oo. Indeed, for any,r o \ x J
M >  0 we will have

provided

--- - > M,x

1*1=1* —0| <-^j- = 6.

Here ^ > 0  for x < 0  and ^ < 0  for x >  0 (Fig. 35).

If the function I (x) approaches infinity as x —► oo, we write
lim / (x) =  oo,

X —► oo

and we may have the particular cases:
lim / (*) =  oo, lim f(x) =  oo,

X —► +  00 X -  OD
lim / ( * ) = — oo.

X  —► +  QD

For example,
lim x2 = +oo, lim xl =  — oo
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Note 1. The function y = f(x) as x -► a or as x-+ oo may 
approach a finite limit or infinity.

not

Example 3. The function y =  sin* defined on the infinite interval 
— oo < x  <  +  oo, as -f oo, does not approach either a finite limit or
infinity (Fig. 36).

i y=sfnx

^_ ^2 n  ~7t\ 0

Fig. 36.

Example 4. The function y =  sm j  defined for all values of x, except
x =  0, does not approach either a finite limit or infinity as x -+ 0. The 
graph of this function is shown in Fig. 37.

Definition 2. The function y = f(x) is called bounded in a given 
range of the argument x if there exists a positive number M such 
that for all values of x in the range under consideration the
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inequality |/(*)|==S M will be fulfilled. If there is no such num
ber M, the function / ( x) is called unbounded in the given range.

Example 5. The function y =  sin*, defined in the infinite interval 
— oo < * < - ) - oo, is bounded, since for all values of x

| sin x | <  1 =  M.

Definition 3. The function f (x) is called bounded as x —>-a if 
there exists a neighbourhood with centre at the point a, in which 
the given function is bounded.

Definition 4. The function y = f(x) is called bounded as x —>-oo 
if there exists a number N > 0 such that for all values of x 
satisfying the inequality |x |> W , the function f(x) is bounded.

The boundedness of a function approaching a limit is decided 
by the following theorem.

Theorem 1. i f  lim f(x) = b, where b is a finite number, the
x -+a

function f(x) is bounded as x —*a.
Proof. From the equality lim f{x) = b it follows that for any

x-+a
e > 0  there will be a 6  such that in the neighbourhood 
a— 6 < * < a  +  6 the inequality

\ f { x ) - b \ < &
or

\ f ( x ) \ <\ b\  + s
will be fulfilled, which means that the function f(x) is bounded 
as x —>-a.

Note 2. From the definition of a bounded function f{x) it 
follows that if

lim f (x) = oo or lim f(x) = co,
x-+a x-*  oo

that is, if f(x) is an infinitely large function, it is unbounded. 
The converse is not true: an unbounded function may not be 
infinitely large.

For example, the function </ =  xsinx as x —»-oo is unbounded 
because, for any 0, values of x can be found such that 
|x sin jc| But the function y = x s m x  is not infinitely large
because it becomes zero when x =  0, n, 2 n ,. . .  The graph of the 
unction y =  xsinx is shown in Fig. 38.

Theorem 2. If lim f{x) = b=fi 0, then the function y = ■?]—, is aX-+CL I \X)
bounded function as x —>a.

Pro<?f. From the statement of the theorem it follows that for an 
arbitrary e > 0  in a certain neighbourhood of the point x = a we
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will have | / ( jc)— 6 1<  s, or ||/(*)| —|& ||< b, or — e < |/ ( x ) |  — 
— |i ) |< e ,  or 16 1 — e <  j / (jc) | <  | 6 1 +  e.

From the latter inequality it follows that 
1 _ 1

b 1—e >  1 / MI IM +8 *>

For example, taking e =  | b \ ,  we get
10

9161
1 > 10

/ (X)\  ^  U | M • 
1which means that the function is bounded.

SEC. 4. INFINITESIMALS AND THEIR BASIC PROPERTIES

In this section we shall consider functions approaching zero as 
the argument varies in a certain manner.

Definition. The function a =  a(j»c) is called infinitesimal as x —►a 
or as ^ —>oo if lim a(x) =  0 or lim a(x) =  0.

x -*■ a x-+ oo
From the definition of a limit it follows that if, for example, 

lim a(x) =  0, this means that for any preassigned arbitrarily
x -+a
small positive e there will be a 6 > 0  such that for all x satisfying 
the condition \ x—a |< 6 ,  the condition |a (x ) |< e  will be satisfied.

Example 1. The function a =  (x— l)2 is an infinitesimal as * - > l  because 
lim a =  lim (*— 1)2 =  0 (Fig. 39).

X -*■ 1 1
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d 1 6 x

Fig. 39. Fig. 40.

Let us establish a relationship that will be important later on. 
Theorem 1. If the function y = f(x) is in the form of a sum of 

a constant b and an infinitesimal a:

Conversely, if limy =  6, we may write y = b-{-a, where a is an 
infinitesimal.

Proof. From equality (1) it follows that |y —6| =  |cx|. But for 
an arbitrary e, all values of a, from a certain value onwards, 
satisfy the relationship |a |< e ;  consequently, the inequality 
|y— b |< e  will be fulfilled for all values of y from a certain 
value onwards. And this means that limy=b.

Conversely: if Y\my=b, then given an arbitrary e, for all
values of y, from a certain value onwards, we will have \ y— 6 |< e .  
But if we denote y — b = a, then it follows that for all values 
of a, from a certain one onwards, we will have |a |< e ;  and this 
means that a is an infinitesimal.

Example 3. Let a function be given (Fig. 41)

y = b + a, ( 1)
then

\ m y - b  (as x —»-a or x —-oo).

then
lim jy =  l,

X  oo

and, conversely, if
lim y — 1
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the variable y may be represented in the 
form of a sum of the limit 1 and the

infinitesimal a =  “ *. that is (Pig- 41),

y =  1+ct-

Theorem 2. If a = a(x) approaches 
zero as x —+a (or as x —m x >) and
does not become zero, then t/=  —v a
approaches infinity.

Proof. For any A4>0, no matter
how large, the inequality willI o |

be fulfilled provided the inequality | a | < is fulfilled. The latter
inequality will be fulfilled for all values of a, from a certain 
one onwards, since a(x)—>-0.

Theorem 3. The algebraic sum of two, three and, in general, a 
definite number of infinitesimals is an infinitesimal function.

Proof. We shall prove the theorem for two terms, since the 
proof is similar for any number of terms.

Let u(x) — a (jc) -f p (x), where lim a (x) =  0, lim p (x) =* 0. We
x a x a

shall prove that for any e > 0 ,  no matter how small, there will 
be a 6 > 0  such that when the inequality \ x—a |< 6  is satisfied, 
the inequality |« |< e  will be fulfilled. Since a(x) is an infinites
imal, a 6 will be found such that in a neighbourhood with centre 
at the point a and radius 6,, we will have

|a ( x ) |<  y -

Since p(*) is an infinitesimal, we will have IPOOI-Cy in the
neighbourhood of the point a with radius 62.

Let us take 6 equal to the smaller of the .two quantities 6, and
then the inequalities |a |< - |-  and | p | < | -  will be fulfilled in

the neighbourhood of the point a with radius 6. Hence, in this 
neighbourhood we will have

l«l =  l«(*) +  P Ml <|a(*)|  +  |P Ml < | -  +  -| = e»
and so |u |-< e , as required.

The proof is similar for the case when
lim a  (*) =  0, lim p (x) =  0.
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Note. Later on we shall have to consider sums of infinitesimals 
such that the number of terms increases with a decrease in each 
term. In this case, the theorem may not hold. To take an example,
consider « =  ^- +  -j +  > • • + - j  where x takes on only positive

x  terms
integral values (jc= 1, 2, 3........n, ...) . It is obvious that as
x —>-oo each term is an infinitesimal, but the sum u = l  is not an 
infinitesimal.

Theorem 4. The product of the function of an infinitesimal 
a  =  a(x) by a function bounded by z = z (a), as x —<-a (or x —>-co) 
is an infinitesimal quantity (function).

Proof. Let us prove the theorem for the case x —>-a. For a 
certain 0 there will be a neighbourhood of the point x = a 
in which the inequality \z\< .M  will be satisfied. For any e>-0
there will be a neighbourhood in which the inequality
will be fulfilled. The following inequality will be fulfilled in the 
least of these two neighbourhoods:

\a z \ < - w M = 8
which means that az is an infinitesimal. The proof is similar for 
the case x —>-oo. Two corollaries follow from this theorem.

Corollary 1. If lima =  0, Iimp =  0, then limap =  0 because P(x) 
is a bounded quantity. This holds for any finite number of factors. 

Corollary 2. If lima =  0 and c =  const, then limca =  0.
Theorem 5. The quotient —  ̂ obtained by dividing the infini

tesimal a (x) by a function whose limit differs from zero is an 
infinitesimal.

Proof. Let lim a(x)=0, lim z (x) =  b =h 0. By Theorem 2, Sec. 3, 
it follows that is a bounded quantity. For this reason, the

fractions — j =  a (x )j-^  are a product of an infinitesimal by a 
bounded quantity, that is, an infinitesimal.

SEC. 5. BASIC THEOREMS ON LIMITS

In this section, as in the preceding one, we snail consider sets 
of functions that depend on the same argument x, where x —>-a 
or x —m x >.

We shall carry out the proof for one of these cases, since the 
other is proved analogously. Sometimes we will not even write 
x —*-a or x —»-<x>, but will take them for granted.



46 Limit . Continuity of a Function

Theorem 1. The limit of an algebraic sum of two, three and, 
in general, am/ definite number of variables is equal to the 
algebraic sum of the limits of these variables:

lim (ux +  u2 +  . . .  +  uk) =  lim ux +  lim uz +  . . .  +  lim uk.
Proof. We shall carry out the proof for two terms, since it is 

the same for any number of terms. Let limux = axt lima2 =  a2. 
Then on the basis of Theorem 1, Sec. 4, we can write

ul = al + a lt u2 = a2 +  a2 
where a, and a2 are infinitesimals. Consequently,

ui +  ui — (ai +  at) +  (ai +  a2)-
Since (ax + a2) is a constant and (cq+ aj is an infinitesimal, 

again by Theorem 1, Sec. 4, we conclude that
lim (ux +  u2) =  ax +  a2 =  lim ux +  lim u2.

Example 1.

lim x ~^2--=  lim f 1 +  —) =  lim 1 +  lim — =  1 +  lim — — 1 + 0 =  1.
X -+  03 X  X - *  00 \  X  J  X  —>■ CD . X  —► 00 X  X - *  00 X

Theorem 2. The limit of a product of two, three and, in general, 
any definite number of variables is equal to the product of the' 
limits of these variables:

limu.-Uj . . .  «ft =  lim«t -limut . . .  Iimuft.
Proof. To save space we shall carry out the proof for two 

factors. Let lim « ,= a t, l im u ^ a j. Therefore,
ui =  fli +  a i. ut = at + at,

«, ui =  («i +  «,) (a. +  «*) =  a A  +  a, a* +  a2 a, +  a,0,.
The product a1a1 is a constant. By the theorems of Sec. 4, the 
quantity a,a2 + a,a, + a ,a 2 is an infinitesimal. Hence, lim t^u ,^  
>= a,a4 =  lim u, • lim ut.

Corollary. A constant factor may be taken outside the limit 
sign. Indeed, if lim ux = ax, c is a constant and, consequently, 
limc =  c, then lim(c«,) =  limc-limu1 =  c-lim«1, as required.

Example 2.
lim 5jcs =  5 lim jc* =  5-8 =  40.*-►2 X -> 2

Theorem 3 .. The limit of a quotient of two variables is equal 
to the quotient of the limits of these variables if the limit of the 
denominator is not zero:

lim u lim u ■.
lim v if lim v =£ 0.

V
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Proof. Let lima =  a, lima =  &=£0. Then a =  a +  a, v = b-\-§, 
where a and p are infinitesimals.

We write the identities
u _ a  +  a a . /  a +  a a \  _  a . ab — Pa

T “" 6-t-p b )  b ' b (b '

or
u _ a . ab — Pa

t  “  y + b (b+ p) •

The fraction 4  is a constant number, while the fractionb b ( o - f p )
is an infinitesimal variable by virtue of Theorems 4 and 5 (Sec. 4), 
since ab—pa is an infinitesimal, while the denominator b(b + P)
has the limit b1 =f= 0. Thus, l im -  =  -  =  .v b lim  v

Example 3.
lim (3x +  5) 3 lim x +  5

3* +  5 _  x-»i _ 3 - l + 5 _ 8
x ^ i ^ x — 2 lim (4x— 2) 4 lim x— 2 4* 1 — 2 2 ~~x -► 1 * -► 1

Here, we made use of the already proved theorem for the limit of a fraction 
because the limit of the denominator differs from zero as x —>~ 1. If the limit 
of the denominator is zero, the theorem for the limit of a fraction is not 
applicable, and special considerations have to be invoked.

x2— 4
Example 4. Find lim ----- x- .X-+ 2 X
Here the denominator and numerator approach zero as x 2, and, con

sequently, Theorem 3 is inapplicable. Perform the following identical 
transformation:

x2—4 _ (x — 2)(* +  2) _ _  , 0
7 = 2  ~  x = 2  - *  +  *■

This transformation holds for all values of x different from 2. And so, 
having in view the definition of a limit, we can write

lira ^ = ^  =  lira (* - 2> =  lim (* +  2) =  4.

Example 5. Find lim -----r . As x —► 1 the denominator approaches zeroX-+ 1 x l
but the numerator does not (it approaches unity). Thus, the limit of the 
reciprocal quantity is zero:

lim 
x -+■ i

X — 1 
X

lim (.*— 1)
x 1___________ U
lim x ““ 1

X  -* •1
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Whence, by Theorem 2 of the preceding section, we have

lim =  oo.i *—1
Theorem 4. ff the inequalities u ^ z ^ v  are fulfilled between 

the corresponding values of three functions u — u(x), z =  z(jc), 
and v = v(x), where u(x) and v(x), as x —*-a (or as x —►oo), 
approach one and the same limit b, then z=z (x)  as x —>-a (or 
as x —*-oo) approaches the same limit.

Proof. For definiteness we shall consider variations of the 
functions as x —*-a. From the inequalities u«Szs£o follow the 
inequalities

u— b ^ z — — b\
it is given that

lim u = b, lim u =  b.
x~>a x-+ a

Consequently, for any e > 0  there will be a certain neighbourhood 
with centre at the point a, in which the inequality | u — £>|<Cr 
will be fulfilled; likewise, there will be a certain neighbourhood 
with centre at the point a in which the inequality |u —6 |< e  
will be fulfilled. The following inequalities will be fulfilled in the 
smaller of these neighbourhoods:

— e < u — b < e  and — e <  u—b<.&, 
and thus the inequalities

— e <  z— b <  e
will be fulfilled; that is,

lim z — b.

Theorem 5. If as x —>a (or as x —>-oo) the function y takes on 
nonnegative values y ^ O  and, at the same time, approaches the 
limit b, then b is a nonnegative number b^zO.

Proof. Assume that b < 0, then |y — b\&sb\ that is, the 
difference modulus |y—b | is greater than the positive number |b | 
and, hence, does not approach zero as x - ^ a .  But then y does 
not approach b as x —*a\ this contradicts the statement of the 
theorem. Thus, the assumption that b<. 0 leads to a contradiction. 
Consequently, b S* 0.

In similar fashion we can prove that if ys^  0, then limt/s^O.
Theorem 6. If the inequality v&su is fulfilled between corre

sponding values of two functions u = u(x) and v=v( x )  which 
approach limits as x —*-a (or as x —>- oo), then lim v 5s lim u.
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Proof. It is given that v — u ^ O .  Hence, by 
Theorem 5, lim(y—u ) ^  0 or lim a— limw^O, 
and so

Example 6. Prove that lim sin* =  0.
X - + 0

From Fig. 42 it follows that if Oj4 =  1, * > 0 ,  then
i4C =  sinx, A B = x ,  s in x < * .  Obviously, when x <  0 
we will have | sin * | <  | x |. By Theorems 5 and 6, it 
follows, from these inequalities, that lim sin* =  0.

X -> 0

X  I XExample 7 Prove that lim s in ^  — O. Indeed, sin-^- x~>o I <  | sin x

x
quently, lim sin-^- =  0.X -> 0 *•

Conse-

Example 8. Prove that lim cosjc =  1; note thatX 0

cos x =  \ — 2sin2 ,

therefore,

lim cos x =  lim ( 1 —2 sin2 — ̂  =  l — 2 lim sin2 — =  1—0 =  1. 
x-+o x - >  o \  & J x  - >o I

In some investigations concerning the limits of variables, one 
has to solve two independent problems:

1) to prove that the limit of the variable exists and to 
establish the boundaries within which the limit under consideration 
exists;

2) to calculate the limit to the necessary degree of accuracy.
The first problem is sometimes solved by means of the following

theorem which will be important later on.
Theorem 7. If a variable v is an increasing variable, that is, 

each subsequent value is greater than the preceding value, and if 
it is bounded, that is, v<C.M, then this variable has the limit 
limv = a, where a ^ M .

A similar assertion may be made with respect to a decreasing 
bounded variable quantity.

We do not give the proof of this theorem here since it is based 
on the theory of real numbers, which we shall not consider in 
this text.

In the following two sections we shall derive the limits of two 
functions that find wide application in mathematics.
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SEC. 6. THE LIMIT OF THE FUNCTION ~ ^ A S x - * - 0

This function is not defined for x — 0 since 
the numerator and denominator of the fraction 
become zero. Let us find the limit of this 
function as x —<-0. Let us consider a circle 
of radius 1 (Fig. 43); denote the central angle
MOB by *; 0 < * < - ^ - .  From Fig. 43 it
follows in straightforward fashion that 

area A  MO A <  area of sector MO A <  
area A  CO A. (1)

The area A  MOA =  -i 1 • sin x=  y  sinx.

The area of sector MOA = — OA-AM =  ~  1 • * =  -~je.

The area of A  COA OA-AC = ̂ - l - t a n x  = -^tanx.
1

2 -----2

After cancelling-^-, inequality (1) is rewritten

sin x C r e t a n  x. 
Divide all terms by sin*:

1 <  - r ^ <  —sin x cos *

or
i  ̂ sin x ^1 > -->  cos *.x —

We derived this inequality on the assumption that * > 0 ;  noting
that —' and cos(—*)=cos*, we conclude that it(— x) x ' '
holds for * < 0  as well But lim co s* = l, lim 1 =  1.

X —*■ 0 * - * 0

Hence, the variable lies between two quantities that have
the same limit (unity). Thus by Theorem 4 of the preceding 
section,

l i m ^ = l .
J C - .  *

The graph of the function y = is shown in Fig. 44.
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1X .. tan* .. sin* 1 .. sin* .. 1 , 1 .1) lim ----- = lim     lim----------  lim -= 1 • — = 1.
X -+  0 C O S  *

2) lim sin kx
X -+ Q  x

x —► o x *-►(> *  1

. .. , sin kx . .. sin(£*) . , . .x=  lim k —7— = k  lim —-7 - =  6-1 — k (k =  const).*-►0 fax')(kx-+o)

3) lim
X - +  0

1 — cos *
o • 2 * . *2 sin2 y  sin ̂

lim -------- -  =  lim ------ s i n - =  1 -0 = 0 .
X  —► 0 * r - ^ n  * 2JC-VO

2
sin a*

,x sin a* .. a 4) lim =  lim —
lim

__________   a * ____ a x-+o a* __
sin fix ,T o  P ’ sin p-t ~  P ljm sin P* ~  

P< *-►<> P*
y  • y = —- (a =  const, p =  const).

SEC. 7. THE NUMBER E

Let us consider the variable

where n is an increasing variable that takes on the values 1, 
2, 3, . . .

Theorem 1. The variable , as n —*-oo, has a limit
between the numbers 2 and 3.

Proof. By Newton’s binomial formula we have

(■ + i y - - >+ i ± + * j s a '• a y + ■ • •
n(n— !)(» — 2)...fn — (n—1)] M  \»

“  • "r l-2 - ..- .-n  • [ n  J ’ (1)
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Carrying out the obvious algebraic manipulations in (1), we get

( > + ! ) " = ' + . +Ti5 ( . - | ) + r i r3( . _ i - ) ( . - | ) + . . .

From the latter equality it follows that the variable ( l  +  —'l\ n /
is an increasing variable as n increases.

Indeed, when passing from the value n to the value n + l ,  each 
term in the latter sum increases,

F-2 ( 1 ^") <T-2 ( ! and so forth,

and another, term is added. (All terms of the expansion are 
positive.)

/  1 \ n
We shall show that the variable ( 1 +  — J is bounded. Noting

that ^1——) < 1 ;  | l  — 1 - |^ 1 — ^ < 1 ,  e Ĉ-’ we of’f3*11 fronl 
expression (2) the inequality

( • + 4  ) ■ < ' + . '  1
Further noting that

1 < '-■  I ^  02 »

1*2 1 1-2-3

1 . < ! •  i ^  o# »

+  . . .
i

l"2"3.....rt *

1
<

1
1.2-3^2J ’ 1"2.3"4^2» ’ 1 -2- . . . -n ^  2n* 

we can write the inequality

^ 1 + ^  <  f +  f +  '2' +  ^ +  • • • +o<r=i •2"-

The grouped terms on the right-hand side of this inequality form 
a geometric progression with the common ratio <7 =  -j and the 
first term a =  1, and so

( 1+ i )  <  1+ [f +  • • •+ 2 ^ '.]  =

= 1 + ^ . 1 + i z 4 r = 1 + [2 _ ( > n < 3 .
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Consequently, for all n we get

From equality (2) it follows that

Thus, we get the inequality

2 < ( 1 + i ) ”< 3 - (3)

This proves that the variable ^1 is bounded.

Thus, the variable *s an increasing and bounded
variable; therefore, by Theorem 7, Sec. 5, it has a limit. This 
limit is denoted by the letter e.

Definition. The limit of the variable ^ 1 + - ^  as n —*-oo is the
number e:

e - l t a  ( . + ! ) • . * >
n oo \  /

By Theorem 6, Sec. 5, it follows from inequality (3) that the 
number e satisfies the inequality 2s^es£3. The theorem is thus 
proved.

The number e is an irrational number. Later on, a method will 
be shown that permits calculating e to any degree of accuracy. Its 
value to ten significant decimal places is

<? =  2.7182818284...

Theorem 2. The function ^1 approaches the limit e as x

approaches infinity, lim (1 +  — ) —e.
x-*a> \  X t

Proof. It has been shown that ^1 as n —>-oo, if n
takes on positive integral values. Now let x approach infinity 
while taking on fractional and negative values.

*) It may be shown that ~*e as «-*■ +  <» even if n is not an
increasing variable quantity.
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1) Let >- +  00. Each of its values lies between two positive 
integral numbers,

nsSx<C n+ 1.

The following inequalities will be fulfilled:

n = *  - n + 1 ’

1 + - 5 s  l + - >  l+ - ^ - r ,  n 1 x 1 n - f l  ’

If x —>-oo, it is obvious that n —>-oo. Let us find the limits of the 
variables between which the variable (1 +  y )  l*es:

lim
n —► + 00

n +1

lim
n —► + co

=  lim
n-* + 00 lim f  1 + — \ =  £• 1 =  e,

n-> + co \  n J

e.

Hence, by Theorem 4, Sec. 5,

Hm ( 1 + 7 )* =  * (4)
X-+ +  CC \ *  J

2) Let x —►—00. We introduce a new variable t = — (x+  1) or 
x = — (/+1). When t —► +  00 then x —►—00. We can write

lim
X  —► ~  0
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The theorem is proved. The graph of the function t /= ^ l  + y ) *  
is shown in Fig. 45.

If in equality (4) we put =  then as x —<-oo we have a —*-0 
(but a =£ 0) and we get

1
lim (1 -|-a) — e.
a -* o

Examples:

.) um ( 1+± y +,=  i.m ( l+ ± y ( , + ± y .
n-*®  \  n  J  n -> oo V n  J \  n  J

=  lim f l + i - V  . lim (  l + — V  = e - l = e .
n-* oo \  fl J n —*oo \  Tl J

=  lim
J C  — *  C O

=  l i m  I
U-*  o o  \

li

5*

+

=  e 2 .

i
=  l i m  

£ - *  00

( x — 1 + 4

I  • *  —  1

\ x + i  /  4  \ * + «

= =  l i m
X — *  C O ( l + : = i ,

y x - i r + 4

=  l i m  ( l + i r  
< / - > • < »  V  y  }

—  l i m
y  - ►  o o

.  l i m  f  

y-+<*> \
l + - y = e 4 - l = e ‘ -
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SEC. 8. NATURAL LOGARITHMS

In Sec. 8 of Chapter I we defined the logarithmic function 
y — logs'*. The number a is called the base of the logarithms. 
If a= 10 , then y is the decimal (common) logarithm of the num
ber x and is denoted y= \ogx. In school courses of mathematics 
we have tables of common logarithms, which are called Briggs’ 
logarithms after the English mathematician Briggs (1556-1630).

Logarithms to the base e =  2.71828... are called natural or 
Napierian logarithms after one of the first inventors of logarithmic

tables, the mathematician Napier (1550-1617).*) Therefore, if 
ey = x, then y is called the natural logarithm of the number x. In 
writing we have y = \nx  (after the initial letters of logarithmus 
naturalis) in place of y=logex. Graphs of the function y =  \nx  
and r/ =  lbg* are plotted in Fig. 46.

Let us now establish a relationship between decimal and 
natural logarithms of one and the same number x.

Let y=\ ogx  or x=  10y. We take logarithms of the left and 
right sides of the latter equality to the base e and get lnx =  t/ln l0.
We determine i/ =  ̂ ^ ln jic , or, substituting the value of y , we

have log jc =  In jc.
Thus, if we know the natural logarithm of a number x, the com

mon (decimal) logarithm of this number is found by multiplying
by the factor =  0.434294, which factor is independent
of x. The number M is the modulus of common logarithms with 
respect to natural logarithms:

logx = M In jc.

*) The first logarithmic tables were constructed by the Swiss mathemati
cian Burgi (1552-1632) to a base close to the number e.



Continuity of Functions 57

If in this identity we put x =  e, we obtain an expression of the 
number M in terms of common logarithms:

loge =  Af(lne= 1).
Natural logarithms are expressed in terms of common logarithms 
as follows:

where
lnx =  ^  log*

-  =  2.302585.

SEC. 9. CONTINUITY OF FUNCTIONS

Let the function y = f(x ) be defined for some value x0 and in 
some neighbourhood with centre at x0. Let y0 =  /(x0).

If x receives some positive or negative (it is immaterial which) 
increment Ax and assumes the value 
x =  x0-(-Ax, then the function y too will 
receive an increment Ay. The new in
creased value of the function will be 
y0 +  Ay =  / (x0 +  Ax) (Fig. 47). The incre
ment of the function Ay will be expressed 
by the formula

Af/ =  / (x. +  Ax) — /(*,).

y,

Mi
Ay

/  yo

_  Ax _
0 xQ x0+Ax X

Fig. 47.
Definition 1. The function y = f(x) is 

called continuous for the value x =  x0 
(or at the. point x0) if it is defined in
some neighbourhood of the point x0 (obviously, at the point x0 
as well) and if

lim Ay = 0 (1)
A *  - * o

or, which is the same thing,

lim [/(*„ +  Ax)—/(xo)] =  0.
A jc -> -0

(2)

In descriptive geometrical terms, the continuity of a function at a 
given point signifies that the difference of the ordinates of the 
graph of the function y = f(x) at the points x0-f Ax and x0 will, 
in absolute magnitude, be arbitrarily small, provided |Ax| is 
sufficiently small.
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Example 1. We shall prove that the function y =  x* is continuous at an 
arbitrary point x0. Indeed,

ya =  x\, >̂ +  Ay =  (*o +  A*)*, Ay =  (x„ +  Ax)1—*J =  2*o A* +  A*1, 

lim Ay =  lim (2x0 Ax +  A*2) =  2x lim A* +  lim Ax • lim A* =  0
Ax-+o Ax-+o Ax-+o Ax-+o Ax-+o

for any way that A* may approach zero (Figs. 48, a and 48, b).

Example 2. We shall prove that the function i/=sinjr is continuous at 
an arbitrary point x0. Indeed,

y0 =  sin *0, y0 + A y  =  sin (x0 +  A*),

Ay =  sin (xQ +  A*)—sin x0 =  2 sin * cos +  .

It was shown that lim sin —  =  0 (Example 7, Sec. 5). The function A*-*o 2
cos ( x +  —  ) is bounded. Therefore, lim Ay =  0.

\  2 J Ax o

In similar fashion, it is possible to prove the following theorem 
by considering each basic elementary function and each 
elementary function.

Theorem. Every elementary function is continuous at each point 
at which it is defined.

The condition of continuity (2) may be written thus:

lim /(* „  +  Ax) = )(xt)
Ax -*>o

or
lim / ( * )  =  / ( * , ) ,

X - + X Q

bu t
x<t= lim x.

X Xq
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Consequently,
lim f(x) = f (  lim x). (3)

x-*»x0 x-+x0

In other words, in order to find the limit of a continuous function 
as x —*x0 it is sufficient to substitute into the expression of the 
function the value of the argument, x0, in place of the argument*.

Example 3. The function y =  x2 is continuous at every point x0 and 
therefore

lim x2=  x\, 
x-+x0

lim ** =  32 =  9.X -► 3
Example 4. The function # =  sinx is continuous at every point and 

therefore

lim sin jc = sin-5-=1^1. 
n 4 2

Example 5. The function y =  ex is continuous at every point and therefore 
lim ex —ea.

x-+a i
Example 6. Hm ll l i ld b £ l=  lim — In (1 + * ) =  lim In [ (1 + * )* ] . SinceX-*0 * X —► 0 * X —► 01

lim ( 1 + * ) * = £  and the function In2 is continuous for 2 > 0 , and, x —► 0
consequently, for z — e,

1 1
lim In [ (1 + * )* ]  =  In [ lim (1 +  *) x ] =  In e =  1.X —► 0 X -► 0

Definition 2. If the function y = f(x) is continuous at each point 
of a certain interval (a, b), where a<.b, then it is said that the 
function is continuous in this interval.

If the function is also defined for x = a and lim f(x) = f(a),
x -* a  + o

it is said that f(x) at the point x = a is continuous on the right. 
If lim f(x) = f(b), it is said that the function f(x) is continuous

x -> 6-o
on the left of the point x = b .

If the function /(*) is continuous at each point of the interval 
(a, b) and is continuous at the end points of the interval, on the 
right and left, respectively, it is said that the function f(x) is 
continuous over the closed interval [a, b].

Example 7. The function y =  x2 is continuous in any closed interval [a, bJ. 
This follows from Example 1.
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If at some point x = x0J at least one of the conditions of conti
nuity is not fulfilled for the function y = f(x ), that is, if for jc =  jc0 
the function is not defined or there does not exist a limit lim f(x)

x - * x 0
or lim f ( x ) ^ f ( x 0) in the arbitrary approach of x —+xQJ although

x-+ x0
the expressions on the right and left exist, then at x = xQ the 
function y = f(x) is discontinuous. In this case, the point x = x0 
is called the point of discontinuity of the function.

Example 8. The function */ =  — is discontinuous at x =  0. Indeed, the 

function is not defined at x =  0.

lim — =  °o;
£ - * • 0 + 0  X

(see Fig. 35). It is easy to show that 
value x ^  0. i

Example 9. The function y =  2 xi i
lim 2 X = o o , lim 2 X = 0 .  The fui

X —*■ 0 +  0 X  —► 0 — 0

lim — =  — oo
£ - * • 0 - 0  X

this function is continuous for any

is discontinuous at x =  0. Indeed, 

:tion is not defined at x =  0 (Fig. 49).

y
i y-f(x)

£ A
y-f(x) -1

Fig. 50.

x xExample 10. Consider the function / ( * ) = - •  At x <  0, =  — 1;
x

at x >  0, t—r =  1. Hence,l*|
lira / ( * ) =  lira _ l r = _ i ;

£ - * • 0 - 0  £ - * - 0 - 0  | X  |

lim f ( x ) =  lim - ^  =  1;£-*•0+0 £-*-0 + 0 | X |

the function is not defined at x =  0. We have thus established the fact that 
the function/(*) =  -—-p is discontinuous at * =  0 (Fig. 50).
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Example 11. The earlier examined function  ̂=  sin— is discontinuous 

at x =  0.

Definition 3. If the function f(x) is such that there exist finite 
limits litn f (x) =  f (x0 -j- 0) and lim f(x) = f (x0—0), but either

X  —► Jt0 +  0  X - b X Q- 0

lim f(x) =£ lim f(x) or the value of the function f{x) at x = x0
X - » - * o +  0 X  -+■ X q — 0

is not defined, then x = x0 is called a point of discontinuity of the 
first kind. (For example, for the function considered in Example 10, 
the point x = 0 is a point of discontinuity of the first kind).

SEC. 10. CERTAIN PROPERTIES OF CONTINUOUS FUNCTIONS

In this section we shall consider a number of properties of 
functions that are continuous on an interval. These properties 
will be stated in the form of theorems given without proof.

Theorem 1. If a function y = f{x) is continuous on some inter
val [a, b] ( a ^ x ^ b ) ,  there will be, on this interval at least one 
point x = xx such that the value of the function at this point will 
satisfy the relation

where x is any other point of the interval, and there will be at 
least one point xt such that the value of the function at this point 
will satisfy the relation

f (*«)</(*)•
We shall call the value of the function /(*,) the greatest value 

of the function y = f(x) on the interval [a, b], and the value of 
the function f (xt) the smallest 
(least) value of the function on 
the interval [a, b].

This theorem is briefly stated as 
follows:

A function continuous on the 
interval a ^ x ^ b  attains on this 
interval (at least once) a greatest 
value M and a smallest value m.

The meaning of this theorem is 
clearly illustrated in Fig. 51.

Note. The assertion that there exists a greatest value of the 
function may prove incorrect if one considers the values of the 
function in the interval a < x < .b .  For instance, if we consider 
the function y = x in the interval 0 < x < l ,  there will be no
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greatest and no least (smallest) values among them. Indeed, there 
is no least value or greatest value of x in the interval. (There 
is no extreme left point, since no matter what point x* we take

X *there will be a point left of it, for instance, the point - j ; like
wise, there is no extreme right point; consequently, there is no 
least and no greatest value of the function y = x.)

Theorem 2. Let the function y = f(x) be continuous on the inter
val [a, b] and at the end point of this interval let it take on 
values of different sign; then between the points a and b there will 
be at least one point x = c, at which the function becomes zero:

f(c) = 0, a < c < b .
This theorem has a simple geometrical meaning. The graph of a 
continuous function y = f(x) joining the points Mx[a,f(a)] and 
Mt [6, f(b) 1, where f {a)< 0 and /(£?)>0 ,
o r / ( a ) > 0  an d /(6 )< 0 , cuts the x-axis il I 
at least at one point (Fig. 52). ___

0
-/

Fig. 53.

K

Example. Given the function y =  x* — 2. */x=1 =  — 1, yx=t  =  6. It is conti
nuous in the interval [1, 2]. Hence, in this interval there is a point where 
y =  x*—2 becomes zero. Indeed, y =  0 when x — 2 (Fig. 53).

Theorem 3. Let the function y = f(x) be defined and continuous 
in the interval [a, b]. If at the end points of this interval the 
function takes on unequal values f(a) = A , f(b) = B , then no mat
ter what the number p, between numbers A and B, there will be a 
point x = c between a and b such that f(c) = \i.

The meaning of this theorem is clearly illustrated in Fig. 54. 
In the given case, any straight line y = \i cuts the graph of the 
function y = f{x).
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Note. It will be noted that Theorem 2 is a particular case of 
this theorem, for if A and B have different signs, then for p one 
can take 0, and then p =  0 will lie between the numbers A and B.

Corollary of Theorem 3. If a function y — f(x) is continuous in 
some interval and takes on a greatest value and a least value, 
then in this interval it takes on, at least once, any value lying 
between the greatest and least values.

Indeed, let f (xt) = M, f{xt) —m. Consider the interval [xlt *,|. 
By Theorem 3, in this interval the function y — f(x) takes on 
any value p lying between M and m. But the interval [*,, xt \ 
lies inside the interval under consideration in which the function 
f  (x) is defined (Fig. 55).

SEC. II. COMPARING INFINITESIMALS

Let several infinitesimal quantities
a, P. Y, . . .

be at the same time functions of one and the same argument x 
and let them approach zero as x approaches some limit a or 
infinity. We shall describe the approach of these variables to zero 
when we consider their ratios. *)

We shall, in future, make use of the following definitions.
Definition 1. If the ratio — has a finite nonzero limit, thata

is, if lim-£-= j4 #  0, and therefore, lim y  =  -jp #0 , the infinites
imals p and a are called infinitesimals of the same order.

*) We assume that the infinitesimal in the denominator does not vanish 
in some neighbourhood of the point a.
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Example 1. Let a =  x , P =  sin2x, where x -*■ 0. The infinitesimals a and p 
are of the same order because

lim 1 _ =  lim ! ^  =  2.
*  - * 0  Cl X —► 0 X

Example 2. When x 0, the infinitesimals sin3x, tan 2x, 7 In (1-{-*) are 
infinitesimals of the same order. The proof is similar to that given in 
Example 1.

Definition 2. If the ratio of two infinitesimals -L approaches

zero, that is, if lim-jj- =  0 ^and lim--- =  oo^, then the infinitesi
mal p is called an infinitesimal of higher order than a, and the 
infinitesimal a is called, an infinitesimal of lower order than p.

Example 3. Let a =  x, fi — xn, n > l ,  x->-0. The infinitesimal p is an 
infinitesimal of higher order than the infinitesimal a, since

lim — — lim xn~l = 0 .
X -+  o X X  -* -0

Here, the infinitesimal a is an infinitesimal of lower order than p.

Definition 3. An infinitesimal p is called an infinitesimal of the 
kth order relative to an infinitesimal a, if p and a* are infinitesimals
of the same order, that is, if lim-—=  A i= 0.

c r

Example 4. If a =  xy P =  x8, then as x -+ 0 the infinitesimal p is an 
infinitesimal of the third order relative to the infinitesimal a since

lim — lim 
jt->o a3 x -*

Definition 4. If the ratio of two infinitesimals -L approaches

unity, that is, if lim -L = l, the infinitesimals p and a are called 
equivalent infinitesimals and we write a -v. p.

Example 5. Let a =  x and 
and p are equivalent, since

P =  sin j c , where x

lim S lH  =  l. 
X —*0 x

0. The infinitesimals a

Example 6. Let a =  x, p =  ln ( l+ * ) ,  where x 0. 
and P are equivalent, since

lim !“ < L ± £ L _ i

The infinitesimals a

(see Example 6, Sec. 9).
x
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Theorem I. I f a and P are equivalent infinitesimals, their differ
ence a —P is an infinitesimal of higher order than a and than p. 

Proof. Indeed,

lim =  lim ( 1——) =  1 — lim — = 1  — 1= 0. a \  a j  a

Theorem 2. If the difference of two infinitesimals a —p is an 
infinitesimal of higher order than a and than p, then a and p are 
equivalent infinitesimals.

Proof. Let lim a~~  ̂=  0, then lim ( 1——̂  = 0 , or 1 — lim — =  0, a \  a J ’ a ’
or 1 = l i m— i. e., a »  p. If lim a~  - =  0, then lim —  1  ̂= 0 , 

lim =  1, that is, a « p .

Example 7. Let a =  x, P =  x +  ji'3, where x —► 0.
The infinitesimals a and p are equivalent, since their difference p—-a =  xs 

is an infinitesimal of higher order than a and than p. Indeed,

lim — =  lim —  =  lim jt2 =  0,
X  ~ ► 0  a  X - > 0  X  X - *  0

lim ° — P =  limo x -j-j;3=  limo 1 +  x , =  0.

X - L  1 ’ 1
Example 8. As x —► oo the infinitesimals a =  - —  and p =  — are equivalent

infinitesimals, since their difference a — P =  — -  =  -4 is an infinitesimalr x2 x x 2
of higher order than a and than p. The limit of ■ the ratio of a and p is 
unity:

_1_

lim — =  lim — —  =  lim =  lim /" l- f  — ) =  1.
a JC-> oo * + l  X - *  <» x  * -  oo \  x  J

X 2

Note. If the ratio of two infinitesimals — has no limit anda
does not approach infinity, then p and a are not comparable in 
the above sense.

Example 9. Let a  =  x,  P =  xsin — , where x —► 0. The infinitesimals
fl 1

a and P cannot be compared because their ratio —  =  sin — as x —► () does nota x
approach either a finite limit or infinity (see Example 4, Sec. 3).

3-3388



66 Limit. Continuity of a Function

Exercises on Chapter II

Find the indicated limits:

1. lim * ? . Ans. 4. 2. lim [2 sin* — cos x +  cot x]. A ns. 2.
X-+1 * + 1  Jl

3. lim  ̂ . Ans. 0. 4. lim ( 2 —  ̂ . Ans. 2. 5. lim
X-̂ -2 ]A 2 +  Jt X-K®\ X X2 J X CD

Ans. 1 .  6. lim i ± 1 .  Ans. 1. 7. lim 1 + 2  +  • • • + "  , Ans. 1 .

4x* — 2*2 +  l 
3*s—5

X  —► co X

8. lim l* +  2* +  3*+ ■ • • +  wf , A n s . I .
n-± (d n* 3

Hint. Write the formula — /e* =  3/t* +  3 f t 1 for k =  0, 1, 2,
1*==1;

2* — l» =  3-l* +  3-l +  l;
35 — 25 =  3-2* +  3-2 +  l;

(n + 1 )2—n2 = 3 n 2 +  3n-f 1.

Adding the left and right sides, we get

(n +1)* =  3 (l* +  2* +  . . .  +  n*) +  3 (1 +  2 +  . . . + « )  +  (« + 1 ),

(n + l)»  =  3 ( l i +  2i + . . . + n 8) - 3 fl(n2+ 1 ^+ (n  +  l).

whence

l* +  2 *+  . . . + / i f = n (n + l) (2 n  +  l)

lim
x -*■ co 2x +  5

Ans. oo. 3x2 — 2x — 110. lim
x —► co Xs -f- 4

Ans. 0.

11. lim 4 x [  . 2* -  , Ans. — • 12. lim . .4ns. 4. 13. lim — — A . Ans. 3.
x -̂ o 3*2 +  2* * -2

14. lim x2—5 * +  6 Ans. JL.  
8

15. lim

x —1

*’ +  3* - 10 Ans. 1.
x ^ \ x 2— 12x +  2U..............  8 ’ x_*23jc2 — 5x—2

16. lim »' +  W + ? y  . Ans. -  2 17. lim f f l+ ^ ± 4 x r  ^  0
y-+ - t  y2—y — 6 5 - 2  (w +  2)(w—3)

18. lim — f l . Ans. 3s:2.
/i -> o h

19. lim U --------- ^-nrl- Ans. — 1.
| _ 1 — *  1 - * * J

xn_1 \T 1 I y _1 , 1
20. lim _----- ! .  Ans. n (n is a positive integer). 21. lim I— -L------ Ans.—..

X -*■ 1 x — i x 2X
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22. Mm . ^ 2* +  ' - 3 . .  A n s . l Y l .  23. lim +
* - ► 4  ] / * —2 —  2 ^ *-*-0 | / jc2-[-(72—<7

»"■ >/ j c  *. Ans. 1 .24. lim ----------
x-+i Y x — \

7 /  x — 7 /  a
25. lim X-----------Y.---Ans.

x-+ a x —a ma

P

y -a

26. lim *->o
V \  + x  +  x* — \_ Ans J_ 27 lim Yx*  3 Ans {

~  o  .4 s~ z — :— r* -* + oo yx»+ \

lim —x *. . Ans. 1 asJt-*- +  o o ,— 1 as x — co. 29. lim (V * * -|- l—■. _ V I .. . _28. lim --------
x  —► oo X  - j -  1

— Y  xz— \). Ans. 0. 30. lim x ( V 1 — x). Ans. ~  as x -> +  oo, — oo as

x -+■ — oo. 31. lim ------
x - + q tan*

. 2_f_

sin* . Ans 1. 32. lim sla4x * -  ‘ ••  Sm 3i4ns. 4. 33. lim

Ans. — . 34. lim
9

....  x Ans. —
x-+o Y  1 — cosx V 2

X-+Q X  X-+0 X 2

2
35. lim x cot x. Ans. I.

36. lim 1~ 2costl . Ans. Y  3- 37. lim (1 - z )  tan — . Ans. -E-.
' « X Z —► 1 2 Jt

38. lim 2arcsin*
x -> o 3x

. Ans. 39. lim sin (a +  x ) - s in  ( a - x )   ̂ Ans 2cosc>
3 x -*■ o x

40. lim
jc -> o

tan x — sin x

42. limlim ( l _ _ L V
-*« V x J

Ans. ± .  
2

-4 ns. — . 
e

41. B m f t + l V
a : - > o o  \  X  1

43. lim
X —► Q0

lim (  V
- >  oo \  1 +  X )

Ans. e*.

1-4 ns.
e

( 1 \ n+5
1 —  j . Ans. e. 45. lim {/i [In (/i-f-1)— Inn]}. Ans. 1.

n J n —► co

46. lim (1 -f- cos x)5 sec x. Ans. e*. 47. lim ln (>+<**) . ,4 rts. a .
X —► ■

48. lim ( * ± * Y + ' .  Ans. e. 49. lim (1 +3tan*jc)001’ *. ’ Ans. e*.
x -+<d \ 2 x - \ - \ J  jc -*>o

50. lim m -> a ( cos—  ̂ . Ans. 1. 51. lim lU lI-tli . Ans. 1 as a -^ + o o , 0
\  m J a  -> oo a

a

as

a - 4 - o o .  52. lim s i n . Ans. —
< jc ->o sin $x p

53. lim —— L (a >  1). Ans. +,co
X-+  oo X

3*
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— eaJC —eP
as x +  oo, 0 as x -+ — oo. 54. lim n [a — 1J . Ans. In a. 55. lim -----------  .

n -► oo x -+ o X
p*X_p$X

Ans. a — 6. 56. lim     Ans. 1.
x~+ o sin ax—sin |3x

Determine the points of discontinuity of the functions: 
x — 157. w =  —— , , w ,— 7T . Ans. Discontinuities of second kind for x =  — 2; —1; 9 x ( x + l ) ( x 2 —4)

0; 2. 58. w =  tan — . Ans. Discontinuities of second kind for x =  0 and x

i 2 ■ i 2 - i  2
* *  n ’ *  3 n ..........±  (2n +  1) n ’

_1_

59. Find the points of discontinuity of the functions y = \  +  2x and con
struct the graph of this function. Ans, Discontinuity of second kind at x =  0
(*/-► +  oo as x -+ 0 +  0, y -+ 1 as x —0 — 0).

60. From among the following infinitesimals (asx-^0); xa, J^x (1 —x), 
sin3x, 2x cos x jj/ta n 2 x , xe2*, select infinitesimals of the same order as x, 
and also of higher and lower order than x. Ans. Infinitesimals of the same 
order are sin 3x and xe2*; infinitesimals of higher order, xa and 2x cos x £ / tan2 x,
infinitesimals of lower order, Vrx ( l  —x).

61. Choose from among the same infinitesimals (as x 0) such that are
equivalent to the infinitesimal x: 2sin x , ^  tan 2x, x —3x2, J^2x2 +  x3,

ln ( l+ x ) ,  x3 +  3x4. Ans. tan 2x, x —3xa, ln ( l+ x ) .

62. Check to see that as x - * l ,  the infinitesimals 1—x and 1— y /x ~  are

of the same order of smallness. Are they equivalent? Ans. lim —L l~/__— 3;
1 i — Y x

hence, these infinitesimals are of the same order, but they are not equivalent.



C H A P T E R  III

DERIVATIVE AND DIFFERENTIAL

SEC. 1. VELOCITY MOTION

Let us consider the rectilinear motion of some solid, say a stone, 
thrown vertically upwards, or the motion of a piston in the cylin
der of an engine, etc. Idealising the situation and disregarding 
dimensions and shapes, we shall always represent such a body in 
the form of a moving point M. The distance s of the 
moving point reckoned from some initial position M0 
will depend on the time t\ in other words, s will be a 
function of time t:

s = f(t). (1)
AyhM>

•M

At some instant of time*) t, let the moving point M 
be at a distance s from the initial position M0, and at 
some later instant tf +  A/ let the point be at Mv a 
distance s-f As from the initial position (Fig. 56). Thus, Fig. 56. 
during the interval of time At the distance s changed 
by the quantity As. In such cases, one says that during the time 
At the quantity s received an increment As.

AsLet us consider the ratio ^ ; it gives us the average velocity of
motion of the point during the time At:

As
V =  —a* A/ ■ (2)

The average velocity cannot in all cases give an exact picture 
of the rate of translation of the point M at time t. If, for example, 
the body moved very fast at the beginning of the interval At and 
very slow at the end, the average velocity obviously cannot reflect 
these peculiarities in the motion of the point and give us a correct 
idea of the true velocity of motion at time t. In order to express 
more precisely this true velocity in terms of the average velocity, 
one has to take a small interval of time At. The most complete 
description of the rate of motion of the point at time t is given 
by the limit which the average velocity approaches as A /->0.

*) Here and henceforward we shall denote the specific value of a variable 
and the variable itself by the same letter.
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This limit is called the rate of motion at a given instant:

Thus, the rate (velocity) of motion at a given instant is the limit 
of the ratio of increment of path As to increment of time At, as 
the time increment approaches zero.

Let us write equality (3) in full. Since

This is the velocity of variable motion. It is thus obvious that 
the notion of velocity of variable motion is intimately related to 
the concept of a limit. It is only with the aid of the limit concept 
that we can determine the velocity of variable motion.

From formula (3') it follows that v is independent of the increment 
in time A/, but depends on the value of t and the type of 
function f(t).

Example. Find the velocity of uniformly accelerated motion at an arbitrary 
time t and at t =  2 sec if the relation of the path traversed to the time is 
expressed by the formula

As = f(t + M ) - f ( t ) ,

O')

s=

Solution. At time i we have s =  -^ g t i \ at time t-\-At we get

s +  As =  T g (/ +  A02 =  T *(*f +  2/ A/ + A /2).

We find As:

As =  y  g (t2 +  2/ A/ +  A/2) — g =  ^  +  2"g At**

We form the ratio — : A t

As
It

gt A /+ — crA/»

by definition we have

Thus, the velocity at an arbitrary time t U v = g t .  
At t =  2 we have (>)<=*=£• 2 =  9 .8 .2 = 1 9 .6  m/sec.
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SEC. 2. DEFINITION OF DERIVATIVE

Let there be a function
«/=/(*) (i)

defined in a certain interval. The function y = f(x) has a definite 
value for each value of the argument x in this interval.

Let the argument x receive a certain increment Ax (it is imma
terial whether it be positive or negative). Then the function y will 
receive a certain increment Ay. Thus, with the value of the argu
ment x we will have y = f(x), with the value of the argument 
x + Ax we will have y + A y  = f (x+Ax).

Let us find the increment of the function Ay:
Ay = f(x + Ax)—f(x). (2)

Forming the ratio of the increment of the function to the increment 
of the argument, we get

A(/ /(x  +  A*)— /(*) /0 ,
A*-  A* • W

We then find the limit of this ratio as Ax-*- 0. If this limit exists, 
it is called the derivative of the given function /(x) and is denoted 
f ’ (x). Thus, by definition.

f  (x) =  lim
A* -+ o

Ay
Ax

or
f' (x) =  lim &  + (4)Ax 0 AX

Consequently, the derivative of a given function y = f(x) with 
respect to the argument x is the limit of the ratio of the increment 
of the function Ay to the increment of the argument Ax, when 
the latter approaches zero in arbitrary fashion.

It will be noted that in the general case, the derivative f  (x) 
has a definite value for each value of x, which means that the 
derivative is also a function of x.

The designation f' (x) is not the only one used for a derivative. 
Alternative symbols are

The specific value of the derivative for x = a is denoted f  (a) or
y'\x=a-

The operation of finding the derivative of a function /(x) is 
called differentiation of the function.
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Example 1. Given the function y — x2; find its derivative y'\
1) at an arbitrary point *,
2) at x = 3.
Solution. 1) For the value of the argument x, we have f/ =  x2. When the 

value of the argument is x +  Ax, we have y - \ - A y  =  (x +  Ax)2.
Find the increment of the function:

Forming the ratio we have
Ay =  ( x +  Ax)1—x1 =  2xAx +  (A*)2, 

■re have

A*_2«A* + <A*)»=2jt + Ajt>
Ax Ax

Passing to the limit, we get the derivative of the given function:

if  =  lim ^  =  lim (2x +  Ax) =  2x.
Ajc- oAx a*-*o

Hence, the derivative of the function y =  x2 at an arbitrary point is y ' — 2x, 
2) When x =  3 we have

y' lx=a =  2-3 =  6.

Example 2. y =  ^ \  find #'•

Solution. Reasoning as before, we get

^ t ^ + a  y = i d r X’
__ 1_______1 _ x — x  — A x _  Ax

y ~~x +  Ax x ~ ~ x ( x  +  Ax )~~  x ( x  +  Ax)*
A y _ _____l .
Ax x(x  +  A x)’

y' =  lim lim 
A*-*o Ax Ajc-»>o

1
*(*  +  A*)] x1

Note. In the preceding section it was established that if the 
dependence upon time t of the distance s of a moving point is 
expressed by the formula

s=f( l ) ,
the velocity v at time t is expressed by the formula

Hence
v =  lim — =

M- ..A/ lim
A/-*i At

V — Sf — f  (t).
or, the velocity is equal to the derivative *) of the distance with 
respect to the time.

*) When we say “the derivative with respect to x” or "the derivative 
with respect to t” we mean that in computing the derivative we consider 
the variable x (or the time t , etc.) the argument (independent variable).
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SEC. 3. GEOMETRIC MEANING OF THE DERIVATIVE

We approached the notion of a derivative by regarding the 
velocity of a moving body (point), that is to say, by proceeding 
from mechanical concepts. We shall now give a no less important 
geometric interpretation of the derivative. To do this we must 
first define a line tangent to a curve at a given point.

We take a curve with a fixed point Af0 on it. Taking a point 
Af, on the curve we draw the secant Af„Al, (Fig .57). If the point 
Af, approaches the point Af0 without limit, the secant Af„ Af, will 
occupy various positions Af0 Afi.Af AL, and so on.

If, in the limitless approach of the point Af, (along the curve) 
to the point Af0 from either side, the secant tends to occupy the 
position of a definite straight line M„T, this line is called the 
tangent to the curve at the point Af0 (the concept “tends to occupy” 
will be explained later on).

Let us consider the function f(x) and the corresponding curve

in a rectangular coordinate system (Fig. 58). At a certain value of 
x the function has the value y — t (x). Corresponding to these values 
of x and y on the curve we have the point Af0 (x, y). Let us increase

the argument x by A*. Corresponding to the new value of the 
argument, x+A x, we have an increased value of the function, 
y + A y  = f(x + Ax). Another corresponding point on the curve will 
be Af,(x +Ax, y + Ay). Draw the secant AI0Af, and denote by <pthe 
angle formed by the secant and the positive direction of thex-axis.
Form the ratio . From Fig. 58 it follows immediately that

y = f(x)

Fig. 57. Fig. 58.

ci)
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Now if Ax approaches zero, the point Mt will move along the 
curve always approaching M0. The secant M0Mt will turn about 
M0 and the angle 9 will change in Ax. If as Ax-+0 the angle q>

approaches a certain limit a, the straight 
line passing through M0 and forming an 
angle a with the positive direction of 
the abscissa axis will be the sought-for 
line tangent. It is easy to find its slope:

tan a =  lim tan 9 =  lim —■ =  /' (x).
A jc -► 0 A jc  -► 0 A *

Hence,
/' (x)~ tan a, (2)

Fig. 59. which means that the values of the
derivative f' (x), for a given value of 

the argument x, is equal to the tangent of the angle formed with 
the positive direction of the x-axis by the line tangent to the graph 
of the function f(x) at the corresponding point M0(x, y).

Example. Find the tangents of the angles of inclination of the line tangent 
to the curve y =  x* at the points M, f  y  , (— 1, 1) (Fig. 59).

Solution. On the basis of Example 1, Sec. 2, we have y ' =  2x; hence,

t a n a ^ ^ ' l  j = 1 ;  tana2 =  j/' I =  —2. 
\* “ T  |*=-i

SEC. 4. DIFFERENTIABILITY OF FUNCTIONS 

Definition. If the function
y=f (x)

has a derivative at the point x = x0, that is, if there exists 

lim lim i M M z i W ,
Ajc 0 A* Ajc -► 0 A*

( 1)

(2)

we say that for the given value x = x0 the function is differentiable 
or (which is the same thing) has a derivative.

If a function is differentiable at every point of some interval 
|a, b] or (a, b)y we say that it is differentiable over the interval.

Theorem. // a function y = f(x) is differentiable at some point 
x = xQt it is continuous at this point.
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Indeed, if 

then
Iim t ! = n o .A*-m> A*

f f  =  /' (*«) +  Y.
where y is a quantity that approaches zero as A*-+0. But then 

A</ =  /' (*0) A* +  yA*;
whence it follows that Ay-+0 as Ax-+0\ and this means that the 
function / (x) is continuous at the point x0 (see Sec. 9, Ch. II).

In other words, a function cannot have a derivative at points 
of discontinuity. The converse is not true; from the fact that at 
some point x = x0 the function y = f(x) is continuous, it does not 
yet follow that it is differentiable at this point: the function f (x) 
may not have a derivative at the point x0. To convince ourselves 
of this, let us examine several cases.

Example 1. A function f(x) is defined in an interval [0, 2] as follows (see 
Fig. 60):

f ( x ) = x  w h e n 0 < j c < l ,  
f ( x ) = 2 x — 1 when l < x < , 2 .

At x =  1 this function has no derivative, although it is continuous at this point. 
Indeed, when Ax >  0 we have

lim m ± M n O i > =  lim 12 U + A *) — 1] — [2^1 — 1 ]_  lim 2a * =  2.
Ajc -► o Ax Ax o A* Ax -► o Ax

when Ax <  0 we get

lim / ( l + A ^ ) —/( 1 ) =  lim [1 +  As] 1 _  lim A £ _ i 
Ax->«o Ax Ax-*o Ax ax-+oAx

Thus, this limit depends on the sign of A*, and this means that the function
has no derivative*) at the point x = l .  Geometrically, this is in accord with
the fact that at the point x =  \ the given “curve” does not have a definite line
tangent.

Now the continuity of the function at the point x =  l follows from the 
fact that

Ay —Ax when Ax <  0,

Ay =  2Ax when Ax >  0,

and, therefore, in both cases Ay -► 0 as Ax 0.

*) The definition of a derivative requires that the ratio —  should (asAx
Ax-+0)  approach one and the same limit regardless of the way in which ax 
approaches zero.
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Example 2. A function y — j/ x  , the graph of which is shown in Fig. 61, 
is defined and continuous for all values of the independent variable.

Let us try to find out whether this function has a derivative at * =  0; to 
do this, we find the values of the function at * =  0 and at * =  0 +  A*: at 
* =  0 we have y =  0, at Jt =  0 +  A* we have y-\- Ay =  (A*).

Therefore,
A y= y / (A*)-

Find the limit of the ratio of the increment of the function to the incre
ment of the argument:

lim lim =  lim ---■■■.......=  - f  oo.
A*-*oA* A* Ax-*0?/ Ax2

Thus, the ratio of the increment of the function to the increment of the argument 
at the point * =  0 approaches infinity as Ax -+0 (hence there is no limit). Consequ
ently, this function is not differentiable at the point * =  0. The line tangent to the
curve at this point forms, with the *-axis, an angle which means that it
coincides with the y-axis.

SEC. 5. FINDING THE DERIVATIVES OF ELEMENTARY FUNCTIONS.
THE DERIVATIVE OF THE FUNCTION y = x * , WHERE n  IS POSITIVE

AND INTEGRAL

To find the derivative of a given function y — f(x), it is neces
sary to carry out the following operations (on the basis of the 
general definition of a derivative):

1) increase the argument jc by Ajc, calculate the increased value 
of the function:

y + Ay = l {x+ &x)\
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2) find the corresponding increment of the function:
Ay = f ( x+Ax)  — f(x)-,

3) form the ratio of the increment of the function to the 
increment of the argument:

A y  _ f ( x  +  A x ) — f ( x ) '

&x A* ’
4) find the limit of this ratio as A x —>-0: 

y '=  lim Iim

Here and in the following sections, we shall apply this general 
method for evaluating the derivatives of certain elementary 
functions.

Theorem. The derivative of the function y =  xn, where n is a 
positive integer, is equal to nxn~1; that is,

if y = xn, then y' = nxn~l. (I)
Proof. We have the function 1 2 3 4

1) If x receives an increment Ax, then
y + Ay = (x + Ax)n.

2) Applying N ewton’s binomial formula, we find

Ay — (x-\- Ax)n—xn = xn-\- y  xn~iAx +

+  . . .  +(A*)n—xf1
or

Ay =  nxn~1 Ax 4- n(" ~ 1) * (Ax)1 +  . . .  +  (A*)".

3) We find the ratio
! !  =  n*n~‘ +  ^— z l l xn-* a * +  . . .  +  (Ax)"-1.

4) Then we find the limit of this ratio 

*/' =  lim - f  =
A .v  -► o A *

=  l̂im 4- A* 4- . . .  4- (A jc )"~ =  nxn~ \

consequently, y' = nxn~ \ and thus we have proved the theorem.
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Example 1. y =  x*, y' =  5jc8” 1 =  5x4.

Example 2. r/ =  x, y' =  l.t1” 1, y' =  \. The latter result has a simple geo
metric interpretation: the line tangent to the straight line y = x  for any value 
of x coincides with this line and, consequently, forms with the positive 
direction of the x-axis an angle, the tangent of which is 1.

Note that formula (1) also holds true when n is fractional or 
negative. (This will be proved in Sec. 12).

Example 3. y = } ^ x  .
Let us represent the function in the form of a power:

then by formula (1), taking into consideration what we have just said, we get

or

 ̂ ^/==277*
Example 4. y = — =  .

x V x
Represent y in the form of a power function:

3

Then

SEC. 6. DERIVATIVES OF THE FUNCTIONS j f= s in x  y = z a s x

Theorem 1 . The derivative of sin a: is cosx, or
if y=s \nx ,  then y' = cosx. (II)

Proof. Increase the argument x by the increment A*; then
1) y + A y = s m { x  + Ax)\
2) Ay =  sin (x +  A*) — sin x = 2 sin * f  Cos x + Ax+x _

=  2  s i n —  - c o s ( *  +  ^ ) ;

2
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4) 3’ =  f f =  lim
A* -> 0 A* 0 {±Z Ax

. Ax sm - j -
liin cos(* +  ̂ ) ,

but since
1 A* sin -s-

lim —— =  1,A*

we get

t/' =  lim cos =  cos*.

This latter equality is obtained on the grounds that cos * is a 
continuous function.

Theorem 2. The derivative of cos* i s —sin*, or

if y =  cos*, then y' = —sin*. (Ill)

Proof. Increase the argument * by the increment A*, then 

y + A y = cos (* + A*);

Ay =  cos (* A*) — cos * =  — 2sin. *  +  A * — * . x + A * + *sin ■

=  — 2 sin ^  sin ( * + 4r ) ;

sin (*  +  ̂ ) ;Ay 
Ax

. Ax 
s n ~2~ 

Ax 
2

sin —
y' =  lim - |  =  — lim —— sin(* +  ^ )  =  — lim sin (*  +  ̂ ) ;

A ^ - o ^  Ax -► 0 \ z J Ax -+• 0 \ 1 J

taking into account the fact that sin* is a continuous function, 
we finally get

y =  — sin x.
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SEC. 7. DERIVATIVES OF: A CONSTANT, THE PRODUCT OF A CONSTANT 
BY A FUNCTION. A SUM, A PRODUCT, AND A QUOTIENT

Theorem 1. The derivative of a constant is equal to zero; that is, 
if y = C, where C=  const, then y' =  0. (IV)

Proof. y = C is a function of x such that the values of it are 
equal to C for all x.

Hence, for any value of x
y = f(x) = C.

We increase the argument x by an increment Ax (Ax 0). Since 
the function y retains the value C for all values of the argument, 
we have

y +  Ay = f (x  +  Ax) = C.

Therefore, the increment of the function is
Ay = f(x + Ax)—f(x) = 0,

the ratio of the increment of the function to the increment of the 
argument

and, consequently,
< / '= lim £ f  =  0,

A*-*
that is,

«/' =  0.
The latter result has a simple geometric interpretation. The 

graph of the function y = C is a straight line parallel to the x-axis. 
Obviously, the line tangent to the graph at any one of its points 
coincides with this straight line and, therefore, forms with the 
x-axis an angle whose tangent y is zero.

Theorem 2. A constant factor may be taken outside the deriva
tive sign, i.e.,

if y=Cu(x)  (C =  const), then y’ — Cu' (x). (V)
Proof. Reasoning as in the proof of the preceding theorem, we 

have
y = Cu (x);

Ay —Cu[x -f- Ax);
Ay — Cu (x-(- Ax) — Cu (x) =  C [u(x +  Ax)—u (x)],
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Ay___c11 (* + a*) ~~u (*)
A* A.v

y'— lim  ^  =  C lim
Ax -*■ o A * Ax -► o

a (x-f- Ax) — u (jc) 
Ax i. e. y' = Cu'(x).

Example 1. y — 3
V x

y' - 3( r ? ) " 3( ' ' : ) “ 3( - 7 ) r i
or

y = -

3_
2

s
T

Theorem 3. The derivative of the sum of a finite number of diffe
rentiable functions is equal to the corresponding sum of the 
derivatives of these functions. *)

For the case of three terms, for example, we have
y = u(x) + v (x)-\-w(x)\ y =  u (*)+ v' {x)-\-w' (*). (VI)

Proof. For the values of the argument x
y = u + v + w

(for the sake.of brevity we drop the argument x in denoting the 
function).

For the value of the argument x +  Ax we have 
y +  Ay =  (u +  Au) +  (u +  Au) +  (w +  Aw),

where Ay, Au, Av, and Aw are increments of the functions y, u, 
v and w, which correspond to the increment Ax in the argument 
x. Hence,

Ay=Au + Av + Aw, ^  =  +57 * Ax A* Ax ' Ax

or

m lim Aw
Ax

y' — u' {x) +  v' (x) +  w'{x).

Example 2? y =  3x4
1

*) The expression y =  u(x)  — v(x)  is equivalent to y =  u (x) -f- ( — 1) v (x) 
and y' =  [u(x) +  ( — \)v(x)\' =  uf (x) +  [— v (x)}' =  u' {x) — v' (x).
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and so

/  = 3  (*«)' — (*  * )  = 3 -4 * ’ -
■1

1
* y  x

Theorem 4. The derivative of a product of two differentiable 
functions is equal to the product of the derivative of the first fun- 
ction by the second function plus the product of the first function 
by the derivative of the second function; that is,

if y = u v , then y '= u v  + uv'. (VII)
Proof. Reasoning as in the proof of the preceding theorem, we 

get
y = uv,

y + Ay=*(u + Aw) (v +  Av),
A y =  (u +  Aw) (v +  Av)—uv =  Auv +  wAu+ Aw Av,
Ay 
Ax

Au . Av , A Atf=  =-u +  u=- +  Au=-,
A x  A X  1 A x ’

: lim f  =
Ajc 0 & X

■■ lim 4 ^  v +  lim  U T ~ +  l*m Au — =
A j c - ^ q A *  A jc -► o A *  A j c o A *

(since w and v are independent of Ax).
Let us consider the last term on the right-hand side:

lim Au lim ^  .
A jc -► o Ajc - »  o

Since u(x) is a differentiable function, 
Consequently, lim A« =  0. Also,

A jc -► o

lim
Ajc -*• o

AV / ,— = v =/=oo. Ax ^

it is continuous.

Thus, the term under consideration is zero and we finally get
y' =  «'i> + uv'.

The theorem just proved readily gives us the rule for differentiating 
the product of any number of functions.

Thus, if we have a product of three functions
y = uvw,



Derivatives of: A Constant, the Product of a Constant by a Function .83

then by representing the right-hand side as the product of u and 
(vw), we get y' =  u' (vw) 4- u (vw)' = u'vw-j- u (v'w-\- vw') =  u'vw-\- 
-j- uv' w +  uvw'.

In this way we can obtain a similar formula for the derivative 
of the product of any (finite) number of functions. Namely, if 
y = uiut . . .  un, then

y' =  u[u2 . . .  un. iun +  +  .. • +  u,u, . . .

Example 3. If y =  x2 sin x, then

y ' =  (x2)' sin x -f-x2 (sin x)' =  2x sin x +  x2 cos x.

Example 4. If y = Y  xsin xcosx , then 

y' =  (Y xY sin x cos x +  Y x (sin xY cos x +  Y x sin x (cos xY =

=  —^p= sin x cos x +  Y x cos x cos x +  Y x sin x (— sin x) =
2  V  x

=  —— : sinx cos x -f- Y  x(cos2x — sin2x ) = Sif1̂ * +  Y  x cos 2*.
2 Y  x  4 Y  x

Theorem 5. The derivative of a fraction (that is, the quotient 
obtained by the division of two functions) is equal to a fraction 
whose denominator is the square of the denominator of the given 
fraction, and the numerator is the difference between the product of 
the denominator by the derivative of the numerator, and the pro- 
duct of the numerator by the derivative of the denominator; i. e

H  /  U ’ V  U V'  / T T T T T Vlf  y = ̂ <  then y = — -2— . (VIII)

Proof. If Ay, Au, and Av are increments of the functions y, u, 
and v, corresponding to the increment Ax of the argument x, then

y +  Ay =
u +  Au 
u +  A«

Ay u  -f- A u  
v  +  A v

u_ _  v Au —u Av 
v ~~ v (u-f- Au) *

v Au — u Av Au Av
Ay _  A* _ A x ______Af
Ax u (y + A«) u(u + At>) *

y' = lim — =  lim
Ax. -+ 0 Ax -*Q

A u Av—  v — u —  Ax______Ax
v (u +  Av)

v lim —  — u lim —  
A jc  -► o A x ________ A x  —►o A x

v  lim (u +  Â )
A jc - > o
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Whence, noting that Au—>- Oas Ajc—>-'0, *) we get
, u 'v—uv'

x9
Example 5. If y  = ------ , thencos x  ■

,  (x2) 'c o sx — x1 (cos x ) '  3x2 cos x +  x2 sin x
^  C O S 2 X  cos2 X

Note. If we have a function of the form

where the denominator c is a constant, then when differentiating 
this function we do not need to use formula (VIII); it is better 
to make use of formula (V):

Of course, the same result is obtained if formula (VIII) is applied.

Example 6. If y  =  C°y * , then
#, (cos x)' sin x
y ~  7 ~ r  ■

SEC. 8. THE DERIVATIVE OF A LOGARITHMIC FUNCTION 

Theorem. The derivative of the function loga x is j l o g ae, that is,

if y =  loga jc, then y' =  ^  loga e. (IX)

Proof. If Ay is an increment of the function y = loga* that 
corresponds to the increment Ax of the argument x, then

y + Ay = \oga(x + Ax);

Ay =  loga(x +  Ax) — logax =■ loga =  l°ga ( l  + - - )  >

f f  =  - lQga ( ! + - ) •

*) lim A ^ = 0  since v (jc) is a differentiable and, consequently, continuous
AJf -*o

function.
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Multiply and divide by x the expression on the right-hand side of 
the latter equality:

^ - T S Io8 . ( i + t ) - 7 1o« . ( 1 + t ) E -

We denote the quantity ^  in terms of a. Obviously, for the 
given x, a —»0 as Ax —*0. Consequently,

f ?  =  - l o g a ( l + a ) l T .

But, as we know from Sec. 7, Ch. II,
1

lim (1 - f a ) “ =e.
a  o

But if the expression under the sign of the logarithm approaches 
the number e, then the logarithm of this expression approaches 
log0e (in virtue of the continuity of the logarithmic function). 
We therefore finally get

{/'= lim =  lim y  loga (1 +  a)"“ =  ~  log0 e.

Noting that loga e =  - j^ - ,  we can rewrite the iormula as follows:

y  ~  x In a '

The following is an important particular case of this formula: 
if a = e, then ln a = ln e = l ;  that is,

if y=  In*, then y '=  \ . (X)

SEC. 9. THE DERIVATIVE OF A COMPOSITE FUNCTION

Given a composite function y —f{x), that is, such that it may 
be represented in the following form:

y=F(u) ,  « =  (p(*)_
or y =  F [<p(*)] (see Ch. I, Sec. 8). In the expression y=F{u),  
u is called the intermediate argument.

Let us establish a rule for differentiating composite functions. 
Theorem. If a function u = q>(x) has, at some point x. a deriva

tive ux = <p'(x), and the function y = F(u) has, at the corresponding



86 Derivative and Differential

value of u , the derivative yu= F' (u), then the composite function 
y = F [cp (x)] at the given point x also has a derivative, which is 
equal to

y'x = Fu (u) cp' (*),

where in place of u we must substitute the expression u = cp(je). 
Briefly,

yx =  yuux-
In other words, the derivative of a composite function is equal to 
the product of the derivative of the given function with respect to 
the intermediate argument u by the derivative of the intermediate 
argument with respect to x.

Proof. For a definite value of x we will have
u = (p(x), y = F(u).

For the increased value of the argument x + A x t
+  +  A*), y +  Ay =  F (u -4- Au).

Thus, to the increment Ax there corresponds an increment Au, 
to which corresponds an increment Ay, whereby A u—*0 and 
A y— as A x—*0. It is given that

lim
A*-*o

From this relation (taking advantage of the definition of a limit.) 
we get (for Au=£0)

a ’ (1)
where a —►O as Au—*0. We rewrite (1) as

Ay = yuAu-}-aAu. (2)

Equality (2) also holds true when A& =  0 for an arbitrary a, 
since it turns into an identity, 0 =  0. For Au = 0 we shall assume 
a =  0. Divide all terms of (2) by A*:

Aj/=  u — 4-a —A* Ax ^  a  Ax *

lim — =  ux, lim a =  0.
A* o Ajc-^ o

It is given that
(3)
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Passing to the limit as A*—►O in (3), we get

y'x =  yuUx, (4)
which is the required proof.

Example 1. Given a function «/ =  sin(jc2). Find y 'x. Represent the given 
function as a function of a function as follows:

r/ =  sin«, u = x z.
We find

yu =  cos a, ux =  2x.
Hence, by formula (4),

yx = y'uu'xz=cosu-2x.
Substituting, in place of w, its expression, we finally get

yx =  2x cos (x2).

Example 2. Given the function y =  (In*)8. Find y'x.
Represent this function as follows:

y =  u8, u — \ux.
We find

yu =  3u*, ux =  y -

Hence,

f , ; = 3 u* l = 3 ( l n x ) * I .

If a function y =  f(x) is such that it may be represented in the form 
y =  F (u), tt =  cp(o), u =  i|)(jr)t

the derivative yx is found by a successive application ol the foregoing theorem* 
Applying the proved rule, we have

y'x^y'iPx-
Applying the same theorem to find ux, we have

Substituting the expression of ux into the preceding equality, we get

y'x=yuu'vvx (5)
or

yx= F'u (‘O 'p 'oW 'M *)-
Example 3. Given the function i/ =  sin [(In *)*]. Find yx. Represent the 

iunction as follows:
y =  sinu, u =  i>8, u =  ln*.
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We then find

yu =  cosu, uu =  3v2, u, =  — .

In this way, by formula (5), we get

y'x =  y'uuvv'x =  3 ( c o s  “ ) v‘ - j  •
or finally,

y'x ~  cos [ ( ln ^ l^ O n * )* ^ - .

It is to be noted that the function considered is defined only for * >  0.

SEC. 10. DERIVATIVES OF THE FUNCTIONS y=tan jt, 
y=cotjc, y = l n |jc|

Theorem 1. The derivative of the function tan x is — ,
'  1 C O S 2 X *

Proof. Since
or if y = tan a;, then y ' = —=-•

1 V  V  C O S 2 X

sin x

(XI)

C O S  X

by the rule of differentiation of a fraction [see formula (VIII), 
Sec. 7, Ch. Ill] we get

, _  (sin x)' cos x — sin x (cos x)' _cos x cos x — sin x (— sin*) __
y  cos2* cos2*

cos2 * + sin2* 1
cos2 * cos2 * *

Theorem 2. The derivative of the function cot x is
1

sur * , or if y = cot*, then y' 1
sin2* (XII)

Proof. Since y =  , we have

,  (cos*)' sin* — cos* (sin *)' — sin * sin*— cos* cos *
y  sin2* sin2*

sin2 * +  cos2* 
sin2 *

1
sin2*

Example 1. If y =  tan V  *, then

y ’ =
1

cos2 V
( v n y

i i
Y X  C O S 2 Y X
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Example 2. If y =  In cot x, then

y' = 75T7(cotxY = TET7 ( ~  ) : cos x sin x sin 2* *

Theorem 3. The derivative of the function I n | jc [ (Fig. 62) is ,

(XIII)

Fig. 62.

Proof, a) If x > 0 ,  then \x\ = x, In | a: | == In jc, and therefore

' - f
b) Let jc< 0 , then |* | = — x. But

In I jc | =  In (—x).
(It will be noted that if * < 0 ,  th e n —jc>0:) Let us represent 
the function t/= ln (—x) as a composite function by putting

it/ =  In «; u =  —x.
Then

y* — yuux——( l ) = zTx (— i ) — •

And so for negative values of x we also have the equation
1

Hence, formula (XIII) has been proved for any value x=t=0. 
(For * =  0 the function In 1 jc | is not defined.)

SEC. 11. AN IMPLICIT FUNCTION AND ITS DIFFERENTIATION

Let the values of two variables x and y be related by some 
equation, which we can symbolise as follows:

F(x, y) = 0. (1)
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If the function y = f(x), defined on some interval (a, b), is 
such that equation (1) becomes an identity in x when the expres

sion f(x) is substituted into it in place of y, the function y = f(x) 
is an implicit function defined by equation (1).

For example, the equation
x1 + yt— a* = 0 (2)

defines implicitly the following elementary functions (Figs. 63 
and 64):

y =  (3)

y = — V a t—x \  (4)

Indeed, substitution into equation (2) yields the identity 
x’ -Ha*—x2)— a‘ = 0.

Expressions (3) and (4) were obtained by solving equation (2) 
for y. But not every implicitly defined function may be represented 
explicitly, that is, in the form y = f{x),*) where f(x) is an ele
mentary function.

For instance, functions defined by the equations
y' — y— x ^ O

or
y—x — 4-sm t/ =  0

are not expressible in terms of elementary functions; that is, these 
equations cannot be solved for y by means of elementary functions.

Note 1. Observe that the terms “explicit function” and “implicit 
function” do not characterise the nature of the function but merely 
the way it is defined. Every explicit function y — f{x) may also 
be represented as an implicit function y—f(x) = 0.

*) If a function is defined by an equation of the form y =  f(x),  one says 
that the function is defined explicitly or is explicit,
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We shall now give the rule for finding the derivative of an 
implicit function without transforming it into an explicit one, 
that is, without representing it in the form y = f(x).

Assume the function is defined by the equation
xz + y2—a2 =  0.

Here, if y is a function of x defined by this equality, then the 
equality is an identity.

Differentiating both sides of this identity with respect to *, and 
regarding y as a function of x , we get (via the rule of differentiat
ing a composite function)

2x + 2yy' = 0t
whence

Observe that if we were to differentiate the corresponding explicit 
function

we would obtain
y' = ___ :S = ____ £

which is the same result.
Let us consider another case of an implicit function y of x:

y* —y —x 1= 0.
Differentiate with respect to x:

6ysy '— y ' — 2x = 0,
whence

, 2*
y = i 7 i r r*

Note 2. From the foregoing examples it follows that to find the 
value of the derivative of an implicit function for a given value 
of the argument x, one also has to know the value of the function y 
for a given value of x.

SEC. 12. DERIVATIVES OF A POWER FUNCTION FOR AN ARBITRARY 
REAL EXPONENT, OF AN EXPONENTIAL FUNCTION,

AND A COMPOSITE EXPONENTIAL FUNCTION

Theorem 1. The derivative of the function xn, where n is any 
real number, is equal to n x t h a t  is,

if y = xn, then y =  nxn~'. (I')
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Proof. Let * > 0 .  Taking logarithms of this function, we get
In y =  n In at.

Differentiate, with respect to x, both sides of the equality obtained, 
taking y to be a function of x:

Substituting into this equation the value y = xn, we finally get
y' =  nxn~*.

It is easy to show that this formula holds true also for x< .0  
provided xn is meaningful. *)

Theorem 2. The derivative of the function a*, where a > 0, is 
a* In a; that is,

if y = a*, then y' =  ax In a. (XIV)
Proof. Taking logarithms of the equality y = cf, we get

In y =  x In a.
Differentiate the equality obtained regarding y as a function of x\

j y '  = \na\ t /=  y In a
or

y' = a* In a.
If the base is a = e, then l n e = l  and we have the formula

y =  ex, y' =  e*. (XIV')

Example 1. Given the function
y = e

Represent it as a composite function by introducing the intermediate argument u:
y = e a, u = x ‘;

then

y'u =  ea> l‘x =  2x
and, therefore,

yx = e a-2x =  ex i'2x.

*) This formula was proved in Sec. 5, Ch. Ill, for the case when n is a 
positive integer. Formula (I) has now been proved for the general case (for 
any constant number n).
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A composite exponential function is a function in which both 
the base and the exponent are functions of jc, for instance, (sinx)**, 
x iaax, at*, (lnjc)x, and the like; generally, any function of the form

y =  [u (x) I* (x) =  uv
is an exponential function (composite exponential function). *) 

Theorem 3.
If y — uv, then y = vuv~'u' + uvv' ln«. (XV)

Proof. Taking logarithms of the function y, we have
In y — v In u.

Differentiating the resultant equation with respect to x, we get
l , l , ,—y —v — u -\-v In u 
y v u

whence

y '  =  y  ( w  - -  +  v ' I n  u j  .

Substituting into this equation the expression y = uv, we obtain 
y' = vuv~lu' + uvv' 1 nu.

Thus, the derivative of an exponential function (composite expo
nential function) consists of two terms: the first term is obtained 
by assuming, when differentiating, that u is a function of x and v 
is a constant (that is to say, if we regard uv as a power function); 
the second term is obtained on the assumption that v is a function 
of x , and u = const (i. e., if we regard uv as an exponential 
function).

Example 2. If y =  xxy then y' —xxx ~x (*') + x x (x') In x 
or y' = x x -\-xx In x =  xx (1 + ln  x).

Example 3. If y — (sin x)x%, then
y ' =  x2 (sin x)x* (sin x)' +  (sin x)x2 (x2)' In sin x =

=  x2 (sin x)x2~l cos x - f  (sin x)x2 2x In sin x.

The procedure applied in this section for finding derivatives 
(first finding the derivative of the logarithm of the given function) 
is widely used in differentiating functions. Very often the use of 
this method greatly simplifies calculations.

*) In the Russian mathematical literature this function is also called an 
exponential-power function or a power-exponential function.
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Example 4. To find the derivative of the function
( * + ! ) »  

y  ( a : + 4  )*e* ‘
Solution. Taking logarithms we get

In y  =  2  In ( * +  l ) + i  ( * —  l ) - - 3  In ( jc  +  4) —  x .

Differentiate both sides of this equality:
1 3

- 1 .
y' 2
y  ~  x  +  1 2  ( *  —  1 )  *  +  4

Multiplying by y  and substituting, in place of y ,  the expression
( x + \ ) 2 V  x - \------- , we get

( a : - f -  4)a e*
r /__U + 1)2 Vx — 1 

(x +  4)aeJ [—[ x + ly / v  _ l  A p X  | y  _ j_  1 2 (x —  1) X  -}- 4+ F 1 4
Note. The expression-- =  (In f/)', which is the derivative, with

respect to *, of the natural logarithm of the given function 
y = y(x)t is called the logarithmic derivative.

SEC. 13. AN INVERSE FUNCTION AND ITS DIFFERENTIATION

Take an increasing or decreasing function (Fig. 65)
y = f (* )  0 )

defined in some interval (a, b) (a <  b) (see Sec. 6, Ch. I). Let 
f(a) = c, f(b) = d. For definiteness we shall henceforward consider

an increasing function.
Let us consider two different values *, 

and x2 in the interval (a, b). From the 
definition of an increasing function it 
follows that if x x< x 2 and */, =  /(*,), 
0» =  /(**)» then y\<y%-  Hence, to two 
different values*, and x2 there correspond 
two different values of the function, yx 
and y2. The converse is also truer if 
«/,<«/, */, =  /(*,), and yt = f(xt), then 

from the definition of an increasing function it follows that xt < x t. 
Thus, a one-to-one correspondence is established between the values 
of x and the corresponding values of y.

Regarding these values of y as values of the argument and the 
values of x as values of the function, we get x as a function of y:

* 9 (y)- (2)
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This function is called the inverse function of y = f(x). It is obvi
ous too that the function y = f(x) is the inverse of x = tp(y). With 
similar reasoning it is possible to prove that a decreasing function 
also has an inverse.

Note 1. We state, without proof, that if an increasing (or de
creasing) functiony = f(x)is continuous on the interval [a, 6], where 
f(a) = c, f(b) = d, then the inverse function is defined and is 
continuous on the interval [c, d].

Example 1. Given the function y =  x8. This function is increasing on the
infinite interval — oo < x <  oo; it has an inverse function x y  (Fig. 66).

It will be noted that the inverse function x =  y(y)  is found by sblving the 
equation y =  f(x)  for x.

Example 2. Given the function y =  ex. This function is increasing on the 
infinite interval — o o < x < o o .  It has an inverse x — In y. The domain of 
definition of the inverse function is 0 <  y <  oo (Fig 67).

Note 2. If the function y = f(x) is neither increasing nor decreas
ing on a certain interval, it can have several inverse functions.*)

Example 3. The function y =  x* is defined on an infinite interval 
—  o o < * <  +  oo. It is neither increasing nor decreasing and does not have 
an inverse function. If we consider the interval 0 ^ x <  oo, then the function 
here is increasing and jc =  £/ is its inverse. But in the interval — oo <  x <  0
the function is decreasing and its inverse is x =  — Y y  (Fig. 68).

Note 3. If the functions y = f(x) and a: =  q p(//) are reciprocal, 
their graphs are represented by a single curve. But if we again

*) Let it be noted once again that when speaking of y as a function of x we 
have in mind that y is a single-valued function of x.
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denote the argument of the inverse function by *, and the function 
by y and then construct them in a single coordinate system, we

will get two different graphs.
It will readily be seen that the graphs 

will be symmetric about the bisector of 
the first quadrantal angle.

Example 4. Fig. 67 gives the graphs of the 
function y  =  e* (orx =  ln y) and its inverse 
y  =  lnx, which are considered in Example 2.

Let us now prove a theorem that per
mits finding the derivative of a function 
y = f(x) if we know the derivative of 
the inverse function.

Theorem. If for the function
y = f(x) (1)

there exists an inverse function
* =  <P W) (2)

which at the point under consideration y has a nonzero derivative 
cp' (y), then at the corresponding point x the function y = f(x) has
a derivative / ' (x) equal to -A -r; that is, the following formula\U I
is true

<XVI>
Thus, the derivative of one of two reciprocal functions is equal to 
unity divided by the derivative of the second function for corre
sponding values of x and y*)

Proof. Differentiate, with respect to x, both sides of equality (2), 
taking y as a function of x**):

i = 9 ' (y) y*>

*) When we write /' (x) or yx we regard x as the independent variable 
when evaluating the derivative; but when we write <p' (y) or xy we assume 
that y is the independent variable when evaluating the derivative. It should 
be noted that after differentiating with respect to y ,  as indicated on the right 
side of formula (XVI), f  (x) must be substituted for y .

**) Actually, here we find the derivative of a function of x defined 
implicitly by the equation

'9(f/)=0
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whence
yx =

<P' (< /)•

Noting that y’x = f'(x) we get formula (XVI), which may also be 
written as kU

w  ,y-f(x)
B

' 1
tjx  --- / •

xy

The result obtained is clearly illustrated 
geometrically. Consider the graph of the 
function y = f{x) (Fig. 69). This curve will 
also be the graph of the function x = <p(y), 
where x is now regarded as the function 
and y as the independent variable. Take some 
point M(x, y) on this curve. Draw a tangent 
to the curve at this point. Denote by a and p 
the angles formed by the given tangent and 
the positive directions of the x- and y-axes. On the basis of the 
results of Sec. 3 concerning the geometrical meaning of a derivative 
we have

Fig.  69.

/'(*) =  tan ct, 1 
<p' (t/) =  tanp. ) (3)

From Fig. 69 it follows directly that if a - C y ,  then

But if a > y ,  then, as is readily seen, P =  ̂ —a. Hence, in 
any case

tan p =  cot a,
whence

tan a tan p =  tan a cot a =  1,
or

tana = tan p-

Substituting the expressions for tan a and tan p from formula (3),
we get

r w =
i

<p' ( y ) ’

4—3388
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SEC. 14. INVERSE TRIGONOMETRIC FUNCTIONS 
AND THEIR DIFFERENTIATION

1) The function y=  arcsin*.
Let us consider the function

x = s \n y  (1)
and construct its graph by directing the y-axis vertically upwards 
(Fig. 70). This function is defined in the infinite interval

— oo< t/< -f-oo . Over the interval
----2 the function * = s in  y
is increasing and its values fill the in
terval — 1 <,x<, 1. For .this reason, the 
function * =  sin y has an inverse which is 
denoted by

y=  arc sin *.*)

This function is defined on the inter
val — and its values fill the
interval — ■—< * / < -y . In Fig. 70, the
graph of y =  arc sin* is shown by the 
heavy line.

Theorem 1. The derivative of the function arc sin* is equal to

arc sin *, then y — y ^ 1- «. (XVII)

Proof. On the basis of (1) we have
x'y= cos y.

By the rule lor differentiating an inverse function,

y* J  cos y

but _______  _____
cos r/ =  1/̂  1 — sin**/ =  V l  —

*) It may be noted that the familiar equation y =  arc shut of trigonometry
is another way of writing (1). Here (for a given x) y  denotes the totality of 
values of angles whose sine is equal to x .
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therefore,
' _ 1

the sign in front of the radical is plus because the function 
t/=  arc sin * takes on values in the interval —---sSi/sS —, and, 
consequently, cost/3*0.

Example 1. y =  arc sine*,

y  =  r  — (p.x ) =  -

— (e*)*

Example 2.

y'  =  2 arc sin
x

. 1 Varc sin — ,* )
( 1 V 0 . 1— ) =  — 2 arc sin — 
\ x )  x

1
X  V x '- \

2) The function y = arc cos a:.
As before, we consider the function

x = cosy (2)
and construct its graph with the y-axis extending 
upwards (Fig. 71). This function is defined on 
the infinite interval — o o < r / <  +  oo. On the 
interval the function jt =  cosy is
decreasing and has an inverse that we denote

y =  arc cos x.
This function is defined on the interval Fl&- 7i- 
— 1 < x < 1 .  The values of the function fill 
the interval n ^ y ^ O .  In Fig. 71, the function r/ =  arccosx is 
depicted by the heavy line.

Theorem 2. The derivative of the function arc cos x i s ----  ̂-1 ;
V \ - * '

i. e.,
(/j/ =  arccosx, theny* = — y= = = . (XVIII)

Proof. From (2) we have
xy = — sin y.

4*
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Hence
' J_ = ___________  l

^X xy sin y  1 — cos2 y '

But cos y = x, and so
' _  l

y* ~  '

In sin y = V 1 — cos1 y the radical is taken with the plus sign, 
since the function j/ =  arccosx is defined on the interval O ^ y ^ n  
and, consequently, sin y 2*0.

Example 3. i/ =  arccos (tan x),
- 1 , ,  „  1 1y  = -----7t--t ■■ -  (tanx y  =  — —■- ■ ■ —------ .

K l —tan2* V 1—tan2 xcos2 *

3) The function y = arctanx.
We consider the function

x =  tan y (3)
and construct its graph (Fig. 72). 
This function is defined for all
values of y except i/=(2A+l)-^-
(k = 0, ± 1 , ± 2 , . . . ) .  On the
interval — < # <  the function
x =  tany is increasing and has an 
inverse:

y =  arc tan x.
This function is defined on the 
interval—o o < x < ;o o . The values 
of the function fill the interval
—- £ - < * /< -y . In p ig- 72/ the

graph of the function y = arc tan x is shown as a heavy line.
Theorem 3. The derivative of the function arc tan x is r-r—;;1 X

i. e.,
ify =  arctanx, theny' =  } ( XI X)  

Proof. From (3) we have
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Hence

but

y'x =  ^7 =  cos2y 
xy

cos y = l 1
’ sec2 y 1 + ta n 2^* 

since tan y = x, we get, finally,

v’
1

1+*2’
Example 4. y =  (arc tan *)4,

y' = 4  (arc tan * )8 (arc tan x)' = 4  (arc tan x)8 1 +x2

4) The function y=aTccotx. 
Consider the function

x=  cot'y. (4)

This function is defined for all 
values of y except y ~ k n ( k  = 0, ±  1, 
±  2). The graph of this function is 
shown in Fig. 73. On the interval 
O c i /C r t ,  the function x= co ty is 
decreasing and has an inverse:

y =  arc cot x.

y j--r- \2rt

\x=coty
it ^ ------

tNY
x=coty

\u=arccofx

-----

~7T
^^x^co ty

Fig. 73.
fined on the infinite interval — oo <
< x < o o ,  and its values fill the 
interval n >  y >  0.

Theorem 4. The derivative of the function arc cot x is
i. e.,

if y = arc cot x, theny' ■■

Proof. From (4) we have

*;=■

Hence

1

1
1+*2*

1+*J ’ 

(XX)

1

y x =  — s i n 2y  =  —

sin * y 

1 1
CSC* u 1 4-cot zy *
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But

Therefore
cot y = x.

y'x
l

l + *2’

SEC. 15. TABLE OF BASIC DIFFERENTIATION FORMULAS

Let us now bring together into a single table all the basic for
mulas and rules of differentiation derived in the preceding sections.

y=  const, y’ = 0.
Power function: 

particular instances:
.a -  I.y = x , y =ax

y — Vx, y ' = 1/._ ; * * 2 f  x

y —  x  , y  ~  x t -

Trigonometric functions:
y = sin x, y =  cos x, 
y — cosx, y' = — sinx,

y= ianx, y' = l
C O S2 X 1

y = cotx, y* = --------- .^  ^  s i n 2 *
Inverse trigonometric functions:

{/ =  arc sin x, y 

y=  arc cos a:, */' =

1

i

y = arc tan*, t/' =  yq-^,

. 1 #=arccotx , y =  —

Exponential function:
y — a*, t/' =  a*lntr,
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in particular,
y = ex, y' = ex.

Logarithmic function:
y = \ogax, y' = \-\ogae-.

in particular,
y — \ nx,  .

General rules for differentiation:
y — Cu(x), y ' = Cu' {x)(C =  const), 
y = u + v —w, y ' = u '+ v ’—w', 
y = u-v, y' = u’v + uv',

u
f/=TT.

, u v —uv
y = — ^ —

y=f (u) ,  \  . (  ,
« =  (P( 4  ) yx~r«(u)<tx{x),
y = uv, y '= vuv~' u' +  uvv' ln«.

If y — f(x), x — q>(y), where f and q> are reciprocal functions, 
then

r W  =  ̂ - }, where y = f(x).

SEC. 16. PARAMETRIC REPRESENTATION OF A FUNCTION

Given two equations:
*-*</>, t
y - W ) .  I '  '

where t assumes values that lie in the interval [Ttt T t], To each 
value of t there correspond values of x and y (the functions cp 
and 'll? are assumed to be single-valued). If one regards the values 
of x and tj as coordinates of a point in a coordinate xy-plane, 
then to each value of t there will correspond a definite point in 
the plane. And when t varies from T x to T v this point will de
scribe a certain curve. Equations (1) are called parametric equations 
of this curve, t is the parameter, and parametric is the way the 
curve is represented by equations (1).
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Let us further assume that the function x =  q(t) has an inverse, 
£ =  Then, obviously, y is a function of x ;

t/ =  ^[0(*)]. (2)
Thus, equations (1) define y as a function of x , and it is said 
that the function y of x is represented parametrically.

The explicit expression of the dependence of y on x, y = f(x), 
is obtained by eliminating the parameter t from equations (1).

Parametric representation of curves is widely used in mechanics. 
If in the xy~plane there is a certain material point in motion and 
if we know the laws of motion of the projections of this point

on the coordinate axes, then

* =  <P(0. I
y = ^ ( t)  I O')

where the parameter t is the time. Then 
equations (T) are parametric equations of 
the trajectory of the moving point. Eli
minating from these equations the para
meter t y we get the equation of the 
trajectory in the form y=-f(x) or 
F(x, r/) =  0. By way of illustration, let 
us take the following problem.

Fig. 74. Problem. Determine the trajectory and
point of impact of a load dropped from an 

airplane moving horizontally with a velocity v0 at an altitude y0 (air 
resistance is disregarded).

Solution. Taking a coordinate system as shown in Fig. 74, we assume 
that the airplane drops the load at the instant it cuts the t/-axis. It is 
obvious that the horizontal translation of the load will be uniform and with 
constant velocity v0:

x =  v0t.
Vertical displacement of the falling load due to the force of gravity w ill be 
expressed by the formula

s 8*
2 *

Hence the distance of the load from the ground at any instant will be

y =

The two equations
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will be the parametric equations of the trajectory. To eliminate the parame-
Xter t , we find the value / =  — from the first equation and substitute it into 

the second equation. Then we get the equation of the trajectory in the form

y = y <>— JL 
2 v\

x \

This is the equation of a parabola with vertex at the point M (0, //„)» the 
//-axis serving as the axis of symmetry of the parabola.

We determine the length of OC, denote the abscissa of C by A', and note 
that the ordinate of this point is y =  0. Putting these values into the 
preceding formula, we get

whence

SEC. 17. THE EQUATIONS OF CERTAIN CURVES IN PARAMETRIC FORM

Circle. Given a circle with centre at the coordinate origin and with 
radius r (Fig. 75).

Denote by t the angle formed by the jc-axis and the radius to some point 
M (jc, y) of the circle. Then the coordinates of any point on the circle will 
be expressed in terms of the parameter t as follows:

J - S t f  }»<'<**■
These are the parametric equations of the circle. If we eliminate the para
meter t from these equations, we will have an equation of the circle contain
ing only x and y. Squaring the parametric equations and adding, we get

x2 +  y2 =  r2 (cos21 +  sin2 1)
or

x2 +  y2 =  r2.

Ellipse. Given the equation of the ellipse

II+

(1)

Set
x =■ a cos t. (2 ')

Putting this expression into equation (1), we get
y =  b sin t. (2*)

The equations
x — a cos \ n _t Of*
y =  b s l n t , j ° ^ t ^ 2n (2)

are the parametric equations of the ellipse.



106 Derivative and Differential

Let us find out the geometrical meaning of the parameter t. Draw two 
circles with centres at the coordinate origin and with radii a and b (Fig. 76). 
Let the point M (x , y) lie on the ellipse, and let B be a point of the large

circle with the same abscissa as M. Denote by t the angle formed by the 
radius OB with the x-axis. From the figure it follows directly that

x =  OP = a  cos t [this is equation (2')],
CQ =  b sin t.

From (2") we conclude that C Q = y ; in other words, the straight line CM is 
parallel to the x-axis.

Consequently, in equations (2) t is an angle formed by the radius OB and 
the axis of abscissas. The angle t is sometimes called an eccentric angle.

Cycloid. The cycloid is a curve described by a point lying on the circum
ference of a circle if this circle rolls upon a straight line without sliding 
(Fig. 77). Suppose that when motion began the point M of the rolling circle 
lay at the origin. Let us determine the coordinates of M after the circle has 
turned through an angle t. If a is the radius of the rolling circle, it will be 
seen from Fig. 77 that

x =  OP =  OB — PB,  

but since the circle rolls without sliding, we have

OB =  M B = a t , PB =  MK =  as lnt ,

Hence, x =  at—a sin t ^ a  ( t—sin 0-
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Further,

y =  MP =  KB =  CB —CK =  a—a cos / = a  (1 — cos /). 

The equations

» < '< * ■  b)

are the parametric equations of the cycloid. As t varies between 0 and 2n, 
the point M will describe one arc of the cycloid.

Eliminating the parameter t from the latter equations, we get x as a 
function of y directly. In the interval 0 ^ / s ^ j t ,  the function y =  a(  1—cos/) 
has an inverse:

t =  arc cos---- - .a

Substituting the expression for / into the first of equations (3), we get

a — y . (  a —yx =  a arc cos — - — a sin arc cos---- -a \  a
or

x =  aarccos-— -  —  Y 2 a y  — y2 when 0 Jta.

Examining the figure we note that when j t a ^ x ^ 2jta

x =  2jia— ^aarc c o s ^ p — Y 2.ay — y2  ̂ .

It will be noted that the function

x =  a (t — sin t)

has an inverse, but it is not expressible in terms of elementary functions. 
And so the function y =  f (x ) is not expressible in terms of elementary 
functions either.

Note 1. The cycloid clearly shows that in certain cases it is more con
venient to use the parametric equations for studying functions and curves 
than the direct relationship of y and x (y as a function of x or x as a 
function of y).

Astroid. The astroid is a curve represented by the following parametric 
equations:

x — a cos* /, \ 
i/= a sin * /, f 0 <  / < 2 j i . (4)

Raising the terms of both equations to the power 2/3 and adding, we get
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function y — f(x).  They define 
—a One takes on
values.

(5)

the relationship between x and y 
2 2 2 

x 8 + # *  =  a 8 (cos21 +  sin2 1),
or

2 2 2 

x 8 + y3 = a 8 .
Later on (Sec. 12, Ch. V) it will be shown 
that this curve is of the form shown in 
Fig. 78. It can be obtained as the trajectory 
of a certain point on the circumference of 
a circle of radius aj4 rolling (without 
sliding) upon another circle of radius a 
(the smaller circle always remains inside 
the larger one; see Fig. 78).

Note 2 . It will be noted that equations 
(4) and equation (5) define more than one 
two continuous functions on the interval 

nonnegative values, the other nonpositive

SEC. 18. THE DERIVATIVE OF A FUNCTION REPRESENTED 
PARAMETRICALLY

Let a function y of x be represented by the parametric equations

J = ? ( ? ) . }  <»>
Let us assume that these functions have derivatives and that the function 
x =  q)(t) has an inverse / =  d)(x), which also has a derivative. Then the 
function y =  f(x) defined by the parametric equations may be regarded as a 
composite function:

y  =  T | 5 ( / ) ,  1 = 0 ( 4

t being the intermediate argument.
By the rule for differentiating a composite function we get

y ' x = y ' t  t'x = y , ( t ) < t > ' x ( x ) . (2)
From the theorem for the differentiation ol an inverse function, it follows 
that

w =
<Pt (0

Putting this expression into (2), we have

or
y‘x y « )

<p' ( 0

yt
(XXI)
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The derived formula permits finding the derivative y'x of a 
function represented parametrically without having to find the 
expression of y as a direct function of x.

Example 1. The function y of x is given by the parametric equations

x =  acos l , \  m 
 ̂=  a sin t [ <  / <jt).

Find the derivative ~  : 1) for any value of t; 2) for / =  y  

Solution.

1)

2)

y’x =

( y ’x ) ,

(a sin t y  ___ a cos I 
(a cos t)' —a sin t

=  - c o t - =  — 1 .

—  cot t\

Example 2 . Find the slope of a tangent to the cycloid

x =  a ( t —sin /), 
t j = a  (1 — cos t)

at an arbitrary point (0 « ^ * ^ 2ji).
Solution. The slope of a tangent at each point is equal to the value of 

the derivative y'x at that point; i. e., it is

But

yt

x't = a (  1 — cosf)> y'( = a  sin t.

Consequently,

, — a s*n i 
~  a ( l — cos t)

2 sin 1  cos -L

2s14

Hence, the slope of a tangent to a cycloid at every point is equal to 
tan , where t is the value of the parameter corresponding to this
point. But this means that the angle a of the slope of the tangent to thejc-axis is 
equal to -  —  y  (for values of t lying between — n and Jt)*1.

Indeed, the slope is equal to the tangent of the angle of inclination a 
of the tangent to the Jt-axis. And so tan a= tan  ^ y  — y ^  and a =  y —y

3T tfor those values of t for which y —  y  lies between 0 and jt.
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SEC. 19. HYPERBOLIC FUNCTIONS

In many applications of mathematical analysis we encounter 
combinations of exponential functions of the form ~ (ex—e“*)and

y  (ex + e~x). These combinations are regarded as new functions 
and are designated as follows:

sinh x = 

cosh x

e*—e - x
2

2

(1)

The first of these functions is called the hyperbolic sine, the 
second, the hyperbolic cosine. These functions may be used to define
two more functions: tanh x = sinh x 

cosh x and coth * = cosh 
’ sinh x

tanh *== ĉ_|_g-x—the hyperbolic tangent, 

coth * =  ex _ e~x— the hyperbolic cotangent.

The functions sinh *, cosh x , tanh x are obviously defined for 
all values of x. But the function coth x is defined everywhere, 
except the point * =  0.

The graphs of the hyperbolic functions are given in Figs. 79, 
80, 81.

From the definitions of the functions sinh x and cosh x [formu
las (1)] there follow relationships similar to those between the 
appropriate trigonometric functions:

cosh2*—sinh2* =  1, (2)
cosh (a-f b) =  cosh a cosh 6+sinh a sinh 6, (3)
sinh (a +  b) =  sinh a cosh &+cosh a sinh b. (3')

Indeed,
cosh2*—sinh2* =  ' ) =

__ e*x +  2 +  e - 2X— e2X +  2 — e ~ iX

Further, noting that
eo+b _ ^ e - a - b

cosh ((a b) 2 t
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we get
i i # - • i . u u  ea +  e~a eb + e ~ b . ea—e~a eb—e~bcosh a cosh b +  sinh a sinh b — — -------—----- 1----- -̂------ „—  ■

ea + b _^_e - a  + b _^_ga - b  ^ _ e - a - b  ^ ea + b _ e - a  + b _ _ ga - b  j _ e - a - b

ea+b + e-a- 0• =  cosh (a -j-b).

The prove is similar for relation
(3')-

The name “hyperbolic functions” 
comes from the fact that the func
tions sinh t and cosh t play the 
same role in the parametric 
representation of the hyperbola,

**-</* =  1,

as the trigonometric functions sin t and cos t do in the parametric 
representation of the circle,

** +  </*= 1.
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Indeed, eliminating the parameter t from the equations 
j c = c o s  t, y = s \n t,

we get
x2 +  y2 =  cos* t +  sin21

or
*2 +  i/2= l  (the equation of the circle).

Similarly, the equations
x =  cosh t, 
y=  sirih t

are the parametric equations of the hyperbola.
Indeed, squaring these equations termwise and subtracting the 

second from the first, we get
x2—y2 — cosh21 — sinh2t.

Since, on the basis of formula (2), the expression on the right 
side is equal to unity, we have

x2- y 2= 1,
which is the equation of the hyperbola.

Let us consider a circle with the equation jc24-</2=  1 (Fig. 82). 
In the equations x — cost, y = s in t,  the parameter t is numerically 
equal to the central angle AOM or to the doubled area S of the sector 
AOM, since t = 2S.

Let it be noted, without proof, that in the parametric equations 
of the hyperbola,

x — cosh t, 
y =  sinh t,

the parameter t is also numerically equal to the doubled area of 
the “hyperbolic sector” AOM (Fig. 83).
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The derivatives of the hyperbolic functions are defined by the 
formulas

(sinh *)' =  cosh*, 

(cosh *)' =  sinh *,

(tanh *)' =  ——  v ' cosh2 * >

( c o th * ) '= - slHi ^ (XXII)

which follow from the very definition of hyperbolic functions; for
qX  q  — X

instance, for the function sinh* = — -̂---we have

(sinh*)' =  ^g—y — j = e*~^g— =  cosh*.

SEC. 20. THE DIFFERENTIAL

Let the function y = f(x) be differentiable on the interval [a, b]. 
The derivative of this function at some point * of [a, b\ is 
determined by the equality

lim
A*-*o

Ay
Ax

As A*—>-0, the ratio ^  approaches a definite number /'(*) and, 
consequently, differs from the derivative /' (*) by an infinitesimal:

f f  =  /'(*) +  «,

where a —►O as A*—>-0.
Multiplying all terms of the latter equality by A*, we get

Ay = / ' (*) A* -+ aA*. (1)
Since in the general case f' (x)=£ 0, for a constant * and a variable 
A*—*-0, the product /'(*) A* is an infinitesimal of the first or
der relative to A*. But the product aA* is always an infinitesimal 
of higher order relative to A*, because

lim — - =  lim a =  0.

Thus, the increment Ay of the function consists of two terms, of 
which the first is [when / ' (*)^A 0] the so-called principal part of 
the increment, and is linear relative to A*. The product / ' (*) A* 
is called the differential of the function and is denoted by dy or 
df(x) (read, dy or df of *).
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And so if a function y = f(x) has a derivative f' (x) at the point 
x, the product of the derivative / ' (x) by the increment A* of the 
argument is called the differential of the function and is denoted 
by the symbol dy:

dy = f'(x)Ax. (2)

Find the differential of the function y = x\ here,
y' = (x)' = l,

and, consequently, dy = dx = Ax or dx = A*. Thus, the differential 
dx  of the independent variable x  coincides with its increment Ax. 
The equality dx = Ax might be regarded likewise as a definition 
of the differential of an independent variable, and then the fore
going example would indicate that this does not contradict the de
finition of the differential of a function. In any case, we can write 
formula (2) as

dy = f' (x) dx.

But from this relationship it follows that

n * ) =
dy
dx ’

Hence, the derivative / '  (x) may be regarded as the ratio of the 
differential of a function to the differential of the independent 
variable.

Let us return to expression (I), which, taking (2) into account, 
may be rewritten thus:

A y = dy + aAx. (3)
Thus, the increment of a function differs from the differential of 
a function by an infinitesimal of higher order relative to Ax. If 
/ ' (x)=£ 0, then aAx is an infinitesimal of higher order relative to 
dy and

lim
Ajt-m)

lim
A*-M)

aAx 1 +lim a-T^j= 1.

For this reason, in approximate calculations one sometimes uses 
the approximate equality

Ay «  dy (4)
or, in expanded form,

f(x  + Ax)—f  (x) / ' (*) Ax, (5)
thus reducing the volume of computation.
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Example 1. Find the differential dy and the increment Ay of the function 
y == x2:

1) for arbitrary values of * and A*;
2) for * =  2 0 , A* =  0 .1 .
Solution. 1) A*/ =  (* +  A* ) 2— * 2 =  2*A*-|-A*2,

dy =  (x2)' Ax =  2*A*.

2) If * =  20, A* =  0.1, then Al/ =  2-20.0.1+(0.1)2=4.01, 
d(/ =  2-20«0.1 =4.00.

Replacing Ay by dy yields an error of 0 .0 1 . In many cases, it may be 
considered small compared to A# =  4.01 and the
refore disregarded.

Fig. 84 gives a clear picture of the above ^
problem.

In approximate calculations, one also 
makes use of the following equality, which 
is obtained from (5):

f(x +Ax) fv f  (x)+f' (x) Ax. (6)
Example 2. Let /(*) =  sin*, then /'(* ) =  cos*.
In this case the approximate equality (6) takes y ^

the form ”
sin (* +  A*) sin * +  cos * Ax. (7) _.r ig. o4.

Let us calculate the approximate value of 
sin 46°.

Put * — 45° — -— , A * = l°  =  - ^ .  46° =  450 +  l° =  — + ^ 5 - Substituting 
into (7) we get

• J nn , / Jl . Jl \ . Jl , H  Jlsin 46° =  sin  ̂T  +  m  J =  sin T  +  cos T  m

or

sin 46° =  —  +- — 0.7071 +  0.7071 • 0.017 =  0.7194.

- X ----

Fig. 84.

Example 3. If in (7) we put * =  0, A* =  a, we get the following approxi
mate equality:

sin a ^ a .

Example 4. If /(*) =  tan*. then by (6), we get the following approximate 
equality:

tan (* +  A*) =̂ r tan * +  A x ,  

for * =  0, A x  =  a t we get
tan a^za .

Example 5. U f ( x ) = l r jc, then (6) yields

+  v ^  +  —7 = Ax.2 V x-.,
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Putting * =  1, A* =  a, we get the approximate equality 

V 1 + a  =  1 + y a .

The problem of finding the differential of a function is equiva
lent to that of finding the derivative, since, by multiplying the 
latter into the differential of the argument we get the differential 
of the function. Consequently, most theorems and formulas perta
ining to derivatives are also valid for differentials. Let us illustrate 
this.

The differential of the sum of two differentiable functions u and 
v is equal to the sum of the differentials of these functions:

d(u+ v) = du + dv.
The differential of the product of two differentiable functions u 

and v is determined by the formula
d(uv) =  u dv -\-v du.

By way of illustration, let us prove the latter formula. If y = uv, 
then

dy — y' Ax =  (uv' +  vu') Ax =  uv' Ax +  vu' Ax,
but

v 'A x  = dv, u 'A x  = du,
therefore

dy = udv + v du.

Other formulas (for instance, the formula defining the differen
tial of a quotient) are proved in similar fashion:

if then dy v du —u dv 
v2

Let us solve some problems dealing with calculating the diffe
rential of a function.

Example 6 . y — tan2*, dy — 2 tan * 

Example 7. y =  1 +  In x, dy —

1
cos* x 

1

dx.

2Vri + |n jt *— dx.

We find the expression for the differential of a composite function. 
Let

y= f(u ), u = q>(x), or y= f[(f (*)],
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Then by the rule for the differentiation of a composite function,

%  =  (“ ) <P' (*)•
Hence,

dy =  fu (u) <p' (x) dx,

but <p' (jc) dx = du, therefore
dy = f' (u) du.

Thus, the differential of a composite function has the same form 
as it would have if the intermediate argument were the independent 
variable. In other words, the form of the differential does not de
pend on whether the argument of a function is an independent va
riable or a function of another argument. This important property 
of a differential, called invariance of the form of the differential, 
will be widely used later on.

Example 8 . Given a function y =  sin Y x .  Find dy. Solution. Representing 
the given function as a composite one:

y — sin u, u =  Yx ,
we find

dy =  cos a — —  dx;2 Y  x
but — 7— dx =  dut so we can write

2 Y  x

or
dy =  cos u du

d y =  c c s  ( Y ~ x )  d  (

SEC. 21 . THE GEOMETRIC SIGNIFICANCE OF THE DIFFERENTIAL

Let us consider the function
y = f ( * )

and the curve it represents (Fig. 85).
On the curve y = f(x ), take an arbitrary point M (x, y), draw a 

line tangent to the curve at this point and denote by a the angle*) 
which the line tangent forms with the positive direction of the 
x-axis. Increase the independent variable by Ax; then the function

*) Assuming that the function f (x) has a finite derivative at the point x9 
we get a ^  .
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will change by Ay = NM x. To the values *+Ajic, y +  Ay on the 
curve y = f(x) there will correspond the point At, (*+  A*, y-\- Ay). 

From the triangle MNT we find

since 

we get

NT = MN tan a; 

tana =  /'(jc), MN = Ax,

NT = f' (x)Ax;
but by the definition of a differential f'(x )A x = dy. Thus,

NT =  dy.
The latter equality signifies that the differential of a function f(x), 
which corresponds to the given values x and Ax, is equal to the

increment in the ordinate of the line tangent to the curve y = f (x) 
at the given point x.

From Fig. 85 it follows directly that
MtT =  Ay— dy.

M TBy what has already been proved, —>-0as A*—►O.
One should not think that the increment Ay is always greater 

than dy. For instance, in Fig. 86,
Ay = M tN, dy = NT, and A y< d y .

SEC. 22. DERIVATIVES OF DIFFERENT ORDERS

Let a function y = f(x) be differentiable on some interval [a, b]. 
Generally speaking, the values of the derivative /' (x) depend on x, 
which is to say that the derivative f ' ( x ) is also a function of x.
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Differentiating this function, we obtain the so-called second 
derivative of the function /(*).

The derivative of a first derivative is called a derivative of the 
second order or the second derivative of the original function and 
is denoted by the symbol y" or f" (x):

y"=(*/')'=/"(*)•
For example, if y = x*, then

y' = 5*4; */" =  (5*4)' =  20*3.

The derivative of the second derivative is called a derivative of 
the third order or the third derivative and is denoted by u'" or 
/'"(*)■

Generally, a derivative of the nth order of a function f(x ) is 
called the derivative (first-order) of the derivative of the (n— 1) st 
order and is denoted by the symbol y(n) or f(n)(x):

y{n) = (y(n-»)'=/<"> (*).
(The order of the derivative is taken in parentheses so as to avoid 
confusion with the exponent of a power.)

Derivatives of the fourth, fifth, and higher orders are also 
denoted by Roman numerals: */IV, */v, yvl, . . .  Here, the order of the 
derivative may be written without brackets. For instance, if y = x \  
theny' =  5x\ y" =  20x\ y’"  =  60*2, y™ =  r/(4) =  120*, yv =  y{i) =  120, 
y(ft, =  r/(7) =  . . .  =  0.

Example 1. Given a function y =  ekx (k =  const). Find the expression of its 
derivative of any order n.

Solution, y' =  kef1*, y" =  k2ekxt . .  ., y {n) =  knef*x.

Example 2. y =  sin*. Find y{n).
Solution.

y ’ =  COS X =  sin »

/  =  — sin* =  sin ^* +  2-5-^ »

£/"' =  — cos* =  sin ^* +  3 -—j  , 

yvl  =  sin * =  sin f*  +  4 ,
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In similar fashion we can also derive the formulas for the 
derivatives of any order of certain other elementary functions. The 
reader himself can find the formulas for derivatives of the nth 
order of the functions y = xK, y = cosx, y = \nx.

The rules given in theorems 2 and 3, Sec. 7, are readily 
generalised to the case of derivatives of any order.

In this case we have obvious formulas:
(u -f v)m =  uw  +  i»(n\  (Cu),n> =  Cu(',,.

Let us derive a formula (called the Leibniz rule, or formula) 
that will enable us to calculate the nth derivative of the product 
of two functions u(x) v(x). To obtain this formula, let us first find 
several derivatives and then establish the general rule for finding 
the derivative of any order:

y ~ u v ,
y' = u'v + uv’,
y" - u"v -f u V  -f- m V  +  uv” =  u"v +  2uV  f  uv",

, / "  =  u"'v  +  uV  +  2uV +  2u V  +  u’v" + uv'” =
=  u’"v + 3u”v' +  3u'v” +  uv '”,

y iv  =  mivu +  4 u '"v ' +  6u"v” 4u'v”' +  moiv .

The rule for forming derivatives holds for the derivative of any 
order and obviously consists in the following.

The expression (u + v)n is expanded by the binomial theorem, 
and in the expansion obtained the exponents of the powers of u 
and v are replaced by indices that are the order of the derivati
ves, and the zero powers («' =  ul>= l )  in the end terms of the 
expansion are replaced by the functions themselves (that is, 
“derivatives of zero order”):

y™ =  (uv)im =  u(n)v + nu{n- iy  +  u{n~2)v" + . .  f  uvm.

This is the Leibniz rule.
A rigorous proof of this formula may be performed by the me

thod of complete mathematical induction (in other words, to prove 
that if this formula holds for the nth order it will hold for the 
order n -f 1).

Example 3. y =  eaxx*. Find the derivative ol y{nK
Solution.

u =  ea x , v  =  x zt

u' — ae a x , i /  =  2 j c ,
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u* =£*«*, v "  =  2,

u n  =  a n e a x , v ' "  =  v l v  =  . . .  =0,

y*”) =  a n e a x x ‘  +  n a n ~ l e a x  • 2a: +  — ^  a n ~ H a x  • 2
or

{/<«> =  e°* [anA:J +  2na"-1j: +  ft ( n — 1) an-*|.

SEC. 23. DIFFERENTIALS OF VARIOUS ORDERS

Suppose we have a function y = f (x), where* is the independent 
variable. The differential of this function

dy =  /' (x) dx
is some function of x, but only the first factor, f  (x), can depend 
on x; the second factor, (dx), is an increment of the independent 
variable * and is independent of the value of this variable. Since 
dy is a function of * we have the right to speak of the differen
tial of this function.

The differential of the differential of a function is called the 
second differential or the second-order differential of this function 
and is denoted by d*y:

d(dy) = d*y.
Let us find the expression for the second differential. By virtue 
of the general definition of a differential we have

d*y = [f (x)dx\ dx.
Since dx is independent of x, dx is taken outside the sign of the 
derivative upon differentiation, and we get

d*y = f" (x)(dx)\
When writing the degree of a differential it is common to drop 
the brackets; in place of (dxf we write dx1 to mean the square 
of the expression dx\ in place of (dxf we write dx*, etc.

The third differential or the third-order differential of a function 
is the differential of its second differential:

d*y == d (d*y) = \f" (x) dx*)' dx =  f "  (x) dx*.
Generally, the nth differential is the first differential of a diffe

rential of the (n— l)st order:
dny — d (dn~'y) — (*) dx”-1]' dx, dny = fm (x) dxn. (1)
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Using differentials of different orders, the derivative of any order 
may be represented as a ratio of differentials of the appropriate 
order:

r w - g  r w - g ......r w - g .  <2>
It should, however, be noted that equalities (1) and (2) (for n >  1) 
hold only for the case when x is an independent variable.*)

SEC. 24. DIFFERENT-ORDER DERIVATIVES OF IMPLICIT FUNCTIONS 
AND OF FUNCTIONS REPRESENTED PARAMETRICALLY

1. An example will illustrate the finding of derivatives of 
different orders of implicit functions.

Let an implicit function y of x be defined by the equality

-l- 1 u- (I )

Differentiate, with respect to x, all terms of the equation and re
member that y is a function of x:

from this we get

_ n.
a2"* bl d x~ ^ '

d y _____ £**
dx a‘y ’ (2)

Again differentiate this equality with respect to x (having in view 
that y is a function of *):

dy
d*y____ b2 y ~ x dx
dx2 a2 y2

Substituting, in place of the derivative d— , its expression lrom
(2), we get ,

<Py____ b2 y  +  X a2 y
dx2 a2 y2 ’

or, after simplifying,
d2y __ b2{a2y2-\- b2x2)
dx2 a4y2

* Nevertheless, we shall also write equality (2) when* is not an indepen-
d2u dnudent variable; but in this case, the expression ^  should be

regarded as symbols of derivatives.
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From equation (1) it follows that
a2y2 + b2x2 = a2b2\

therefore the second derivative may be represented as
d^y____
dx2 a*ys *

Differentiating the latter equation with respect to x t we find — , 
etc.

2. Let us now consider the problem of finding the derivatives 
of higher orders of a function represented parametrically.

Let the function y of x be represented by parametric equations

* =  <P(0. \ (3)

the function x = cp(f) has an inverse function t. = t(x) on the inter
val [ toi T).

In Sec. 18 it was proved that in this case the derivative ~  is 
defined by the equation

dy
d y _dt_
dx dx

I t
(4)

d2uTo find the second derivative, — , differentiate (4) with respect 
to x, bearing in mind that t is a function of x:
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Substituting the latter expressions into (5), we get
dx d^y__dy d^x

d 2y _  dt d t2 d t  dt2 
dx2~  T d x y  ‘

\ d t  )

This formula may be written in more compact form as follows:
d 2y q>'(0 ^ ( 0 - * ' ( 0 qf ( 0  
dx* [<p' (/)]’

In similar fashion we can find the derivatives
d ly d4y 
dx8 ’ dx4

and so forth.
Example. A function y of x is represented parametrically: 

x =  a cos t, y =  b sin /.

dy d 2yFind the derivatives -j2-, 3— .dx dx2
Solution.

dx . , d2x— — — asm t\ = — a cos/;

^3 =  b cos t\ d t g = - 6 sin/;

dy __ bcos t  
dx~~ — a sin t — cot /; a

d2y _ ( — a sin /) ( — b sin t) — (b cos t) ( —a cos t) 
dx2~~ ( —a s in / )8

b 1 
a2 sin* t '

SEC. 25. THE MECHANICAL SIGNIFICANCE OF THE SECOND DERIVATIVE

Let s be the path covered by a body under translation as a 
function of the time; it is expressed as

s= /(0 -  (1)
As we already know (see Sec. l,Ch. Ill), the velocity v of a body 
at any time is equal to the first derivative of the path with 
respect to time:

At some time t ,  let the velocity of the body be v.  If the motion 
is not uniform, then during an interval of time At that has elapsed 
since t the velocity will change by the increment Av.



The Mechanical Significance of the Second Derivative 125

The average acceleration during time At is the ratio of the 
increment in velocity Au to the increment in time:

__ Av 
a av A /*

Acceleration at a given instant is the limit of the ratio of the 
increment in velocity to the increment in time as the latter 
approaches zero:

a — lim
A* -*► o

Av . 
M ’

in other words, acceleration (at a given instant) is equal to the 
derivative of the velocity with respect to time:

but since u =  consequently,
_d /  d s \ ___d‘s

a ~ d l \ I t ) ~ ~ d t 1'

or the acceleration of linear motion is equal to the second deriva
tive of the path covered with respect to time. Reverting to equation
(1), we get

a =  r ( t ) .

Example. Find the velocity v and the acceleration a of a freely falling 
body, if the dependence of distance s upon time t is given by the formula

+  (3)

where g =  9.8 m/sec2 is the acceleration of gravity, and s0 =  st=0 is the value 
of s at ( =  0.

Solution. Differentiating, we find

ds
v =  Jt = g t  +  v o! (4 )

from this formula it follows that vQ= ( v ) t=Q.
Differentiating again, we find

dv d2s 
a ~ d t ~ d ? ~ 8'

Let it be noted that, conversely, if the acceleration of some motion is con
stant and equal to g, the velocity will be expressed by equation (4 ), and 
the distance by equation (3) provided that (v)tss0 — v0 and (s)(=0 =  s0.
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SEC. 26. THE EQUATIONS OF A TANGENT AND OF A NORMAL.
THE LENGTHS OF THE SUBTANGENT AND THE SUBNORMAL

Let us consider a curve whose equation is
y =  f(*Y

On this curve take a point M (xiy yx) (Fig. 87) and write the 
equation of the tangent line to the given curve at the point Af, 
assuming that this tangent is not parallel to the axis of ordinates. 

The equation of a straight line with slope k passing through the
point M is of the form

y —yx = k (*—*>)•
For the tangent line (see Sec. 3)

k = r  (*,),
and so the equation of the tangent
is of the form

0—if, = n * , )  (*—■*,)•
In addition to the tangent to a 

Fig. 87. curve at a given point, one often
has to consider the normal. 

Definition.The normal to a curve at a given point is a straight 
line passing through the given point perpendicular to the tangent 
at this point.

From the definition of a normal it follows that its slope k n is 
connected with the slope k t of the tangent by the equation

or
k ---------L_

r  (*,)'
Hence, the equation of a normal to a curve y = f(x) at a point 

M (*,, yt) is of the form

y - y > = - r h {x~ x')-
Example 1. Write the equations of a tangent and a normal to the curve 

y =  x* at the point M (1, 1).
Solution. Since £/' =  the slope of the tangent is 0/')*=! =  3.
Therefore, the equation of the tangent is

# —1 =  3 (* — 1) or y =  3* —2.
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The equation of the norma) is 
1

or

y = ~ T x + '3
(see Fig. 88).

The length T of the segment QM 
(Fig. 87) of the tangent between 
the point of tangency and the 
*-axis is called the length of the 
tangent. The projection of this 
segment on the *-axis, that is,
QP, is called the subtangent\ the 
lenght of the subtangent is deno
ted by ST. The length N of the 
segment MR is called the length
of the normal, while the projection RP of the segment RM on the 
x-axis is called the subnormal, the length of the subnormal is 
denoted by SN.

Let us find the quantities T% ST, Nt SN for the curve y = f(x) 
and the point M (*,, */,).

From Fig. 87 it will be seen that

therefore

QP = y cot a =  r — ^ ^  tan a / »
y i

S7 = iL »
yi

T = y\_
v*

J!±
y \ f / i * 1 •

It is further clear lrom this same figure that 
PR = y, tan a = yiy[,

and so
5A=li/|^> I.

These formulas are derived on the assumption that’ £/, > 0 , 
However, they hold in the general case as well.
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Jf

/l
/! \

V  0

Example 2. Find the equations of 
the tangent and norma!, the lengths 
of the tangent and the subtangent, 
the lengths of the normal and 

x subnormal for the ellipse

x =  a cos t f y  =  b sin t ( 1 )

Fig. 89.

Solution. From equations (1) we find

at the point M (*,, y x) for which 

/ = ~  (Fig. 89).

dx . , dy . . dy b . . ( d y \  b— a sin t\ - r = b  cos t\ — = ------co t/;  — = -------
dt dt dx a \ d x J t __* a

4

We find the coordinates of the point of tangency of M:

4  4

The equation of the tangent is
b

i x v * )
or

or

y V~2 «

bx +  ay — ab 2" = 0 .  

The equation of the normal is
b a (  a \

y~ v f ~ A x ~ v ^ )
(ax— by) \ f ~ 2 —a*-\-b2 =  0. 

The lengths of the subtangent and subnormal are

S t  —
V  2

r 2 •

Sk = b
/ T (-4) 6*

a ] f ‘l
The lengths of the tangent and the normal are 

b
/ T  A 7 hTTT =

/ ( - 4 ) ‘
+ 1 =  -p=- V ^ T P :

JV = Ft /  1 +(-4)1-77?
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SEC. 27. THE GEOMETRIC SIGNIFICANCE OF THE DERIVATIVE 
OF THE RADIUS VECTOR WITH RESPECT TO THE POLAR ANGLE

We have the following equation of a curve in polar coordinates:
Q =  /(»)• (1)

Let us write the formulas for changing from polar coordinates 
to rectangular Cartesian coordinates:

x  = q  cosO, y = Q sin 0.

Substituting, in place of q, its expression 
in terms of 0 from equation (1), we get

* =  / ( 0) cosO, 
y =  / ( 0) sin

os 0, \ 
in ft. / (2)

Equations (2) are parametric equations of 
the given curve, the parameter being the 
polar angle 6 (Fig. 90).

If we denote by cp the angle formed by the tangent to the 
curve at some point M (*), 0) with the positive direction of the 
*-axis, we will have

dy
. dy d0
tan(P==5i =  ̂ 7

did
or

tancp =
sin 0 +  q cos 0 

cos0 —Q sin0
(3)

Denote by \i the angle between the direction of the radius vector 
and the tangent. It is obvious that'p, =  q>—0,

tan [A tan cp — tan 0 
I -f- tan qp tan 0 ’

Substituting, in place of tan(p, its expression. (3) and making 
the necessary changes, we get

. vQ'sin 0 +  q cos 0) cos O—-(q' cos0— Qsln0)sin0 q
lan ^ ““ (q' cosO—q sin 0) cos 0 -{-(g'sin0 +  q cos 0) sin 0 f

or
e; =  ecotj*. (4)

5 —  3388
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Thus, the derivative of the radius vector with respect to the 
polar angle is equal to the length of the radius vector multiplied 
by the cotangent of the angle between the radius vector and the 
tangent to the curve at the given point.

Example. To show that the tangent to the logarithmic spiral

Q =  eaH

intersects the radius vector at a constant angle.
Solution. From the equation of the spiral we get

From formula (4) we have

cot jx =  —• —a\ that is, (j. =  arc cot a — const.

Exercises on Chapter III

Find the derivatives of functions using the definition of a derivative.
1, u =  x\  Ans. 3x*. 2. y =  —~ • Ans. — -  . 3. y — V x . Ans. — .

J * x* J 2 V  x
4. u =  —1-— . Ans.------- ^t==. 5. y =  sin**. Ans. 2sin *cos* . 6. y — 2x2—x.

V  X lx V  X
Ans. 4x — 1.

Determine the tangents of the angles of inclination of tangents to the 
curves: 7. y — x2. a) When x = l .  Ans. 3. b) When x =  — 1. Ans. 3. Make a .
drawing. 8. r/ =  -~ . a) When x = ~  . Ans. —4. b) When * = 1 . Ans. — 1.

Make a drawing. 9. y = V ^  x when x =  2. Ans. •

Find the derivatives of the functions: 10. y =  x* +  3x*—6. Ans. y' =  4*3 +  6*.
11. y = 6 x * —x1. Ans. y' =  18x2—2x. 12. y--

bx* 2x % xs—x2-f-l
~a-\-b a — b ■1. 13. y = *. i4ns. y'

a +  b a —b 
3x2—2x

- x. Ans. y =  

14 . y =  2axs —

2x«— -  +  c. Ans. y' =  bax2— 15. y — bx1 +  4* 2 + 2* . Ans. y ' = 2 \ x  -f-

+  10*T  +  2. 16. y =  j / T  + — . Ans, ' - - 1 .
V * 2 jt 3 Y x i **

17. y = (Jc + D*

2x'

«« x , m , x* , nz
18* y  =  — |------1— y  H— 2~9 m x n* x2

x
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‘9- .  =  ^ - 2  ̂ + 5 -  A n s . y ' ^  ^

V * 5 — 3 - —— . Ans. y ' = — a x 3 — ~^bx  2 +
1 _A ax2 b

------ T =  • 20. y  . _  H------- 7= — /-
a: j j /  a a a a

7

+ - *  • .

21. f/ =  ( l + 4 a s) (1 + 2 a 2). Ans. y' =  4x (1 + 3 *  +  10a3). 22. y =  x ( 2x — l ) ( 3 * - f 2 ) .  

Ans. y' =  2(9x2A-x— 1). 23. y =  (2x— 1) (a:2— 6a +  3). Ans. y ' =  6a2— 26a: + 1 2 . 
2x4 . , 4x*{2b2— x2) a — x , 2 a

24̂ = 6 W -  Ans- y =  lb* - x*r~- 25> y=z+ ;- Ans• ^ “ - ( 7 + r p -

26. /« )  =  — 7 5 - i«M. r  27. / ( S) = . l i ± ^ .  /4ns. /'(*) =

(s +  2) (s +  4) 
(s +  3)2 '

xP

28. y  =
x* +  \

Ans.
x*— 2x’ — 6x2 — 2* + l

29- y = - a r Ans. y ’ =

x l — x — 2 ...............   " (x* — x —2)*
xp ~' [(p— m) x m— p a m]

(xm—a"1)2 -. 30. y  =  (2x2-4 3)2.

Ans. y '  =  8x (2x*— 3). 31. y  =  (xt +  a ’) t . Ans. y =  10* (*2 +  a2)4. 32. y =
=  y i c ^ + a 2. Ans. »' =  _ x------ 33. y =  (a +  *) V a —x. Ans. i(  =  —a~ 3*— .

V x 2 +  a* 2 V a — x

■ y= V ^ r= J- ^  ✓ “ (,_*) 35‘ ^  -

36. y =  +  1. Ans. y' =  * 37. y  =
3 / ( x ' + x + l ) *

34,

1 -f-4*2

*2(l+x2)2
=  ( i + y X ) » .  Ans. i/' =  ^ l + | — J . 38. y = j / r x +  Y x +  yTJ. Ans. y’ =»

=  — /- 1 , —  [ l +  f  ‘ f 1 + 7 V = ) l -  39‘ *'=sin,JC- Ans.2 i/  x +  Y x +  Y~x L 2V x + \ f  x \  % V x j  ]

y' =  sln2x. 40. y =  2 sinx -f- cos 3a. Ans. t/' =  2cos* — 3 sin 3a. 41. =
x /  . . v  „  ,  a ^  sin x A 1t= tan (ax +  b ). A n s .  y '  = -----r ----- — - . 42. y  =  T -,-------- . 4ns. w'=  —--------- .co s2(ax +  b) * l+ c o s <  * 1-J-cosa

43. # =  sin 2a • cos 3a. A n s .  y' =  2 cos 2x cos 3x—3 sin 2x sin 3a. 44. y =  cot2 5a.

Ans. y' = — 10 cot 5a esc2 5a. 45. y =  t sin t -j-cos t. Ans. y ' = t c o s t .  46. y =a
=  sin3*cos*. Ans. y'=*sln2t (3cos2/ — sin2/)- 47. # =  a |/~cos 2a. /Ins. */'=

. a; , . a
t a n y  +  cot-^a sin 2a . . <p . ' . 9w <p------- / t:■ . 48. r =  a sin3--  /Ins. r._ =  a sin2-cos-J . 49. */ =

Y  cos 2a 3 v 3 3 u

5*
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2x cos x +  sin** ( lan — +  cot ) , x \ t
Ans. y' = ---------------------------------------  ' .5 0 .j ,  =  a ( l - c o s ’ T } . A n s .y ' =

X X  1=  2a sin8 — cos-^ . 51. t/ =  " 2  tan2 jc. Ans. y' =  tan * sec2*. 52. y =  \ncosx .

2
Ans. y ' = — tan *. 53. y =  In tan *. Ans. yf = - ^ - ^  . 5 .̂ y = \ n  sin2 x. Ans. y '=

o i tan* — 1 „ , . , - ,/^4 -sin*
=  2 cot*. 55. y =  —-- - - -  . Ans. y =  sin * 4 -cos*. 56. y =  \n y  Y^sUyx '

Ans. y f = — . 57 . as=ln tan f V  Ans. y ’ = —— . 58. y =  sin (* +  a)X* cos* v \  4 ' 2 J 9 cos*
Xcos (* +  a). Ans. y f — cos 2 (* +  a). 59. /(*) =  sin (in *). Ans. /'(*) =

=_ cos (In x) ^  / (* )=  tan (In *). Ans. f  (*) =  "6C ^ n . 61 / (*) =  sin (cos *).

Ans. f‘ (*) =  — sin * cos (cos *). 62. r = -i-tan8 (p—-tan q)+ q). Ans. ~ j  =  tan4 <p. 

63. /(*) =  (* cot*)2. Ans. /'(* ) =  2* cot * (cot * —*csc2*). 64. y == In (a* -j- by 

Ani y' = ^T~b- “ ■ y - 'o g ^ + i ) .  Al»- 66‘ *=
=  ln| ± i .  4ns. ( / ' = — • 67. j ,=  log,<*’- s I n * ) .  Xns. tf =  (̂ ~ ^ 3 .

68- iy = ln j — ». -4ns. i / ' = y 4 ^ i  • 69. ( ,=  In (*’ +  -*•)■ An».

3^*__2
70. y =  In (*8 — 2* +  5). Ans. y' =  ^3 " '2jc +  5 * 71*  ̂=  * ,n ^ s .  lj  =  in * 4 -1

72. ^ = ln 8*. Ans. */' =  - ^  * . 73. # =  ln (*-f VT~hP**). i4ns. y' =  -̂ _ L =

74.  ̂=  In (In *). ,4/is. 75. /(* ) =  ln j / ”[—  . ^as. f  (*) = j z r p

76. /(*) =  In y ~  i l l1 ^ . 4/is. f '  (*) =  — - 7 ; 2 - • 77.̂  y =  Y a 2 +  x* —
V  x2— 1 + x  y  14- **

~ a m a + | / ; i + x ! . .4ns. £ , ' = - ^ S .  78. £,= ln<* +  } ^ 1 ? + Z ) - .

A n s . y '  *

£0.

|^**4 -a 2 _n cos* , 1 . . * . , 1=   ------— . 79. */ =  — n .— b 77 'n tan — . 4/is. y =  ■■ ,
* 2 * 2 sin2 * 2 2 sin8 *

sin * Ans. y' =  . 81. y =  ~  tan2 * 4 - in cos *. 4/is. y' =
’ 2 cos2** ' ,'~* y 2 cos8* 

c= tan8*. 52. y= .e ax. i4ns. y ' = a e ax. 83. y =  e4X+A. Ans. y ' =  4e4X+5. 
84. & =  a* \ 4/is. 2* ax* in a. 85. y =  7x*+2X. Ans. y' =  2 (* 4 -1) 7X‘+2* In 7.

86 . y*=scat~x\  Ans. y ' = — 2*ca>~** Inc. 87. y =  a e ^ x9 Ans. y' = — 7 = -
2 K *
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88. r =  a0. Ans. r' =  a8 In a. 89. r =  a ln8. Ans. ^  =  —— J =  9lna 1 In a. * at) t)

90. y =  e * ( \ — x2). Ans. y' = e *  (1 — 2x— x2). 91. =  Ans. l/'= ^ r q r jy 2 •

* i -L - —
92- y = ln] ^ * -  Ans• y'= Y + P ' 93‘ y = Y {ea~ e a)- Ans■ ^ =

x jc
==‘2’ ^ a ^’ g a )- y~-e*lnx- Ans. y' =e*in x cos x. 95. // = a tan n*. Ans. f/'=

=  natan sec2 nx In a. 96. y =  ecosx sin*. Ans. y' =  ecos x (cos x — sin2 x). 

97. # =  ex In sin *. Ans. y' =  ex (cot x In sin x). 98. y =  xnesln x. Ans. y' =
i

=  *n" V in x {n +  x cos x). 99. y — xx. Ans. y' =  xx (In x +  1). 100. y =  x x .

Ans. y' =  x x • 101. y =  x lnx. Ans. y ' = x {nx~ l \nx2. 102. y — e3̂ .

Ans. y ’ =  e**(l +  Inx) xx. 103. y = ( ^ - ' ^  . Ans. y ' = n  ^ 1 + l n - ^ .

104. y =  xslax. Ans. y' =  *s*n x  ̂+  ln x cos . 105. £/ =  (sin x)x. Ans. y'=z

=  (sin x)x (In sin x +  x cot *). 106. y  =  (sin *)tan *.
j_

X (1 + se c 2* In sin x). 107. y  — tan . . Ans. y ‘
I -f-e

Ans. £/' =  (sin *)tan Xx

( l + e x)2cos2 \ - e x ‘ 
\ + e x

108. y =  sin V T = 2 X. Ans.y ’= -  C0S ^  -  2* In 2.109.^ =  10* ,an *. Ans. y' =J ’ J 2 Y 1—2*

=  10,la n *ln 10 (ta n *  +  —V - V  \  cos2* /

Find the derivatives of the functions after first taking logarithms of these 
functions:

G... H l f f c - i l '  . . .  ... (, + l|- y „ -  2)- f  3 , 3

113. y = - j

V ( * - 3)’
112. y =

J / ( x —1)‘

$ ^ = 3 ?  V * + l 4 ( x — 2)

_____?___N I * + l) *  (* +  I)<5** +  14* +  5)
5 (x—3 ) ) ’ y ~ ( x  +  2,':x +  3)*‘ A y

V (x— 2)’ K (* -3 )7
.  / 4 r t S .

(* +  2)‘ t* +  3)» '

— 16Ua +  48Qjc— 271 

60V (•*— l)s 2)’ j / ( * — 3)10 ’
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x ( \ + x i 2 *) A , 1 + 3 * 2 — 2a114. y =  - r—=  . Ans. y ~ — 1-----------
V \  - x *

(1  — X*) 2

. 115. i/=;t:5(a +  3* ) 2

=  5Ar4(a +  3*)J(a — 2x)(a‘ +  2ax— 1 2jc*). 116. y - - arc sin-^-. Ans. y' =  — .

117. y  =  (arc sin x)*. Ans. H8. i/ =  arc cot (**+!). Ans. y'

(■**)•2x 2x 2119. y =  arc cot-------r. Ans. w'= — — 5 . 120. r/ =  arccos, ,
J  l — * 2 J  1 + a : 2 a

... - ( x + V T = 7 *  arc cos x)
y ~  jc* YT=x* ‘

i + (*2+ i)2'
j. —2x arc cos x A

Ans. y =  r______• *21. y = ------------ . Ans.
y Y \  — x4 *

— x V a!—x‘ 4-a‘ arc sin — .' a. .  123. y -122. y =  arc sin—=  . Ans. y ’—- r —  '
V  2 Y 1 — 2x—x*

- Y a2—x2 -f- a arc sin —# '= 2 f a !-

a-\-x *

-x1. 124. # = — . Ans. y ' a

1 126. (/ =

j4ns.

/ a  — .v . u + a  - d a  1—i— . 125. a =  arccot -̂-------. -Ans. — = ——-
a  +  A- 1 — a t ;  d a  1 + u 2

n*. i4/zs. y' 

1

1 . * 3 - , a:2 + 1 1o_
• 7 3  arc cot-------=. i4ns. a = - 7- — z— r . 127. a =  * arc sin;
Y  3 1 — a:2 * *4 +  *2+ l  J

arc cos (In x). Ans. /'(* ) = --------r  *
x V 1 —In2a:

=  arc sin x +  -y=-~ — . 128. f (x)Y 1 - * 2
r___  cos X

129. / (x) =  arc sin Y sinx. Ans. / ' (jc) =  — 7= = = = .  130. y =  .
2 V sin x — sin2 x

l / '*  1 ~~cos x (0 <JC < 4  A n s . y ' = \ r .  131. y =  e*rccoix. Ans. y ’ =  r 1 +  cosjr J 2
 ̂ i. 1 /  1 — cos Xarc cot 1 /  n --------V 1 +  cos x

. 132. y
,arc cot x px__9

arc cot----- -— . Ans. y ' = - ? —-----^ . 133. y =  *arcsln*
2 * ex + e ~ x J

134. */ =  arc sin (sin *). Ans. y '

1 + a:2 

i4/is. y f = x  

cos*

.arc sinjt/arc s*n . In a: \
{  X + Y T = 7 * J -

and 4th quadrants. . 4 sin x A ,
. 0 . . 135. a =  arc cot o-r-E-------.Ans.y--and 3d quadrants. J 3 +  5 cos a:

\ f 1 “ A /
_ / + 1  in 1st and 4th quadrants 

cos* | ~ \ — 1 in 2d and 3d quadrants.

4 . a , . -■ f  x —a A , 2a5# =  arc co t— hln 1 /  —— . i4ns. y = —̂-----; . 137. y=* x * V * +  a J x*— a4136.5 +  3 cos x

(1 + at\1T 1 . . , jc2= l n l y — — 2 arc tan x. Ans. y = y — ^ 138. y =  ̂ +  +  ln j/~ i+ ^  +  

2a:—1r5 4_ l 1 Y 4-1 1 9v-_1
+  arc tan*. Ans. y f ■ . 139. r/ =  — in T  . +  - 7^  arc tan —

x’ +x* y 3 V  3
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a i 1 tAex i l~\~xY 2 -|- x2 0 , x Y  2 4 2Ans. y ' =  —%----   . 140. y =  In 7—1— 77=-^— o +  2arctan------Ans. y = - -----------
1—x Y  2 +  x2 l — x2 ‘1 + jc4 *

m  x*n— 1 a 2 n \x \n141. y =  arc cos , . A n s . -------- -----x2n +  1 JC (x2n +  1) '

Differentiation of Implicit Functions

Find ^  if: 142. y 2 =  4px. Ans. —  =  — . 143. x2 +  y2 =  a2.dx dx y y

Ans.^— = — — . 144. 6 2* 2 +  a2# 2 =  a26 2. Ans.—  = — ^  . 145. r/3— 3t/ +  2â r =  0. dx y dx a2y 9 J

4- y  * =  a  3 . A/IS.
dy_
dx 148. 0 2—2xi/ +  6 2 =  0. Ans. ^ -  = — -d* y — x

149. x* +  y*—3axy =  0. Ans. ^ = \fiZ-ax' ,50' y =  cos(x +y) -  Ans• =°

=  _  s in ^  +  y) |gl> cos( ) =  x_ Ans. dy =  _ l + .v s i n ( ^ ) j 
1 +  sin (jc +  ̂ ) d* Jtsin(xr/)

Find —  of functions represented parametrically:

152. x —acos t \  y = b s i n t .  Ans. =  — ---cot f. 153. x =  a(t  — sin 0; # =

=  a (1— cos 0- Ans. ^r-==cot — . 154. * =  acos3/; i/ =  &sin3 f. /Ins. —  =» 1 dx 2 * d*

=  —— tan *■ 135. A: =  j -p j2; £/ =  j-qTji. Ans. —  =  — -2 . 156. u =  21ncots;

v =  tan s +  cot s. Show that ^  =  tan 2s.dv

Find the tangents of angles of the slopes of tangent lines to curves:

1 Y ~3157. x =  cos /, y =  sin t at the point * =  — ^ » £/ =  —2 “  • Make a drawing

1 Y "3Ans. —7=z. 158. x — 2 cos t, y =  sint  at the point x = \ !  y —---------- . Make a
Y  3 ^

drawing. Ans. — 159. * =  a (/ —-sin i), y =  a (  1 — cos t) when / =  - ^ . Make

a drawing.i4ns. 1. 160. * =  acoss /, y =  asin*t  when / =  —-. Make a drawing.
Ans. — 1. 161. A body thrown at an angle a to the horizon (in airless space) 
described a curve, under the force of gravity, whose equations are: x =*
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ipi*
=  v0cosat t y =  v 0s i n a t - ^ - (g =  9.8 m/sec2). Knowing that a =  60°, v0 =
=  50 m/sec, determine the direction of motion when: 1) t =  2 sec; 2) / =  7sec. 
Make a drawing. Ans. 1) tan cp, =  0.948, cp1=43°30'; 2) tan <p2 =  — 1.012, 
cp2 =  +  134°7'.

Find the differentials of the following functions:

162. y =  (a2—x2)5. Ans. dy  =  — 10* (a2—x2)A dx.
*- A  v  1x dx

VT+J?

iod. y  =  v i -f-j

. 164. y = ~  tan3 x-\- tan x. Ans. d y = s e c * x d x .  165. y  =  ~ !n-x -[■ o 1 —x

+  l n ( l— x). Ans. dy = In x dx
( r e 

calculate the increments and differentials of the functions:
166. y =  2x2—x when * =  1, A* = 0 .01 . Tins. Ay =  0.0302, d y =  0.03. 167. Gi
ven y =  xz +  2*. Find Ay and dy  when * = — 1, Ax =  0.02. Ans. Ay =  0.098808,

Jt jid y = 0 A .  168. Given y = s i n x .  Find dy  when x =  — , A* =  to -  Ans. dy  =o lo

=  ^  =  0.00873. 169. Knowing that sin 60° =  -^-^ =  0.866025; cos 60°=-^-, find
the approximate values of sin 60°3' and sin60°18'. Compare the results with 
tabular data. Ans. sin 60°3' 0.866461; sin 60° 18' =5=0.868643. 170. Find the
approximate value of tan 45°4'30". Ans. 1.00262. 171. Knowing that
log10 200 =  2 30103 find the approximate value of logl0 200.2. Ans. 2.30146. 
Derivatives of different orders. 172. y =  3x*—2*2-|-5*— 1. Find y".

_ 12
Tins. 18*—-4. 173. y =  V  *5. Find y " . Tins, 8 . 174. y =  x*. Find y{9).

Ans. 61. 175. y = ~ .  Find y". Tins. - ^ ^ -2- -  . 176. y =  l^a2—**. Find i f .

Tins. -
(a2—x2) 

=  a*2+  bx -f- c.
R

A ns. • (* +  l)2

177. y  =  2 V  x. Find yw . A n s . ------ —  . 178. y =
f a * - x *  y J t Y x '
Find y"'. Ans. 0. 179. /(* )  =  ln (* +  1). Find f lV (x).

180. y =  tan *. Find y'". Ans. 6 sec4 x —4 sec2*. 181. y  =  In sin *.

Find. y"f. Ans. 2 cot * esc2 *. 182. / (*) =  Y sec 2x. Find, f  (r). Tins, f  (x) =  

=  3 [ f (x ) ) * - f (x ) .  183. y = f r x - Find f W W- Ans■ ( T ^ P '  184' p =

=  (7 2 +  a2) arc ta n - j  . Find dzp 
dq* * Tins. 4a*

(a* +  g2)*

X X

185. +«"«■).

Find Ans. . 188. y =  cosax.  Find y {n>. Ans. a" cos  ̂ax +  n y  ̂  .

187. y =  ax . Find y{n>. Ans. (In an) a x . 188.  ̂=  ln ( l+ * ) .  Find y {n).

Ans. ( -  l)"-> ^  • 189. =  • Find y™. Ans, 2 ( - l ) "  (T~ •

190. y = e xx. Find y{rti. Ans. ex (x +  n)- 191. y = x n~l In x. Find y {n\
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A n s . ^ ——^ . \ 92 .y =sm 2 x. Find y (n). Ans. — 2'* -1 cos^2* +  y  n j .  193. y =  a: sin x. 

Find y Ktt). Arts, x sin +  y  — n cos +  ^  • 194. If y = e x sin*, prove

d.2u 4a2
that y"— 2 y '+ 2 #  =  0 . 195. y 2 =  4ax. Find —  . Ans. ------j-. 196. ^2jf*+a2̂ 2=suJf y

d 2y A2i/=  a2b2. Find and —  . Ans. —
Ax2 Ax2 Or if

T My
— . 197. * 2 +  # , 3= r2. Finda4$r

d2̂ A*y
. i4 /is .— . 198. y2—2xy =  0. Find • ^/is. 0- 199. q =  tan (<p +  Q).Ax2 y

u .  ̂ <*5q „ 2(5 +  8q2
Flnd a$- * » » • ----*----- jjr

^ e - ^ j  .2Q1 , e* + , =
tan5 q

A2y
202 . 0 5 +  *2—3a*# =  0 . Find j p .  Ans.

. d2# -
d5 7 - '4'

2a2xy 
'(y2—ax)2

d 2y
y =  a ( l — cos 0- Find j j i -  4ns.

1
4a sin4 (4 )

d 2n+l

) COS Q — C. c . , A2q
Flnd d *

(1 —e*+•>')(«*—e*)
S- (e' +  l)*

. 203. x = a (* — sin /),

x —a cos 2 f, =  b sin2 1.

1 dX  Ans. - Ax2
3 cos t 

a2 sin5 * *

= cosh x.

Equations of a Tangent and Normal. 
Lengths of a Subtangent and a Subnormal

207. Write the equations of the tangent and normal to the curve y  =  x2-~ 
— 3*2—x +  5 at the point M (3, 2). Ans. The tangent is 8x—y — 22 =  0; the 
normal, *4-8^ — 19 =  0. 208. Find the equations of the tangent and normal 
of the length of the subtangent and subnormal of the circle x2 +  y 2 =  r2 at the 
point M (*,, */,). Ans. The tangent is xxt +  yy1= r 2; the normal is xxy —y x* =  0;

sT = SN  =  \ —  * i  I
209. Show that the subtangent of the parabola y 2 =  4px at any point is 

divided into two by the vertex, and the subnormal is constant and equal to 
2p. Make a drawing.

210 . Find the equation of a tangent at the point M (*,, y f .

a) To the ellipse £  +  { J = I .  Ans. ^ + f r = l -

b) To the hyperbola — = 1 - /4ns. ^ - ^  =  1.
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211. Find the equations of the tangent and normal to the Witch of Agnesi 
y =  at the point where A  =  2a. Ans. The tangent is x-\-2y — 4a\ the
normal is y =  2x— 3a.

212. Show that the normal to the curve 3y =  6x—5a3 drawn to the point
M ^1, —  ̂ passes through the coordinate origin.

213. Show that the tangent to the curve = 2  at the point

M (a, b) is — +  - f  =  2. a b
214. Find the equation of that tangent to the parabola, y 2 =  20x, which 

forms an angle of 45° with the A-axis. Ans. y =  jt-f-5 [at the point (5, 10)].
215. Find the equations of those tangents to the circle x2 +  y 2 =  52, which 

are parallel to the straight line 2x-j-3y =  6. Ans. 2a' +  3(/±26 =  0.
216. Find the equations of those tangents to the hyperbola 4a2^ -9 # 2 =  36, 

which are perpendicular to the straight line 2f/ +  5A=10. Ans. There are no 
such tangents.

217. Show that the segment (lying between the coordinate axes) of the 
tangent to the hyperbola x y=m  is divided into two by the point of tangency.

218. Prove that the segment (between the coordinate axes) of a tangent
2 2 2

to the asteroid a 3 4- y*  = a *  is of constant length..

219. At what
. In a — In btan a =

angle a do the and y =  bx intersect? Ans.

1 + ln  a-In b *
220. Find the lengths of the' subtangent, subnormal, tangent and normal 

of the cycloid A  =  a (0 —sin0), y =  a( \  — cos0) at the point at which 0 =  — .

Ans. sT= a \  sN =  a\ T — a Y 2; N — a Ŷ 2.
221. Find the quantities s#, T and N for the hypocycloid A  =  4acos3 f,

sin4 t
a =  4a sin3/. Ans. sr =  — 4a sin2 / cos t; s\r =  — 4 a ---- 7, = 4 a sin 2/; N =* ^ cos t
=  4a sin21 tan t.

Miscellaneous Problems

Find the derivatives of the following functions: 222. y =  9 S*n *------X
Z  C O S  A  *L

X l r t - t a r V' =  ~ . 2 2 3 . , , = a r c  sin - L . Ans. y ' = — ^ = .

224. y =  arc sin (sin a ) .  Ans. y r = | cos a  |
225. y =  -

V  cA— b*

X arc tan (  ) / ~ tan l )  (a >  °* b >  0)' Ans- y ' = a +  fr e e s t  226> *H * I< 

Ans. i 227. </=arcsin Y 1—*s- Ans. y' =  — —̂  , _ L = .
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228. From the formulas for the volume and surface of a sphere,
4

v = — jir3 and s =  4nr2

it follows that ^  =  s . Explain the geometric significance of this result. Find dr
a similar relationship between the area of a-circle and the length of the cir
cumference.

229. In a triangle ABC , the side a is expressed in terms of the other two 
sides b, c and the angle A between them by the formula

a =  Y b 2 +  c2—2bc cos A.

For b and c constant, side a is a function of the angle A. Show thal 
=  where ha is the altitude of the triangle corresponding to the base a.

Interpret this result geometrically.
230. Using the differential concept, determine the origin of the approxi

mate formulas

Va* + b*=a+ ± , y ^ + b z =a+ -±

where | b | is a number small compared with a.
231. The period of oscillation of a pendulum is computed by the formula

In calculating the period T, how will the error be affected by an error of 1% 
in the measurement of: 1) the length of the pendulum /; 2) the acceleration 
of gravity g? Ans. 1) =^1/2%; 2) =^1/2%.

. 232. The tractrix has the property that for any point of it, the segment 
of the tangent T remains constant in length. Prove this on the basis of: 
1) the equation of the tractrix in the form

* =  y a*— In a — Y  a2—y2
a+ Y a2—y2(a >  0);

2) the parametric equations of the curve

x — a  ̂

y =  a sin t.

In tan -J-cos /
) •

233. Prove that the function y =  Cxex +  C2e“ 2* satisfies the equation 
y” +  3g' +  2y =  0 (here C, and C2 are constants).

234. Putting y =  ex sin*, z =  ex cos* prove the equalities y =2 z ,  z ' = — 2y.
235. Prove that the function y — sin (m arc sinx) satisfies the equation

(1 —x2) i f —xy' + m 2y =  0.
v_

236. Prove that if (a +  bx)ex = x t then x ,d!y
dx2- ( ‘3H -



C H A P T E R  IV

SOME THEOREMS ON DIFFERENTIABLE FUNCTIONS

SEC. I. A THEOREM ON THE ROOTS OF A DERIVATIVE (ROLLE’S
THEOREM)

Rolle’s Theorem. If a function f(x) is continuous on an interval 
[a, b] and is differentiable at all interior points of this interval, 
and vanishes [f (a) = f(b) = 0] at the end points x = a and x = b, 
then inside [a, 6] there exists at least one point x = c, a < .c < b , 
at which the derivative f  (x) vanishes, that is, f'(c) — 0.*) .

Proof. Since the function f(x) is continuous on the interval [a, b], 
it has a maximum M and a minimum m on this interval.

If M = m  the function f(x) is constant, which means that for 
all values of x it has a constant value f (x) — m. But then at any 
point of the interval f  (x) — 0, and the theorem is proved.

Suppose AI 4= m. Then at least one of these numbers is not equal 
to zero.

For the sake of definiteness, let us assume that M > 0  and 
that the function takes on its maximum value at x = c, so that 
f(c) = M. Let it be noted that, here, c is not equal either to a 
or to b, since it is given that f(a) — 0, f(b) =  0. Since f(c) is the 
maximum value of the function, f (c+  Ax) — f(c) sgO, both when 
Ajc>0 and when A x< 0 . Whence it follows that

/(c+A*)—f (c) when A jc> 0; (1')

f(c+&x) — f(c) Q wjjen A *<;0. (T)

Since it is given in the theorem that the derivative at x — c
exists, we get, upon passing to the limit as A x —>-0,

lim f(c + A*)—f(c) _  j.' ^  ^  q when >  0;
A*

lim f(c + Ax) — f(c) _  j, ^  ^  Q wj,erl Q
A*-M> &x

But the relations / ' ( c ) < 0 and f  ( c ) ^  0 are compatible only if 
f (c)  = 0. Consequently, there is a point c inside the interval [a, b] 
at which the derivative /' (x) is equal to zero.

') The number c is called the root ol the function <p (jc) if q>(c) =  0.
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The theorem about the roots of a derivative has a simple geo
metric interpretation: if a continuous curve, which at each point 
has a tangent, intersects the x-axis at points with abscissas a and 
6, then on this curve there will be at least one point with abs
cissa c, a < c < 6, at which the tangent is parallel to the x-axis.

Note 1. The theorem that has just been proved also holds for 
a differentiable function such that does not vanish at the end points 
of the interval [a, &], but takes on equal values f(a) = f(b) (Fig. 91). 
The proof in this case in exactly the same as before.

Note 2. If the function /(x) is "such that the derivative does not 
exist at all points within the interval [a, 6], the assertion of the 
theorem may prove erroneous (in this case there might not be a 
point c in the interval [a, fr], at which the derivative f' (x) 
vanishes).

For example, the function
y = f ( x ) =  i — i / x 2 

(Fig. 92) is continuous on the interval [—1, 1] and vanishes at 
the end points of the interval, yet the derivative

within the interval does not vanish. This is because there is a 
point x =  0 inside the interval at which the derivative does not 
exist (becomes infinite).

The graph shown in Fig. 93 is another 
instance of a function whose derivative 
does not vanish in the interval [0, 2],

The conditions of the Rolle theorem are 
not fulfilled for this function either, 
because at the point’* = 1  the function has 
no derivative. Fig. 93.
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SEC. 2. A THEOREM ON FINITE INCREMENTS (LAGRANGE’S THEOREM)

Lagrange's Theorem. If a function f (x) is continuous on the in
terval [ia, b) and differentiable at all interior points of this interval, 
there will be, within [a, b], at least one point c, a< .c< .b t 
such that

f ( b ) - f ( a )  = f ' (c)(b-a).  (1)

Proof. Let us denote by Q the number - :

V b — a ' (2)

and let us consider the auxiliary function F (x) defined by the 
equation

F(x) = f ( x ) - f ( a ) - ( x - a ) Q .  (3)

What is the geometric significance of the function F(x)? First 
write the equation of the chord AB (Fig. 94), taking into account
that its slope is =  Q and that it passes through the

point (a, f (a)):

whence
y —/ (a) = Q (x —a);

y=f (a)  + Q(x—a).

But F(x) =  f(x) — [f(a) +  <?(*—a)]. 
Thus, for each value of x, F (x) is 
equal to the difference of the ordinates 
of the curve y = f(x) and the chord 
y = f(a) + Q(x—a) for points with 
the same abscissa.

It will be readily seen that F(x) 
is continuous on the interval [a, 6]* 

is differentiable within this interval, and vanishes at the 
end points of the interval; in other words, F(a) =  0, F(b) = 0. 
Hence, the Rolle theorem is applicable to the function F(x). By 
this theorem, there exists within the interval a point x —c such 
that

r  (c) =  0.
But

And so
F’ (x) = f ' ( x ) -Q.  

>  (c) =  / '( c ) -Q  =  0,
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whenjce
Q = r  (c).

Substituting the value of Q in (2), we get
f j b ) - f ( a )  

b — a =  / ' (c), d ')

whence follows formula (1) directly. The theorem is thus proved.
See Fig. 94 for an explanation of the geometric significance of 

the Lagrange theorem. From the figure it is immediately clear that
the quantity is the tangent of the angle of inclination a
of the chord passing through the points A and B of the graph 
with abscissas a and b.

On the other hand, /' (c) is the tangent of the angle of inclination 
of the tangent line to the curve at the point with abscissa c. Thus, 
the geometric significance of (!') or its equivalent (1) consists in 
the following: if at all points of the arc AB there is a tangent 
line, then there will be, on this arc, a point C between A and B 
at which the tangent is parallel to the chord connecting points A 
and B.

Now note the following. Since the value of c satisfies the 
condition a < c < 6, it follows that c—a < b —a, or

c—a =  0 (b —a),

where 9 is a certain number between 0 and 1, that is,
0 < 0  <  1.

But then
c =  a - f9 (b — a), 

and formula (1) may be written as follows:

f ( b ) - f (a )  = (b- a ) f ' [a+Q(b-a) ] ,  O < 0 < 1 . (1*)

SEC. 3. A THEOREM ON THE RATIO OF THE INCREMENTS OF TWO 
FUNCTIONS (CAUCHY’S THEOREM)

Cauchy’s Theorem. If f(x) and <p(x) are two functions continuous 
on the interval (a, b] and differentiable within it, and <p' (x) does 
not vanish anywhere inside the interval, there will be found, in 
[a, b], some point x = c, a < c < f e ,  such that
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Proof. Let us define the number Q by the equation
q — f ( b ) - H a )  (2)
V q>(6)-q>(a)-

It will be noted that <p(b)— 9 (a) =£0, since otherwise <p (6) would 
be equal to <p (a), and then, by the Rolle theorem, the derivative 
<p' (x) would vanish in the interval; but this contradicts the state
ment of the theorem.

Let us construct an auxiliary function
F (x) =  f (x) -  f (a) -  Q [<p (*) - q> (a)].

It is obvious that F(a) = 0 and F(b) = 0 (this follows from the 
definition of the function F(x) and the definition of the number Q). 
Noting that the function F (x) satisfies all the hypotheses of the 
Rolle theorem on the interval [a, b\, we conclude that there exists 
between a and b a value x = c (a< L c< b ) such that F'(c) = 0. 
But F' (x) = f  (x)— Q<p' (x), hence

F (c) =  f  (c)-Qq>'(c) =  0,
whence

Substituting the value of Q into (2) we get (1).
Note. The Cauchy theorem cannot be proved (as it might appear 

8t first glance) by applying the Lagrange theorem to the numerator 
and denominator of the fraction

f ( b ) - f ( a )
9 (6) —q> (a) '

Indeed, in this case we would (after cancelling out b — a) get the 
formula

f ( b ) - j ( a )  f  (c,)
9 (6)—9 (a) 9 ' (Cj)

in which a <  c, <C b, a< .ct <Lb. But since, generally, c, V" c,, the 
result obtained obviously does not yet yield the Cauchy theorem.

SEC. 4. THE LIMIT OF A RATIO OF TWO INFINITESIMALS 
(EVALUATION OF INDETERMINATE FORMS OF THE TYPE -jj-)

Let the functions f(x) and <p(x), on a certain interval [a, b), 
satisfy the Cauchy theorem and vanish at the point x = a of this 
interval; f(a) = 0 and (p(a) =  0.
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The ratio —^  is not defined for x — a , but has a very definite <p(*)
meaning for the values x=/=a. Hence, we can raise the question 
of searching lor the limit of this ratio as x —* a. Evaluating limits 
of this type is usually known as evaluating indeterminate forms
of the type -jj- .

We have already encountered such problems, for instance when 
considering the limit lim and when finding derivatives of ele-

x-+ o x

mentary functions. For * =  0, the expression is meaningless;

the function F(x) = s-— - is not defined for * =  0, but we have seen

that the limit of the expression as x —+0 exists and is equal 
to unity.

V Hospital's Theorem (Rule). Let the functions f(x) and <p(x), 
in some interval, satisfy the Cauchy theorem and vanish at some

y / ĵ \
point x = a: / (a) =  cp (a) =  0; then, if the ratio • has a limit 

a s x —*a, there also exists lim l - Q ,  and
p W

lim =  lim
<p'(*) ■

Proof. On the interval [a, |3| take some point x^=a. Applying 
the Cauchy formula we have

/(*)-/(«) . I’ d)
<p(x) —<p(a) q>'(£)

where £ lies between a and x. But it is given that /  (a) = cp (a) =  0, 
and so

i t j O - i l i I I  m
<P(*) <p'(&r v‘ ;

If x —* a, then £—1► a also, since £ lies between x and a. And 
if lim -7— • =  A, then lim -M ir exists and is equal to A. Whence

x-+ a  ™ W  l  -* a 9
it is clear that

lim
x -* a

l(x)
<P (X)

=  lim n i l lim
x -> a

r  (x) 
<p'(x) A,

lim
X —*■ Cl

/(*) 
<P w

lim
x -*a

r  (x) 
<p'w

and, finally,
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Note 1. The theorem holds also for the case when the functions 
f(x) or <p(*) are not defined for x  =  a, but

lim f (*) =  0, lim <p (jt) =  0.
x  -*• a x a

In order to reduce this case to the earlier considered case, we 
redefine the functions f(x) and (p(jt) at the point x = a so that 
they become continuous at the point a. To do this, it is sufficient 
to put

f(a)= lim f (*) =  0; <p (a) =  lim cp (a;) =  0,
x a x -*■ a

f lx)since it is obvious that the limit of the ratio — 7 as x —>-a does
<P (*)

not depend on. whether the functions/!*) and <p(*) are defined 
at x = a. >'

Note 2. If f  (a) =  q>' (a) =  0 and the derivatives / '( x) and <p' (at) 
satisfy the conditions that were imposed by the theorem on the 
functions /(*) and cp(*), then applying the L’Hospital rule to the
ratio M rr, we arrive at the formula lim lim ^ , and

W x-*a<? (*)
so forth.

Example 1.

lim
X  -► 0

sin Sx 
~3x~

lim <sin5r)'. =  lim =
x o (3x)f x -► o 3 3

Example 2.

Example 3.
ex —e~x —2xlim

x o x — sin a:

1
lim !M L ± £ )=  lim i ± £ = l = l .

X  —► 0 X Jt -*> 0 I 1

lim ! !  +  g- - 2== Um lim
x-+Q 1—cos x x -+o sin a: x -»o cos a:

2
1 2.

Here, we had to apply the L’Hospital rule three times because the ratios 
of the first, second and third derivatives at a: =  0 yield the indeterminate
form -5-.

Note 3. The L’Hospital rule is also applicable if 
lim f(x) = 0 and lim <p(jt) =  0.

X  —► 00 X -*■ 00

Indeed, putting =  we see that 2 —*0 as x —*00 and 
therefore
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Applying- the L’Hospital rule to the ratio l i i 1

nr)
we find

lim = lim — , — ..... —, , , .— r .
* - • 9 ( 7 ) * — 9' ( t ) { ~ f )

=  lim r (x)
<P' (x) 9

which is what we wanted to prove. 
Example 4.

. k sin —
11m -----— =  lim

X  “■> CO 1 X  —► CO

. k f ] \k cos — -----* 1
____* V *%) -  H

1 =  lim k cos — =  k.
x

SEC.5 .THE LIMIT OF A RATIO OF TWO INFINITELY LARGE QUANTITIES 
^EVALUATION OF INDETERMINATE FORMS OF THE TYPE

Let us now consider the question of the limit of a ratio of two 
functions/(*) and (p(*) approaching infinity asx —*a (or as x —>00).

Theorem. Let the functions f(x) and qp(jc) be coniinuous and 
differentiable for all x ^  a in the neighbourhood of the point cz: 
the derivative q/ (*) does not vanish; further, let

lim f(x) = 00, lim (p(jt) =  oo
x -+ a x -+ a

and let there be a limit
lim LgL: 

/W

A.

Then there is a limit lim , . and

lim =  lim
.a<PW , <P' M

=  A.

( 1)

(2)

Proof. In the given neighbourhood of the point a, take two 
points a and x such that a < .x < a  (or a > x > a). By Cauchy’s 
theorem we have

f ( x ) - f { a )  f'(c) ,
q>(*)-<p(a) <p'(c)’ (3)
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where a  <  c <  x. We transform the left side of (3) as follows:
, /(«)

f ( x ) — f ( a ) _ f ( x)  f (x) 
q>(*)—<P («) «PW , <P(«)

f W
From relations (3) and (4) we have

Whence we find

< /(«) 
r  w f(x) f(X)
<p'(c) <p(a)'

<P ix)

. f'ic) 1
<P(a)

fix) _ V(x)
9 (•*) <p' (c) . /(g)

fix)

( 4 )

( 5 )

From the condition (1) it follows that for an arbitrarily small 
e >  0, a  may. be chosen so close to a that for all x = c where 
a < c < a ,  the following inequality will be fulfilled:

or

^ - e < ? f f < ' 4 + e' <6>
Let us further consider the fraction

, <P(«)
q>(*)

■ /(«) ' 
f i x)

Fixing a in such manner that the inequality (6) will be fulfilled, 
we allow x to approach a. Since f (x)—>• oo and (p(x)—► oo as 
x —»-a, we have

1
liin —

x -* a  i

<p(«)

/(g)
fix)

= 1

and, consequently, for the earlier chosen e > 0  (for x sufficiently 
close to a) we will have

■ <P («)
q>W 

, / ( « )  

f i x )

1 < e
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or
! <p(q)

p>
f(x)

Multiplying together the appropriate terms of inequalities (6) and 
(7), we get

t <P(q)
{A - e ) ( l - * ) < £ $  ~ i w < l A +  « ) 0 +  e>

f i x )

or, from (5),
(^ _ e) ( l _ 6)< L W < (4  +  c) ( H _e).

Since e is an arbitrarily small number for x sufficiently close to a. 
it follows from the latter inequalities that

l im f- p .=  A
*-*a<PW

or, by (1),

liin =  lim r  M
<p' («) A,

which is what had to be proved.
Note 1. If in premise (1) i4 =  oo, that is,

lim f-rr\=<X>,x^-aVix)

then equality (2) holds in this case as well. Indeed, from the 
preceding expression it follows that

lim q>' (x) 
r  (x) =o.

Then by the theorem just proved

lim
x-> a

2W =  lim 
/W

«p' (-y) 
r  (x) = 0,

lim
x-+  a

f ( x )

<pW=  oo.
whence
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Note 2. The theorem just proved is readily extended to the 
case where x —>oo. If lim/(x) =  oo, limcp(A:) =  oo and lim -~ -

* —* C O  *  GO *  oo U )

exists, then
lim ^ 4  =  lim ^, <P' (•*)' (8)

The proof is performed by replacing x = -i-, as was done under

similar conditions in the case of the indeterminate form (see
Sec. 4, Note 3).

Example 1.
6X (8XY 6X lim — =  lim i iJ r =  lim - = o o .

X  -*■ 00 X  X  - >  CO ( * )  X  -*■ OD 1

Note 3. Once again note that formulas (2) and (8) hold only if 
the limit on the right (finite or infinite) exists. It may happen 
that the limit on the left exists while there is. no limit on the 
right. To illustrate, let it be required to find

lim
X  -►  00

x +  sin x 
x

This limit exists and is equal to 1. Indeed,

lim
X  - *  o

x +  sin x 
x

But the ratio of derivatives
(x -f- sin 1 +  cos x 

(xY ~~ i
=  1 +  cos x

as x —► oo does not approach any limit, it oscillates between 0 
and 2.

Example 2.
lim

X  - * o o

ax1 -f b 
cx2 —d =  lim

X  —► 00

2ax   a ,
2 cx ~~ ~c *

Example 3.
1

lim 
x  -* ■

2

tan x 
tan 3x =  limjt

2 cos23x

1 cos2 3* 1 2«3 cos 3* sin 3*
3 cos2 x ~  imn 3 2 cos * sin *

x-±—

=  lim
X _n

2

cos 3* sin 3* 
sin x =  lim

x
2

3 sin 3x 
sin*

( - 1 )  o ( - l )
(1) ~  (1)

( - 1)
( 1)

=  3.
C O S  X
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Example 4.
lim

X  —► CO

Generally, for any integral n > 0,
xlim —x =  lim

X  -* • QO 2  X  —► CO
=  lim

J t  - *  CO

ft (ft—1).. .1 
ex =  0.

The other indeterminate forms reduce to the foregoing cases. 
These forms may be written symbolically as follows:

a) 0 *oo, b) 0°, c) oo°, d) l 00, e) oo—oo. They have the 
following meaning.

a) Let lim/(x) =  0; lim cp (x) =  oo; it is required to find
x -+ a x -+ a

lim[f(x)(((x)].
x -+ a

This indeterminate form is of the type 0*oo.
If the required expression is rewritten as follows:

lim [/(*) (p (x)] =  lim
x -+ a x -* a *

fW
or in the form

lim [/(*) q> (*)] =lim  ,
x  a x  -+ a 1

f ix)

then as x —-a we obtain the indeterminate form or —0 oo *

Example 5.

lim xn \n x =  lim =  lim — ^— - = — lim — =  0.
* -► o x - » o 1 x -* o n  * -+q nxn pT i

b) Let
lim / (x) = 0, limcp (x) =  0;

x -*■ a x -*• a

it is required to find
lim [/ (•«)]<p (JC>

or, as we say, to evaluate the indeterminate form 0°.
Putting

y = [} (*)]* w.
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take logarithms of both sides of the equality:
lnt/ =  q>(*) [In/(*)].

As x —>a we obtain (on the right) the indeterminate form 0 -oo. 
Finding limlnt/, it is easy to get limy. Indeed, by virtue of the

X  —► Q X Q

continuity of the logarithmic function, lim In r/ — In lim y and if
x  -► a x -* a

In lim */=fc, it is obvious that lim y = eb. If, in particular, b =  -f-oo
x -+ a x  -+ a

or — oo, then we will have lim y =  +  oo or 0, respectively.

Example 6. It is required to find lim**. Putting y =  xx we find In limi/ =
X - *  0

=  lim In y =  lim In (xx) =  lim (x In x)\

lim (x In *) =  lim •— - =  lim -^-r-  =  — lim x =  0,
x - * o  X  -► 0 X  0 _____ X  —► 0

X  X 2

consequently, lnlimiy =  0, whence limr/ =  e ° = l f or

lim xx =  I.
X  -► 0

The technique is similar for finding limits in other cases.

SEC. 6. TAYLOR’S FORMULA

Let us assume that the function y = f(x) has all the derivatives 
up to the (n-M)th order, inclusive, in some interval containing 
the point x = a. Let us find a polynomial y = Pn(x) of degree not 
above n , the value of which at x = a is equal to the value of the 
function f(x) at this point, and the values of its derivatives up 
to the nth order a t.*  =  a are equal to the values of the 
corresponding derivatives of the function f(x) at this point:
P„(a) =  /(a), P'n(a) = f'(a), p;(a) =  r (a)......... P^(a)  = f^ (a ). 0)
It is natural to expect that, in a certain sense, such a polynomial 
is “close” to the function f(x).

Let us look for this polynomial in the form of a polynomial in 
degrees of (x—a) with undetermined coefficients:

P„ (*) =  C, +  C, (x— a) +  Cs (x—a f  +  C, (x— a)* +
+  . . .  +  Cn (x—a)n. (2)

We difine the undetermined coefficients Cv Cz, Cn so that 
they will satisfy conditions (1).
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Let us first find the derivatives of Pn(x):
P'n(x) = Cl + 2Cl (x—a) + 3C,(x— a)* + . . .  +nCn{x—a)n~\
P’n{x) — 2CS +  3• 2C, (x—a) +n ( n  — \)Cn(x— a)n- \

P ^ (x )=  n ( n - l )  . . .  2-1 -Cn.

Substituting, into the left and right sides of (2) and (3), the 
value of. a in place of x and replacing, by equalities (1), Pn(a) 
by f(a), P „ (a )= /'(a ), etc., we get

f(a) =  C0, 
f (a )  = Clt 
f ( a )  =  2.1C„ 
r  (a) =  3-2- 1C,,

r» (a) =  « ( « - l ) ( n - 2) . . .  2 - 1C„,
whence we find

C0= /(a ), Cl = f  (a), C, =  —  f"(a),

~  1-2-3  ̂ ^ n~  1.2 . . . n ^ n) (4)

Substituting into (2) the values of C,, Ct, C„ that have been 
found, we. get the required polynomial:

Pn{x) = f(a) +  — /' + W  + ( a ) + . . .

(5)
Designate by R n(x) the difference of the values of the given 
function f(x) and of the constructed polynomial Pn(x) (Fig. 95):

R n(.x) = f(x) — Pn(x),
whence

f{x) = Pn(x) + Ra(x)
or, in expanded form,

/ (x) =  / (a) +  ̂ / '  (a) +  (a) +- •
i i + (£- a r r ( a ) + ^ w  {6)
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Rn (x) is called the remainder. For 
those values of x , for which the 
remainder Rn(x) is small, the 
polynomial Pn(x) yields an approxi
mate representation of the function 
/(*)•

Thus, formula (6) enables one 
to replace the function y = f{x) by 
the polynomial y = Pn(x) to an 
appropriate degree of accuracy 
equal to the value of the remainder 
Rn(x).

Our next problem is to evaluate 
the quantity Rn(x) for various 
values of x.

Let us write the remainder in the form
(*— a)n+lRn(x):

( n + l ) l
QW. (7)

where Q(x) is a certain function to be defined, and accordingly 
rewrite (6):

f (x )=na)  + ~ f  (a)- [x-ay
21 / » +

.<£=£>>> (a)-
(a: - a)

(n+l)l Q(X). (6')

For fixed x and a, the function Q(x) has a definite value; denote 
it by Q.

Let us further examine the auxiliary function of t (t lying 
between a and *):

F(t) f { x ) - f ( ( )
(■* 0 "  fin)

n! r  (0
(x— t)n +

( n + l ) l
Q.

where Q has the value defined by the relationship (6'); here we 
consider a and x to be definite numbers.

We find the derivative F' (t):

f  ( / ) = - / ' ( / ) + / '  ( o - h t H O  + 2- i r r ( 0 -
( x - t y

21 /"(O H -. . .
(X—t)"~

■ ( n — 1)1 ■ n o -
n(x—t)n 

nl - r ( / ) -
( x - t ) n f(ra + ,> ! ( n + \ ) ( x - t)"

n\ ( n + l ) l Q,
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or, on cancelling,
/7'(0  =  - — j ^ / ,n+,,(0 +  — j^Q- (8)

Thus, the function F (() has a derivative at all points t lying 
near the point with abscissa a.

It will further be noted that, on the basis of (6'),
F(x) = 0, F{a) = 0.

Therefore, the Rolle theorem is applicable to the function F(t) 
and, consequently, there exists a value t = % lying between a and 
x such that F' (£) =  0. Whence, on the basis of relation (8), we

n\
and from this

Q =  r +,,(£).
Substituting this expression into (7), we get

This is the so-called Lagrange form of the remainder.
Since £ lies between x and a, it may be represented in the 

form *)
S =  a4-0(*—a)

where 0 is a number lying between 0 and 1, that is, 0<CO<1; 
then the formula of the remainder takes the form

Rn w  [a +  0 (* -a)].
The following formula

f(x) = f (a) + x- ^ r  (a) + f" (a) +  . . .

• • • +  (— ^ r  (a) +  (~ ^ r +,> [a +  0 (x-a))  W
is called Taylor’s formula of the function f(x).

If in the Taylor formula we put a =  0 we will have

/ w = m + - f n o ) + - n o ) + . . .
Yn v« + i

. . . + ^ r ( ° ) + ( - ^ 7)T/*"+,,(0x) do)
where 9 lies between 0 and 1. This special case ol the Taylor 
formula is sometimes called Maclaurin’s formula.

') See end of Sec. 2 of this chapter.
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SEC. 7. EXPANSION OF THE FUNCTIONS e* , SIN x, AND COS x  
IN A TAYLOR SERIES

1. Expansion of the function f ( x )  =  ex .
Finding the successive derivatives of f{x), we have

f(x) = e*. f(  0) = 1.
r w = « * .  / ' ( 0 ) = i ,

P (* )  =  ex, n  0) =  1.
Substituting the expressions obtained into formula (10), Sec. 6, 
we get

:*•*, 0 < 6 < 1.
Y  y *  y *  X n  y H + 1

e* =  i +  y + | r + l r +  ■••+ sT +  (J+iyr
If | x |< l ,  then, taking n = 8, we obtain an evaluation of the 

remainder:

R .< s i *
For x =  1 we get a formula that permits approximating the number e:

e =  l +  l+ ^ i  +  j i +  •••

evaluating to the fifth decimal place, we have
e =  2.71827.

Here there are four significant digits, since the error does not exceed 
- ,  or 0.00001.

Observe that no matter what jc is, the remainder

Rn
xn+'

(« + l)l 0 as n oo.

Indeed, since 0 < 1 , the guantity eix for fixed x is bounded 
is less than ex for x > 0, and less than 1 for x < 0).

We shall prove that, no matter what the fixed number x.

Indeed,

Jc" + l
OH7!)! 0 as n oo.

xn+' I I x x x x  x
(/i 4- 1) 11 | T ’ 7* J  ’ •* ~n ' n+T ’

(it

If x is a fixed number, 
that

there will be a positive integer N such
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I X  IWe,introduce the notation ^ -  = q; then, noting that
we can write (for n = N +  1, N + 2, N +  3, etc.):

<

X * + l | X X X X  X
T  ' " 2  ’ 1  m> n  n  + 1

X
"3"
X

T

N —  1

N —  1 Q Q •

x
n I 

xN-i
(iV-l)l'

n +  1 

nn-M+*

<

for the reason that
x I
AM <7;

X
iv+1 < ? ;

X

^TT < ? •

But is a constant quantity; that is to say, it is independ
ent of /1, while qn-Af+2 approaches zero as n —»oo. And so

Hm .-- j—rr:n-*co('l + 1>l =  0. ( 1)

xn+AConsequently, R n(x) = eHX 1 j,■ also approaches zero as n approaches
infinity.

From the foregoing it follows that for any x (if a sufficient num
ber of terms is taken) we can evaluate e* to any degree of accuracy. 

2. Expansion of the function /(j»r) =  sin x.
We find the successive derivatives of / (x) =  sin x:

/ w  = sin ac,

/'(*) = cosx =  sin ^x +  y ) *

r w  = — sin x =  sin ^x +  2 t ) .
/'"(*) = — cosx=  sin ^x + 3 * ) •
/ lvw  = sin x =  sin f x +  4 y )•

/ (0) =  0.

/' (0) =  1,

f" (0) =  0,

r  (0 ) = —1,

/lv (0) =  0,

f'm (0= sin  ( x + n y  ) > lm‘ (0) = sin n — ,

n l} W = sin (x + (n + 1) ^ ) . r +l \ ( l )  = sin [g ■+ (n + 1) |  j .
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Substituting the values obtained into (10), Sec. 6, we get an 
expansion of the function / (jc) =  sin a: by the Taylor formula:

sin* =  * -T F  +  ̂ r - . - .
, xn . ji . xn+x . i% , , , ^ Tii

. .  • + ^ y s m , I T'* ' ( / i  +  i)i  sin [£ +  (” + O- jJ  •

^ 1 ,  we have lim Rn(x) = Q for all
n -*■ oo

values of x.
Let us apply the formula obtained for an approximate evaluation 

of sin 20°. Put n = 3, thus restricting ourselves to the first two 
terms of the expansion:

sin20°- s l n - J *  f  “ TT ( tt )* =  °-343-
Evaluate the error, which is equal to the remainder:

I *31 =  | ( i r ) 4 TT sin G +  2n) | <  ( ^ - ) 4t t  =  0.0006 <  0.001.

Since sin | j  +  (n+ l)-£

Fig. 96.

Hence, the error is less than 0.001, and so sin 20® =  0.343 to three 
places of decimals.

Fig. 96 shows the graphs of the function f{x) = slnx and the



Exercises on Chapter IV 159

x̂first three approximations: Sx(x) = x\ S2(x) = x — S, (*)==*—
_ x _ 3_ ^

3! 5! •
3. Expansion of the function f ( x )  = cos x.
Finding the values of the successive derivatives for x = 0 of the 

function f(x) = cos* and substituting them into the Maclaurin 
formula, we get the expansion:

cos * = 1 -  5 1 + •  • • +  r " cos ( n f )  +

+  ( ^ T C0S [? +  ( « + 1 ) - ] ,

ISKUI-
Here again, lim/?n(*) =  0 for all values of x .

Exercises on Chapter IV

Verify the truth of Rolle’s theorem for the functions: 1. y =  x2—3x +  2on  
the interval [1, 2]. 2. y =  x* +  5*2—6* on the interval [0, 1|. 3. */ =  (* — 1) 
(x— 2)(x—3) on the interval [1, 3]. 4. y =  sin2* on the interval [0, jt].

5. The function f(x) =  4*8-f-x2—4* — 1 has roots 1 and — 1. Find the root 
of the derivative /' (x) mentioned in Rolle's theorem.

6. Verify that between the roots of the function * / = ) / x2—5x +  6 lies the 
root of its derivative.

7. Verify the truth of Rolle’s theorem for the function y =  cos2* on the
interval

8. The function y =  l — \ / x 4 becomes zero at the end points of the inter
val [ — 1, 1). Make it clear that the derivative of this function does not 
vanish anywhere in the interval (— 1, 1). Explain why Rolle’s theorem is not 
applicable here.

9. Form Lagrange’s formula for the function y =  sin* on the interval 
[*lf *2]. A ns. sinx2 — sin*, =  (*2 — x jc o sc , *, < c < * 2.

10. Verify the truth of the Lagrange formula for the function y =  2x—x2 
on the interval [0, 1).

11. At what point is the tangent to the curve y —xn parallel to the chord 
from point (0, 0) to Al2(a, an)7 Ans. At the point with abscissa

a

12. At what point is the tangent to the curve y =  \nx parallel to the chord 
linking the points M ,(l, 0) and M2(e,. 1)? Ans. At the point with abscissa 
c = e  — 1.

Applying the Lagrange theorem, prove the inequalities: 13. ex > l - { - x . 
14. In (1 +  x) <  x (x >  0). 15. bn—an < n b n~ 1(b —2) for b >  a. 16. arc
tan x <  x.
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17. Write the Cauchy formula for the functions /(* ) =  **, cp (*) =  *• on the
14interval [1, 2] and find c. Ans. c =  -g .

Evaluate the following limits: 18. lim . Ans. _L . 19. lim g- —
ti x->o sin* *

Ans. 2. 20. lim *an * * Ans. 2. 21. ,lim ex — \ Ans. —2.

sin x 
22. lim /- ■x-+o y i —cos x

*—>o * —sin* * ->o cos x — 1

Ans. There is no limit (V^2 as * - k  +  0, — as

x -► —0). 23. lim In sin x 
n  ( j i —  2a:)2

Ans. —-L . 24. lim 
8

25. lim x —arc sin*

ax - b *
X  —> 0  *

sin* —sin a
x -> 0 sin* *

Ans. ——  26. lim
6 x-> a x —a

Ans. In —

Ans. cos a.

27. lim <y +  8ifly d L . Ans. 2. 28. lim £ * H.XT * . Ans. i .  29. lim
y->o l n ( l +^)  *-*-o 3** +  *8 3 x -►oo 2* 4-5.

>4ns. JL . 30. lim (where n >  0). i4ns2 jc- jo
. 0. 31. lim — _̂___LL .

arc tan *
Ans. 1.

In x +  \
82. lim ------ —  . Ans. — 1. 33. lim - iL . Ans. 0 for a >  0; oo for 0.

* - ►  o o , _  *  — 1 e  °yIn :

84. lim ex +  e'm Ans. 1. 35. lim Ans. 1. 36. lim .ln t™ ? f
*->o In tan 2***-* + <» e* — *-*o In sin *

Ans. 1. 37. lim ln ( * ~  Q—* .  Ans. 0. 38. lim (1 — je)tani?. Ans.

ta" ^
39. lim [ - j l - -------L I . Ans. -  ‘ 40- H® \ r ------A l  •*-*i [** — 1 * — lj  2 *-*1 Lin* In *J

41. lim (sec©— tan©). Ans. 0. 42. lim | — -̂------ i—1 ,
it , *->i lx — 1 In *J

n •

Ans. —1.

Ans. L  2 •
■1 i

43. lim * co t2 * . Ans. 2 - .  44. Urn * V a . Ans. oo. 45. lim x*~x . Ans. -L 
*-*o 2 *->o x-+i e '

46. lim i / T 2. Ans. 1. 47. lim f-LV4"*. Ans.  1. 48. lim ( l + — Y  
t-+ 00 x->0 \  x J *-»-00 \  * /  •

Ans. ea. 49. lim (cot *)In* 4ns. -L . 50. lim (co s* )s Ans. 1,
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l
S I .  l i m  Z's in_5>\7^

<p->.0 \  Cp /
Ans. 52. lim f la n — V

y e * - •  V 4 /
2 . Ans. — . 

e

53. Expand, in powers of x —2, the polynomial x4—5x5 -\-5x2~\-x +  2. 
Ans. 2 — 7 (x  — 2) — (x — 2)2 - f  3 (x —  2)3 +  (x —  2)4.

54. Expand, in powers of x +  1, the polynomial x i -{-t2xi — x 2-\~x +  \. 
A ns. (* +  l)2 +  2 ( * - f  l)3— 3 (* -f  l)4 +  (* -f  l)5.

55. Write Taylor’s formula for the function y =  Y~x when a =  l, n =  3.

An8 ^ _ u . i n i  1 ( * ~ 1 ) 2 1 , ( * - ! ) »  3 (x— 1)* 5A ns. V X — 1 + !  . 2 j 2 4 +  1-2 .3 8  4 | i e  l ' + ° X

7

X(* — l ) f T , 0 <  0 <  1.
.56. Write the Maclaurin foimula for the function y = V ^  1+•* when n =  2.

, O < 0 <  1.<4ns. Kri + x = l + y * - - j j - x 2H-------- —

16(1 + d x ) ‘
57. Using the results of the preceding exercise, evaluate the error of the

approximate equality j/" 1 + x = ^ l x — ^ x* when jc =  0.2. Ans, Less than
Z o

1
2 • 10 3
- Determine the origin of the approximate equalities for small values of x

x 2 x^and evaluate the errors of these equalities: 58. Incosjc^r——— —-2 12 *

x 2 2xs x* x*
5 9 .  t a n  x  +  ^ r - + t f “ * • ®0. arc  s i n  jc ^  x  +  —  . 6 1 .  a r c t a n x ^ x  —O 10 o o *

pX -1 p — ̂
6 2 .  — ^ ^  1 +  ~2 ~ ~ ^ ~ 2 4  ‘ l n ( ^ + V ^ l — x 2) x —  -g-p .

Using Taylor’s formula, compute the limits of the following expressions: 

64. lim x- s.inx . . .  Ans. 1. 65. lim I llli1 +  *> ~ s.in‘ f  . . Ans. 0.
X->Q X i *e — 1 —x — — x 1 —e~

66. lim ■*'. Ans. 1. 67. lim [ x — x* In ( \  + 1 ^ 1 .  Ans. i_x5 *-.o L V *)} 2 «
68. lim (J L _ 2 £ L ? \. Ans. - I .  69. lim ( L — cot2*^ . Ans. — .

X- K>\x2 X J 3 x - + o \ x 2 j 3

6  — 3 3 8 8



C H A P T E R  V

INVESTIGATING THE BEHAVIOUR OF FUNCTIONS

SEC. 1. STATEMENT OF THE PROBLEM

A study of the quantitative aspect of natural phenomena leads 
to the establishment and study of functional relations between the 
variables involved. If such a functional relationship can be expres
sed analytically, that is, in the form of one or more formulas, we 
are then in a position to investigate it with the tools of mathema
tical analysis. For instance, a study of the flight of a shell in empty 
space yields a formula that gives the dependence of the range R 
upon the angle of elevation a and the initial velocity vQ:

^  _  vl sin 2a

(g is the acceleration of gravity).
With this formula we can determine at what angle a the range 

R will be greatest, or least, and what the conditions must be for 
the range to increase as the angle a is increased, etc.

Let us consider another instance. Studies of oscillations of a load 
on a spring (of a tank or automobile) yielded a formula showing 
how the deviation y of the load from a position of equilibrium 
depends on the time t:

y = e~kt (A cos (ot + B sin co/).
The quantities k , A, 5, co that enter into this formula have a very 
definite significance for a given oscillatory system (they depend 
upon the elasticity of the spring, the load, etc., but do not change 
with time t) and for this reason are considered constant.

On the basis of this formula we can find out at what values of 
t the deviation y will increase with increasing t , how the maximum 
deviation varies as a function of time, for what values of t we 
observe these maximum deviations, for what values of t we obtain 
maximum velocities of motion of the load, and a number of other 
things.

All these questions are embraced by the concept “investigating 
the behaviour of a function’'. It is obviously very difficult to de
termine all these questions by calculating the values of a function 
at specific points (like we did in Chapter II). The purpose of this 
chapter is to establish more general techniques for investigating 
the behaviour of functions.
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SEC. 2. INCREASE AND DECREASE OF A FUNCTION

In Sec. 6 of Ch. I we gave a difinition of an increasing and a 
decreasing function. We will now apply the concept of the 
derivative to investigate the increase and decrease of a function.

Theorem. If a function f (x), which has a derivative on the in
terval [a, 6], increases on this interval, then its derivative on 
la, b] is not negative, that is, / '( x )^ 0 .

2) If the function f (x) is continuous on the interval [a, b] and 
is differentiable on (a, 6), where f '(x )>  0 for a < x < ib , then 
this function increases on the interval [a, b].

Proof. Let us first prove the first part of the theorem. Let f (x) 
increase on the interval [a, b]. Increase the argument x by Ax 
and consider the relation

/ ( * +  A*)— f ( x )
A* ' '

Since /(x) is an increasing function,
f(x + A*) >  / (x) for A* >  0

and
/(x +Ax) < /(x ) for A x<0.

In both cases
/(*+ A*) — / (*) ^  q

and consequently
lim it* + **)- M  53,0

A * -M >  A *

(2)

which means /' (x )^ 0 , which is what we set out to prove. [If we 
had /' (a:) <  0, then for sufficiently small values of Ax, relation (1) 
would, be negative, but this would contradict relationship (2).]

Let us now prove the second part of the theorem. Let f' (x) > 0 
for all values of x on the interval (a, 6)„

Let us consider any two values xt and x2, xt < x 2t on the 
interval [a, b].

By the Lagrange theorem on finite increments we have
f(x,) — /(*,) =  /' (6)(*, —*,). *, < l < x r

It is given that f' (|) >  0, hence f (xt)—/(*,) >  0, and this means 
that f(x) is an increasing function.

There is a similar theorem for a decreasing (differentiable) 
function as well, namely:

If / (x) decreases on an interval \a, f>), then f ' ( x ) ^ 0  on this 
interval. If /' (jc) <  0 on {a, b), then f (*). decreases on la, b\. lOf
6*
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course, we again assume that the function is continuous at all 
points of la, b ] and is differentiable everywhere on (a, b).]

Note. The foregoing theorem expresses the following geometric 
fact. If on an interval [a, b) a function f(x) increases, then the 
tangent to the curve y = f(x) at each point on this interval forms

an acute angle cp with the x-axis or (at certain points) is horizon
tal; the tangent of this angle is not negative: f'{x) = tan cp^O 
(Fig. 97, a). If the function f{x) decreases on the interval [a, b]9
then the angle of inclination of the tangent forms an obtuse angle
(or, at some points, the tangent is horizontal); the tangent of 
this angle is not positive (Fig. 97, b).  We can illustrate the second 
part of the theorem in similar fashion. This theorem permits 
judging the increase or decrease of a function by the sign of its 
derivative.

Example. Determine the domains of increase and decrease of the function
y =  x \

Solution. The derivative is equal to
y'=4x*\

for * > 0  we have y' >  0 and the function increases;
for x <  0 we have y' <  0 and the function decreases (Fig. 98).

SEC. 3. MAXIMA AND MINIMA OF FUNCTIONS

Definition of a maximum. A function f(x) has a maximum at 
the; point xx if the value of the function f(x) at the point xl is 
greater than its values at all points of a certain interval contain
ing the point xr In other words, the function f(x) has a maxi-
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mum when x —xx if f (xx-\- Ax) < .f (xx) for any Ax (positive and 
negative) that are sufficiently small in absolute value.*)

For example, the function y = f (x), whose graph is given in 
Fig. 99, has a maximum at x — xr

Definition of a minimum. A function f (x) has a minimum at 
x = x2 if

/(*, +  Ax ) >f { x 1)
for any Ax (positive and negative) that are sufficiently small in 
absolute value (Fig. 99).

For instance, the function y = x* considered at the end of the 
preceding section (see Fig. 98) has a minimum for x =  0, since 
y — 0 when x — 0 and y >  0 for all other values of x.

In connection with the definitions of maximum and minimum, 
note the following.

1. A function defined on an interval can reach maximum and 
minimum values only for values of x that lie within the given 
interval.

2. One should not think that the maximum and minimum of a 
function are its respective largest and smallest values over a given 
interval: at a point of maximum, a function has the largest value 
only in comparison with those values that it has at all points 
sufficiently close to the point of maximum, and the smallest value

• *) This definition is sometimes formulated as- follows: the function f (x) 
has a maximum at x, if it is possible to find a neighbourhood (a, P) of 
x, (a <  x, <  P) such that for all points of this neighbourhood different from 
x, the inequality f (x) < /  (x,) is fulfilled.
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only in comparison with those that it has at all points sufficiently 
close to the minimum point.

To illustrate, take Fig. 100, which shows a function defined on 
the interval [a, b]9 which

at x = xx and x = xs has a maximum; 
at x = x2 and x = xA has a minimum,

but the minimum of the function at x = x4 is greater than the
maximum of the function at

Theorem 1. (A necessary 
extremum). If at (he point x 
has a maximum or minimum,

x =  x1. At x = b y the value of the 
function is greater than any maxi
mum of the function on the 
interval under consideration.

The generic terms for maxima 
and minima of. a function are 
extremum (pi. extrema) or extreme 
values of the function.

To some extent, the extrema of 
a function and their positions on 
the interval [a, b] characterise the 
variation of the function versus 
changes in the argument.

Below we give a method for 
finding extrema, 

condition for the existence of an 
=  jc1 a differentiable function y = f(x) 
its derivative vanishes at this point:

r  (*,)“ <>.
Proof. For definiteness, let us assume that at the point x = xx 

the lunction has a maximum. Then, for sufficiently small (in 
absolute value) increments Aje(Ax=£0) we have

/(•*, +  Ax) < /(* ,) ,
that is,

f(xl + Ax)— f(xl) <0.
But in this case the sign of the ratio

/(*, + A*)—f (*,)
A*

is detei mined" by the sign of Ax, namely:
JL(.r, +  A.v)-l ^,) Q when Ax<Q 

Ax
_/.(*■ +  A * ) - /( * ,)  0  w hen A x > 0 '

A v
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By the definition of a derivative we have

=lim
Ajc-m>

f ( X i  +  & X) —  f ( x x) 
Ax

If f (x,) has a derivative at x = xlt the limit on the right is 
independent of how Ax approaches zero (remaining positive or 
negative).

But if Ax—►() and remains negative, then 

But if A*— >0 and remains positive, then
f' 0 0 ^ 0 .

Since /' (*,) is a definite number that is independent of the way 
in which Ax approaches zero, the latter two inequalities are 
compatible only if

r  w = o .
The proof is similar for the case of a minimum of a function.
Corresponding to this theorem is the following obvious geometric 

fact: if at points of maximum and minimum, a function f (x) has 
a derivative, the tangent line to the curve 
y = f(x) at these points is parallel to the *-axis.
Indeed, from the fact that /' (xx) =  tantp =  0, 
where (p is the angle between the tangent line 
and the *-axis, it follows that <p =  0 (Fig. 99).

From Theorem 1 it follows straightway that 
if for all considered values of the argument x 
the function f (x)  has a derivative, then it can 
have an extremum (maximum or minimum) only 
at those values for which the derivative vanishes.
The converse does not hold: it cannot be said 
that there definitely exists a maximum or mini
mum for every value at which the derivative 
vanishes. For instance, in Fig. 99 we have a 
function for which the derivative at x = x3 
vanishes (the tangent line is horizontal), yet the 
function at this point is neither a maximum 
nor a minimum.

In exactly the same way, the function y = x3 (Fig. 101) at x = 0 
has a derivative equal to zero:

(y )*=o — (3xz)x=0 — o,
but at this point the function has neither a maximum nor a 
minimum. Indeed, no matter how close the point x is to O, we
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will always have 

and
x* <  0 when x <  0 

x* >  0 when x >  0.

We have investigated the case when a function has a derivative 
at all points on some closed interval. Now what about those points 
at which there is no derivative? The following examples will

show that at these points there can only 
be a maximum or a minimum, but there 
may not be either one or the other.

Example 1. The function y =  | jc | has no 
derivative at the point x =  0 (at this point 
the curve does not have a definite tangent 
line), but the function has a minimum at this 
point, y — 0 when x =  0 , whereas for any other 
point x different from zero, we have y >  0 

..(Fig. 102).
—  3 / 2

Example 2. The function y =  ( \ — x 3 ) has no derivative at * =  0, sincei i21 -- X --
/ / =  —(1—x '*) 2 3 becomes infinite at x =  0, but the function has a
maximum at this point: /(0) =  1, / (x) <  1 at * different from zero (Fig. 103).

Example 3. The function tj— y^ x has no derivative at x =  0 ( y ' — ► oo 
as x —v0). At this point the function does not have either a maximum or a 
minimum: / ( 0 ) = 0 ;  f (x) <  0 for x <  0; /  (*) >  0 for x >  0 (Fig. 104).

Thus, a function can have an extremum only in two cases: 
either at points where the derivative exists and is zero; or at 
points where the derivative does not exist.

It must be noted that if the derivative does not exist at some 
point (but exists at close-lying points), then at this point the 
derivative is discontinuous.

The values of the argument for which the derivative vanishes 
or is discontinuous are called critical points or critical values.



Maxima and Minima of Functions 169

From what has been said it follows that not for every critical 
value does a function have a maximum or a minimum. However, 
if at some point the function attains a maximum or a minimum, 
this point is definitely critical. And so to find the extrema of a 
function do as follows: find all the critical points, and then, 
investigating separately each critical point, find out whether the 
function will have a maximum or a minimum at this point, or 
whether there will be neither maximum nor minimum.

Investigations of functions at critical points is based on the 
following theorem.

Theorem 2. (Sufficient conditions for the existence of an extre
mum). Let there be a function f (x ) continuous on some interval 
containing a critical point x, and differentiable at all points of 
this interval (with the exception, possibly, of the point x, itself). 
If in moving from left to right through this point the derivative 
changes sign from plus to minus, then at x =  x, the function has 
a maximum. But if in moving through the point, jc, from left to 
right the derivative changes sign from minus to plus, the function 
has a minimum at this point.

And so
I f 'W > 0  when x < x , ,

'f a) |  ^  ^  q when a: >  x,

then at jc, the function has a maximum-,
f / ' W < 0  when x < x„

1 \  f' (* )> 0  when x > x , ,

then at jc, the function has a minimum. Note here that the con
ditions a) or b) must be fulfilled for all values of x that are 
sufficiently close to x,, that is, at all points of some sufficiently 
small neighbourhood of the critical point x,.

Proof. Let us first assume that the derivative changes sign from 
plus to minus, in other words, that for all x sufficiently close to 
x, we have

f' (x) >  0 when x < x 1( 
f  (x) <  0 when x >  x,.

Applying the Lagrange theorem to the difference f (x)—/(x,) 
we have

f (x)—f (x,) =  f  (|) (x—x,) 

where % is a point lying between x and x,.
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1) Let x< .x iy then
K x l , / ' ( £ ) >  0, n S ) ( x - x , ) < 0

and, consequently,
f(x)— f (xl) <  0,

or
/ (x ) < /(x 2). (1)

2) Let x > x ,; then
£ > * , .  r a x o ,  ra)(x-xix o

and, consequently,
f(x) — Hx1)< 0

o r

/(x )< /(x ,). (2)

The relations (1) and (2) show that for all values of x suffici
ently close to x , the values of the function are less than those 
at x,. Hence, the function f{x) has a maximum at the point x,.

The second part of the theorem on the sufficient condition for. 
a minimum is proved in similar fashion.

Fig. 105 illustrates the meaning 
of Theorem 2.

At x =  x,, let there be f' \ x j  = 0 
and let the following inequalities 
be fulfilled for all x sufficiently 
close to x,:

f  (x) >  0 when x <  xt, 
f’ (x)< 0 when x > x ,.

Then when x<Cx, the tangent 
to the curve forms with the 

x-axis an acute angle, and the function increases, but when 
the tangent forms with the x-axis an obtuse angle, and the func
tion decreases; at x =  x, the function passes from increasing to 
decreasing, which means it has a maximum.

If at x2 we have /' (x2)= 0  and for all values of x sufficiently 
close to xt the following inequalities are fulfilled:

/' (x) <  0 when x <  x2,
f  (x) >  0 when x >  x2,
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then at x < x 2 the tangent to the curve forms with the *-axis an 
obtuse angle, the function decreases, and at x > x 2 the tangent 
to the curve forms an acute angle, and the function increases. 
At x = x2 the function passes from decreasing to increasing, which 
means it has a minimum.

If at x =  jc3 we have /' (*3) =  0 and for all values of x sufficiently 
close to the following inequalities are fulfilled:

f ' ( x ) >  0 when x <Lxv
f  (x) > 0  when x > x 3,

then the function increases both for x<Cx3 and for x > x r There
fore, at x = xs the function has neither a maximum nor a mini
mum. Such is the case with the function y = x3 at x =  0.

Indeed, the derivative y ' = 3xz, hence,
(y ')x=o  =  0 ,

(y )*<o >  0,

(y )* > o >  o,
and this means that at x =  0 the function has neither a maximum 
nor a minimum (see above, Fig. 101).

SEC. 4. TESTING A DIFFERENTIABLE FUNCTION 
FOR MAXIMUM AND MINIMUM WITH A FIRST DERIVATIVE

The preceding section permits us to formulate a rule for testing 
a differentiable function, y = f(x), for maximum and minimum:

1. Find the first derivative of the function, i. e., f'(x).
2. Find the critical values of the argument x\ to do this:
a) equate the first derivative to zero and find the real roots of 

the equation f  (x) — 0 obtained;
b) find the values of x at which the derivative f  (x) becomes 

discontinuous.
3. Investigate the sign of the derivative on the left and right 

of the critical point. Since the sign of the derivative remains 
constant on the interval between two critical points, it is sufficient, 
for investigating the sign of the derivative on the left and right 
of, say, the critical point xt (Fig. 105), to determine the sign of 
the derivative at the points a and p (*,•<u < jc,, * ,< P < a :s, 
where x , and xa are the closest critical points).

4. Evaluate the function / (x) for every critical value of the 
argument.
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This gives us the following diagram of possible cases:

Signs ol d e r iva t ive  / '  ( j c ) when passing 
through cri t ical  point x x: Character  of c r i t ica l  point

X <  X j X =  X, X  >

+ f  ( * i )  =  0 Maximum point
or is discontinuous

— / '  ( J t , ) = 0 + Minimum point
or is discontinuous

+ / '  ( * , ) = 0 Neither maximum nor
or is discontinuous minimum (function in

— Y  (*, )=o creases)
or is discontinuous — Neither maximum nor

minimum (function de
creases)

Example 1. Test the following function for maximum and minimum:

v - ^ - 2 * * + a *  +  i .

Solution. 1) Find the first derivative:
y' =  x2—4 * +  3.

2) Find the real roots of the derivative:
x2 — 4jc +  3 =  0.

Consequently,
Xj =  1, x2 =  3.

The derivative is everywhere continuous and so there are. no other critical 
points.

3) Investigate the critical values and record the results in Fig. 106. 
Investigate the first critical point xl ^=\. Since y* =  (x— 1) (a; —3),

for x <  1 we have */' =  ( — )•(— ) >  Q,
for x >  1 we have yf =  ( -f* )•( — ) < 0 .

Thus, when passing (from left to right) through the value *, =  1 the deri
vative changes sign from plus to minus. Hence, at * = 1  the function has a 
maximum, namely

Investigate the second critical point x2 =  3i

when * < 3  we have y' =  ( +  ) .(  — ) <  0, 
when x >  3 we have y ‘ =  ( +  )•( + )  >  0-
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Thus, when passing through the value x =  3 the derivative changes sign 
from minus to plus. Therefore, at * =  3 the function has a minimum, namely:

(</)*=3 =  1-

This investigation yields the graph of the function (Fig. 106).
Example 2. Test for maximum and minimum the function

y=(x—i) y**.

Solution. 1) Find the lirst derivative.
2 [ x — 1) 5x —2

y' = y ^ + 3 y  x z y  x

Flu 107.

2) Find the critical values of the argument: a) find the points at which 
thi derivative vanishes:

</ = 5x^ l= o ,
3 f / x

b) find the points at which the derivative becomes discontinuous (in this 
instance, it becomes infinite). Obviously, that point is

*2 = 0.
(It will be noted that for *2 =  0 the function is defined and continuous.)

There are no other critical points.
3) Investigate the character of the critical points obtained. Investigate 

the point xx =  — . Noting that

(</') 2 < 0, (</') 3 > o,*<— »> —
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we conclude that at * =  -=- the function has a minimum. The value of the o
function at the minimum point is

Investigate the second critical point x =  0. Noting that 

( y ) x < o > ° -  ( ' / ' ) * > < > < °
we conclude that at x =  0 the function has a maximum, and (y)* = 0 =  0. The 
graph of the investigated function is shown in Fig. 107.

SEC. 5. TESTING A FUNCTION FOR MAXIMUM AND MINIMUM 
WITH A SECOND DERIVATIVE

Let the derivative of the function y = f(x) vanish at x = xt; we 
have f ' (xx) = 0. Also, let the second derivative f" (x) exist and be 
continuous in some neighbourhood of the point xx. Then the fol
lowing theorem holds.

Theorem. Let f ' ( xx) = 0; then at x = xx the function has a 
maximum if /"(* ,)< 0 , and a minimum if /"(* ,)> 0 .

Proof. Let us first prove the first part of the theorem. Let
/'(*>) =  0 and r W < 0 .

Since it is given that f"(x) is continuous in some small interval 
about the point x=^xx, there will obviously be some small closed 
interval about the point x = xlt at all points of which the second 
derivative f"(x) will be negative.

Since f" (x) is the first derivative of the first derivative, /"(x) =  
= (f'(x)Y> it follows from the condition (/' (*))' < 0  that /' (x) 
decreases on the closed interval containing x = xx (Sec. 2, Ch. V). 
But f ' (xx) = 0, and so on this interval we have f ' ( x ) >  0 when 
x < x lf and when x > x x we have /' (x )< 0; in other words, the 
derivative /' (x) changes sign from plus to minus when passing 
through the point x = xx> and this means that at the point x1 the 
function f(x) has a maximum. The first part of the theorem is 
proved.

The second part of the theorem is proved in similar fashion: 
if /"(a:1) > 0  then /" (x )>  0 at all points of some closed interval 
about the point xxy but then on this interval f" (x) = (/' (x))f >  0 
and, hence, f'(x) increases. Since f / (xl) = 0 the derivative (x) 
changes sign from minus to plus when passing through the point 
xlt i. e., the function f (x) has a minimum at x = xx.

If at the critical point then at this point there may
be either a maximum or a minimum or neither maximum nor



Testing a Function for Maximum and Minimum 175

minimum. In this case, investigate by the first method (see Sec. 4, 
Ch. V).

The scheme for investigating extrema with a second derivative 
is shown in the following table.

V Ut) r  (x,i Character  of crit ical  point

0 Maximum point
0 + Minimum point
0 0 Unknown

Example 1. Examine the following function for maximum and minimum 
y =  2 sin *-j-cos 2x.

Solution. Since the function is periodic with a period of 2jc, it is suffi- t 
cient to investigate the function in the interval [0, 2jt].

1) Find the derivative:
y' =  2 cos x — 2 sin 2x =  2 (cos x —2 sin x cos x) — 2 cos x (1 — 2 sin x).

2) Find the critical values of the argument:
2 cos x (1 —2 sin x) =  0, 

ji JT 5ji 3ji
x,~ T '  Xt~~T' x*~~b ] Xt~~2‘

3) Find the second derivative:
if  =  —2 sin x — 4 cos 2x.

4) Investigate the character of each critical point:

<y\ mJL= = -*<(>■

Hence, at the point xl =  we have a maximum:

a/)„ JL  = 24 + T = 4 -8
Further,

=  — ?• I + 4-1  =  2 >  0.
2

And so at the point =  we have a minimum:

(J/) „ =2-1-. 1 = 1.
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■ 5jt 'At we have

(iOjt_ « , = - ? 4 ~ 44 ==“ ' 3 < 0 -

5;tThus, at ^  =  -0- the function has a maximum:

to) s n _ 2 . l  +  l _ 3 .
*»=T 2 +  2 ~  2 •

Finally,
< /) -  2 ( _  l ) - 4  ( -  1) =  6 >  0.

Consequently, at =  we have a minimum:

t o )  ITT =  2  (—  1) —  1 =  —  3.

The graph of the function under investigation is shown in Fig. 108.

The following examples will show that if at a certain point * =  *, 
we have f ' (xl) =0  and /"(*,) =  0, then at this point the function 
f(x) can have either a maximum or a minimum or neither.

Example 2 . Test the following function for maximum and minimum:
y = \ - x \

Solution. 1) Find the critical points:
, y' = — 4x\ —4,y3 =  0, x =  0.

2) Determine the sign of the second derivative at x =  0i 
y" =  — \2x*, (y',)x=0 =  0.
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It is thus impossible here to determine the character of the critical point 
by means of the sign of the second derivative.

3) Investigate the character of the critical point by the first method (sec 
Sec. 4., Ch. V):

( y % < 0>o.  ( y ' ) x >  , < o .
Consequently, at x — 0 the function has a maximum, namely

( y ) x = o=  i •
The graph of 1 his function is given in Fig. 109.

Example 3. Test for maximum and minimum the function
y =  x6.

Solution. By the second method we find
1) y' =  6jc5, t /  =  6x5 =  0, x =  0;
2) yn =  30*4, (t/)x=0 =  0.

Thus, the second method does not yield anything. Resorting to the first 
method we get

(y )*<<> ^  (i/ )x > o
Therefore, at x — Q the function has a minimum 

(Fig. 110).
Example 4. Test for maximum and minimum 

the function
y = ( x - I)3.

Solution. Second method:
y' = 3  (*— l) ,2 3 (x— 1)2 =  0, jc =  1;
/  =  6 ( * - l ) ,  t / ) x=1= 0 .

Thus, the second method does not yield an answer.
By the first method we get

( y ' ) j ,  < i >  o. . (//'), > , >  o-
Consequently, at x = l  the function does not 

have either a maximum or a minimum (Fig. 111). Fig. I l l •
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SEC. 6. MAXIMA AND MINIMA OF A FUNCTION 6N AN INTERVAL
Let the function y = f(x) be continuous on the interval [at b]. 

Then the function on this interval will have a maximum (see Sec. 10, 
Ch. II). We will assume that on the given interval the function 
f(x) has a finite number of critical points. If the maximum is 
reached within the interval [a, 6], it is obvious that this value will 
be one of the maxima of the function (if there are several maxima), 
namely, the greatest maximum. But it may happen that the max
imum value is reached at one of the end points of the interval.

To summarise, then, on the interval [a, b] the function reaches 
its greatest value either at one of the end points of the interval, 
or at such an interior point as is the maximum point.

The same may be said about the minimum value of the function: 
it is attained either at one of the end points of the. interval or at 

an interior point such that the latter is the 
minimum point.

From the foregoing we get the following 
rule: if it is required to find the maximum of 
a continuous function on an interval [a, b]} do 
the following:

1) Find all maxima of the function on the 
interval.

2) Determine the values of the function at 
the end points of the interval; that is, eval
uate f(a) and f(b).

3) Of all the values of the function obtained 
choose the greatest; it will be the maxi
mum value of the function on the interval.

The minimum value of a function on an 
interval is found in similar fashion.

Example. Determine the maximum and minimum 
of the function u =  x* — 3*- f 3 on the interval

[ - ! ] ■
Solution. 1) Find the maxima and minima of the 

function on the interval 3, j  i

y' =  3x*— 3, ‘ix2— 3 =  0, ^  =  1, jc2 =  — 1,
if =  6*, (//')**, =  6 >  0.

Thus, at x — 1 there is a minimum:

(/y)*=i =  L
Further,

=  -  6< 0*
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And so at x =  — 1 we have a maximum:
($ 0 * = - i  =  5.

2) Determine the value of the function at the end points of the interval:

(̂ = l = ¥ ’ &)*—■ = - 1B- 
2

Thus, the greatest value of this function on the interval £— 3, -̂ -1 is

(*/)*=-! =5,
and the smallest value is

(U)x=-3 = “  15- 
The graph of the function is shown in Fig. 112.

SEC. 7. APPLYING THE THEORY OF MAXIMA AND MINIMA 
OF FUNCTIONS TO THE SOLUTION OF PROBLEMS

The theory of maxima and minima is applied in the solution of 
many problems of geometry, mechanics, and so forth. Let us 
examine a few.

Problem 1. The range R = OA (Fig. 113) of a shell (in empty 
space) fired with an initial velocity v0 from a gun inclined to the 
horizon at an angle (p, is determined 
by the formula

v*. sin 2©
R = —------

(g is the acceleration of gravity).
Determine the angle cp at which the 
range R will be a maximum for a 
given initial velocity v0.

Solution. The quantity R is a function of the variable angle <p.
Test this function for a maximum on the interval 0 ^ ( p ^ ^ - :

dR 2u*cos2<p 2uJcos2(p 
d(p g g

= 0; critical value <p =  ^-;

d2R 4u*sin2<p f d2R \
d(p2 ^  g  ’ W J q) = iT""' g < U ‘

Hence, for the value <p =  -j the function R has a maximum
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The values of the function R at the end points of the interval 
[°, - ]  are

(#)•=« =  0, (R) n —0.<p=T

Thus, the maximum obtained is the sought-for greatest value of R. 
Problem 2. What should the dimensions be of a cylinder so that 

for a given volume v its total surface S is a minimum?
Solution. Denoting by r the radius of the base of the cylinder 

and by h the altitude, we have
S =  2nr2 +  2nrh.

Since the volume of the cylinder is given, for a given r the 
quantity h is determined by the formula

v = n r2h,
whence

Substituting this expression of h into the formula for S, we have 

S =  2nr2 +  2nr
or

S = 2 ( j t r 2+-^-) .

Here, v is given, so we have represented S as a function of a 
single independent variable r.

Find the minimum value of this function on the interval 0 <  r <  oo:

Thus, at the point r = rx the function S has a minimum. Notic
ing that limS =  oo and limS — oo; that is, that as r approaches

r  0  r  - *  co

zero or infinity the surface S increases without bound, we arrive 
at the conclusion that at r = r1 the function S has a minimum.
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But if r = v
Therefore, for the total surface S of a cylinder to be a minimum 
for a given volume u, the altitude of the cylinder must be equal 
to its diameter.

S E C .  8 .  T E S T I N G  A  F U N C T I O N  F O R  M A X I M U M  A N D  M I N I M U M  
B Y  M E A N S  O F  T A Y L O R ’S  F O R M U L A

In Sec. 5, Ch. V, it was noted that if at a certain point x = a 
we have /' (a) =  0 and /"(a) =  0, then at this point there may be 
either a maximum or a minimum or neither. And it was noted that 
in this instance the problem is solved by investigating by the first 
method; in other words, by testing the sign the first derivative on 
the left and on the right of the point * =  a.

Now we will show that it is possible in this case to investigate 
by means of Taylor’s formula, which was derived inSec. 6, Ch. IV.

For greater generality, we assume that not only /"(*), but also 
all derivatives up to the nth order inclusive of the functions f(x) 
vanish at x = a:

Further, assume that f(x) has continuous derivatives up to the 
(n+1) st order inclusive in the neighbourhood of the point je =  a. 

Write the Taylor formula for f(x), taking account bf equality (T):

where £ is a number that lies between a and x.
Since f(tl+1)(x) is continuous in the neighbourhood of the point 

a and f'n+l)(a)=£ 0, there will be a small positive number h such 
that for any x that satisfies the inequality there will
b e /v"+1) (x) =£ 0. And if /(n+1> (a) > 0 ,  then at all points of the interval 
(a — hy a + h) we will have }in+l) (x)>0\  if fin+l) (a) <  0, then at all 
points of this interval we will have f(n+l) (x) <  0.

Rewrite formula (2) in the form

and
r  (a) =  / " ( a ) = . . .  =  r  (a) =  0 

(a) ̂ 0 .
( 1)

f{x) = f(a) 4 ^ - +a)' ' ; , r +,) (i), (2)

and consider various special cases.

(2'}
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Case 1. n is odd.
a) Let f(n+l) (a) <  0. Then there will be an interval (a —h, a + h) 

at all points of which the (n + l)s t derivative is negative. If x is 
a point of this interval then i likewise lies between a— hand a + h 
and, consequently, f(n+1) (£) <  0. Since n + \  is an even number, 
(x—a)"+1:>0 for x + a, and therefore the right side of formula 
(2') is negative.

Thus, for x+=a at all points of the interval (a — h, a + h) we have
f (x)—f (a)<  0,

and this means that at x = a the function has a maximum.
b) Let f{n+1) (a) >  0. Then we have fln+l) (£) > 0  for a sufficiently 

small value of h at all points x of the interval (a—ht a + h). Hence, 
the right side of formula (2') will be positive; in other words, for 
x += a we will have the following at all points in the given interval:

f (x)—f ( a ) >  0,
and this means that at x — a the function has a minimum.

Case 2. n is even.
Then n+ 1  is odd and the quantity (x —a)"+I has different signs 

for x<ia  and x > a .
If h is sufficiently small in absolute value, then the (n-f-l)st 

derivative retains the same sign as at the point a at all points of 
the interval (a—h, a + h). Thus, f (x)—f(a) has different signs for 
x < a  and x > a .  But this means that there is neither maximum 
nor minimum at x = a.

It will be noted that if f{n+,)(a)> 0 when n is even, then 
/ (jc) <  / (a) for x <  a and f ( x ) > f  (a) for x >  a.

But if f{n+n(a)<. 0 when n is even, then f ( x)>f (a)  for x< .a  
and f(x)<.f(a)  for x > a .

The results obtained may be formulated as follows.
If at x — a we have

f  ( a ) = f  ( a ) = . . . = r ( a )  =  0
and the first nonvanishing derivative f{n+1) (a) is a derivative of even 
order, then at the point a

f(x) has a maximum if f n+,) (a) <  0, 
f(x) has a minimum if (a) > 0 .

But if the first nonvanishing derivative /<n+,)(a) is a derivative 
of odd order, then the function has neither maximum nor minimum 
at the point a. Here,

f {x) increases if f(n+1> (a) > 0 , 
f (x) decreases if /<n+1) (a) <  0.
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Example. Test the following function for maximum and minimum: 
/ (x) = x * —4x3 -J-.6x2—4 x +  1.

Solution. Let us find the critical values of the function
/' (*) =  4x3— 12x2-f- I2x—4 =  4 (jc3— 3x2 +  3x— 1).

From equation
4 (x3 — 3jc2 -}- 3x— 1) =  0 

we obtain the only critical point
x=l

(since this equation has only one real root).
Investigate the character of the critical point x = \ :

(x) =  12x2 — 24x + 1 2  =  0 for x =  1,
(*) =  24x— 24 =  0 forx=  1,

/ IV (x) =  24> 0 for any x.

Consequently, for x = \  the function f (x) has a minimum.

SEC. 9. CONVEXITY AND CONCAVITY OF A CURVE.
POINTS OF INFLECTION

. Let us consider, in a plane, the curve y = f(x), which is the 
graph of a single-valued differentiable function f(x).

Definition 1. We say th a t. a curve is convex upwards on the 
interval (a, b) if all points of the curve lie below any tangent 
to it on this interval.

We say that the curve is convex 
downwards on the interval (bt c) 
if all points of the curve lie above 
any tangent to it on this interval.

We shall call a curve convex up, 
a convex curve, and a curve convex 
down, a concave curve.

Fig. 114 shows a curve convex 
on the interval (a, b) and concave 
on the interval (6, c).

An important characteristic of 
the shape of a curve is its con
vexity or concavity. This section will be devoted to establishing 
the characteristics by which, when investigating a function y=f(x) ,  
one can judge of the convexity or concavity (direction of bulge) 
on various intervals.

We shall prove the following theorem.
Theorem 1, If at all points of an interval (a, b) the second deriv

ative of the function f (x) is negative, i. e., 4" (x )< 0 , the curve 
y = f (x)  on this interval is convex upwards (the curve is convex).

Fig. 114.
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Proof. In the interval (a, b) take an arbitrary point x = x0 
(Fig. 114) and draw a tangent to the curve at the point with 
abscissa x = x0. The theorem will be proved provided we establish 
that all the points of the curve on the interval (a, b) lie below 
this tangent; that is, that the ordinate of any point of the curve 
y = f(x) is less than the ordinate y of the tangent line for one and 
the same value of x.

The equation of the curve is of the form
y = f ( x ) .  (1)

But the equation of the tangent to the curve at this point 
x = x0 is of the form

y — f{x0) = f  (*,)(* —*,)
or

y = f(x,) + f ' (x ,)(* —x,). (2)

From equations (1) and (2) it follows that the difference of the 
ordinates of the curve and the tangent for the same value of x is

y — y = f(x) — f (x.) — f  (*0)(* — xj .
Applying the Lagrange theorem to the difference f{x)—/(*„), 

we get
y —~y = f’ (c) {x— x0)— f  {x0) (x—x0)

(where c lies between x„ and x) or
y —~y=[f (c)— f  (*„)](x— x„).

We again apply the Lagrange theorem to the expression in the 
square brackets; then

y —~y=f"(c,){c— xt)(x— x<>) (3)

(where c, lies between x„ and c).
Let us first examine the case when x > x (l. In this case, xt <. 

< c < x ;  since
x — *0> 0 , c— >  0 

and since, in addition, it is given that
n c , x o , _

it follows from equality (3) that y — y <  0.
Now let us consider the case when In this case x < c < .

< c ,< x '0 and x — x„<0, c— xo< 0 , and since it is given that
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f" (ci)< 0 , then it follows from (3) that
y — y <  0.

We have thus proved that every point of the curve lies below 
the tangent to the curve, no matter what values x and Jt0 have on 
the interval (a, b). And this signifies that the curve is convex. 
The theorem is proved.

The following theorem is proved in similar fashion.
Theorem I'. If at all points of the interval (b, c), the second 

derivative of the function f (x)  is positive, that is, f"(x)~>0, then 
the curve y = f (x) on this interval is convex downwards (the curve 
is concave).

Note. The content of Theorems 1 and 1' may be illustrated 
geometrically. Consider the curve y = f{x), convex upwards on the 
interval (a, b) (Fig. 115). The derivative f'(x) is equal to the

tangent of the angle of inclination a  of the tangent line at the 
point with abscissa x, or / ' (x) =  tan a. For this reason,, f” (x) — 
=  [tana]^. If f" (x)<0 for all x on the interval (a,b), this means that 
tana decreases with increasing x. It is geometrically obvious that if 
tan a  decreases with increasing x, then the corresponding curve 
is convex. Theorem 1 is an analytic proof of this fact.

Theorem 1' is illustrated geometrically in similar fashion (Fig. 
116).

Example I. Establish the intervals of convexity and concavity of a curve 
represented by the equation

y =  2—x*.

Solution. The second derivative

yn =  —2 <  0

foi all values of x. Hence, the curve is everywhere convex upwards (Fig. 117).
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Example 2. The curve is given by the equation
y =  ex.

Since
y" =  ex >  0

for all values of x, the curve is therefore everywhere concave (bulges, or is 
convex, downwards) (Fig. 118).

Example 3. A curve is defined by the equation

y =  x*.
Since

j/" = 6*,
y" <  0 for * < 0  and yn> 0 for x > 0 .  Hence, .for x <  0 the curve is convex 
upwards, and for x >  0, convex down (Fig. 119). ’

Definition 2. The point that separates the convex part of a 
continuous curve from the concave part is called the point of 
inflection of the curve.

In Figs. 119 and 120 the points 0 and B are points of inflection.
It is obvious that at the point of inflection the tangent cuts the 

curve, because on one side the curve lies under the tangent and 
on the other side, above it.

Let us now establish the sufficient conditions for a given point 
of a curve to be a point of inflection.

Theorem 2. Let a curve be defined by the equation y = f(x). If 
f" (a) = 0 or f" (a) does not exist and if the derivative f" (x) changes 
sign when passing through jc=a, then the point of the curve with 
abscissa x=a is the point of inflection.

Proof. 1) Let /"(*)<0 for x< a  and f" (*)>0 for x> a.
Then for x<Ca the curve is convex up and for x > a , it is convex 

down. Hence, the point A of the curve with abscissa x = a is the 
point of inflection (Fig. 120).
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2) If f" ( x)>0 for x < b  and f" (a:)<0 for x> b, then for x< b  the 
curve is convex down, and for x> b , it is convex up. Hence, the 
point B of the curve with abscissa x =  b is the point of inflection 
(see Fig. 121).

Example 4. Find the points of inflection and determine the intervals of 
convexity and concavity of the curve

y =  e~xl (Gaussian curve).

Solution. 1) Find the first and second derivatives:

y' =  — 

f  =  2e~*2 (2jc4—1).

2) The second derivative exists everywhere. Find the values of x for which 
y* =  0:

2e~*2 (2x*—1) =  0,
1 1 

/2 *  X* V~2 '
3) Investigate the values obtained:

for x <  — ’—=  we have i f  >  0,

for x >  — : we have f  <  0;

the second derivative changes sign when passing through the point xv  Hence, 
for xl = ---------- , there is a point of inflection on the curve; its coordinates

For *x < y =  t f  <  0,

for * > y =  y > o .

are:
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Thus, there is also a point of inflection on the curve for Its co

ordinates are ( — r= , e . Incidentally, the existence of the second point

of inflection follows directly from the symmetry of the curve about the 
y-axis.

4) From the foregoing it follows that

for —oo< x  < -----the curve is concave;

fo r ------< x  <  the curve is convex;\T2 1̂ 2
for —?=  <  x <  oo the curve is concave.Y 2

5) From the expression of the first derivative

y' = — 2xe-x*
it follows that

for x < 0  y ' >  0, the function increases; 
for * > 0  y ' < 0, the function decreases; 
for x =  0 y' = 0 .

At this point the function has a maximum, namely, y===l. The foregoing 
analysis makes it easy to construct a graph of the curve (Fig. 122).

Example 5. Test the curve y — x‘4 for points of inflection.
Solution. 1) Find the second derivative:

i f  == \ 2xz.

2) Determine the points at which i f  =  0: 12x-2 =  0; x^O.
3) Investigate the value x =  0 obtained:

for * < 0  i f >  0, the curve is concave;
for x > 0  i f > 0, the curve is concave.

Thus, the curve has no points of inflection (Fig. 123).
Example 6. Investigate the following curve for points' of Inflection!
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Solution. 1) Find the first and second derivatives:

1 — — 2 — -  
y ' = ~ ( x - \ )  »; y" =  - - ( x - 1) ’ .

2) The second derivative does not vanish anywhere, but at x =  l it does 
not exist (//"= £  oo).

3) Investigate the value x =  \:

for x < \  y”> 0, the curve is concave;
for x > \  yn < 0, the curve is convex.

Consequently, at * = 1  there is a point of inflection (1, 0).
It will be noted that for * =  1 y ' =  oo; the curve at this point has a ver

tical tangent (Fig. 124).

SEC. 10. ASYMPTOTES

Very frequently one has to investigate the shape of a curve 
y = f(x) and, consequently, the type of variation of the correspond
ing function in the case of an unlimited increase (in absolute 
value) of the abscissa or ordinate of a variable point of the curve, 
or of the abscissa and ordinate simultaneously. Here, an important 
special case is when the curve under study approaches a given 
line without bound as the variable point of the curve recedes to 
infinity. *>

Definition. The straight line A is called an asymptote to a curve, 
if the distance 6 from the variable point M of the curve to this 
straight line approaches zero as the point M recedes to infinity 
(Figs. 125 and 126).

*) We say the variable point M moves along a curve to infinity if the 
distance of the point from the origin increases without bound.
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In future we shall differentiate between vertical asymptotes (paral
lel to the axis of ordinates) and inclined asymptotes (not parallel 
to the axis of ordinates).

I. Vertical asymptotes.
From the definition of an asymptote it follows that 

if lim f(x) oo or \imf(x) = oo or lim / (a:) =  oo,
X - + C I  +  0  X - + a  — 0 X - K 2

then the straight line x = a is

Example 2. The curve y =  tan 
iotes:

, n *■

an asymptote to the curve y = f(x)\ 
and, conversely, if the. straight 
line x = a is an asymptote, then 
one of the foregoing equalities is 
fulfilled.

Consequently, to find vertical 
asymptotes one has to find values 
of x = a such that when they are 
approached by the function 
y = f(x) the latter approaches 
infinity. Then the straight line 
x = a will be a vertical asymptote.

2
Example 1. The curve y —---- = has a

X  —  o

vertical asymptote x =  5, since y — ►<» 
as x—*5 (Fig. 127). 

has an infinite number of vertical asymp-

This follows from the 
ji 3ji 5ji

*2’ 2 ’ T "

fact that tan x—h 
Jt 3 jx 5 jc

or - T -  2 ' - T '

as x approaches the values 
(Fig. 128).
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j _  _ i_

Example 3. The curve y =  e x has a vertical asymptote x =  0, since lime * =
x-*- + o

=-• oo (Fig. 129).

Fig. 128.

II. Inclined asymptotes.
Let the curve y =>/(*) have an inclined asymptote whose 

equation is

y = kx + b. (1)

Determine the numbers k and b (Fig. 130). Let .M(je, y) be a point 
lying on the curve and N (x, y), a point lying on the asymptote. 
The length of MP is equal to the distance from the point M to
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the asymptote. It is given that
iim MP = 0. (2)

+  CO

Designating the angle of inclination of the asymptote to the x-axis 
by q), we find from A  NMP that

NM = MP
c o s  c p '

Since (p is a constant angle ^not equal to —j  , by virtue of the 
foregoing equation

lim NM =0  (2')
X-+ + 00

and, conversely, from (2') we get (2). But

and (2') takes the form
lim lf(x) — kx — b\ =  0. (3)

To summarise: if the straight line (1) is an asymptote, then (3) 
is fulfilled; and conversely, if, given constants k and b, equation
(3) is fulfilled, then the straight line y = kx-\-b is an asymptote. 
Let us now define k and b. Taking x outside the brackets in 
(3), we get

lim — k ——1 = 0 .
«-»+. . I * *1

Since x —>- +  oo, the following equation must be fulfilled:

lim
£-► + 00

=  0.

For b constant, lim—=  0. Hence,
X -*  o s X

lim [ = 0 ,
X->  +  ao L < J

k = lim M .
K-* +  oo X

(4)

Knowing k, we find b from (3)i
b = lim [/(*) — kx\.

X~¥ + 00 (5)
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Thus, if the straight line y = kx + b is an asymptote, then k and 
b may be found from (4) and (5). Conversely, if the limits (4) and (5) 
exist, then (3) is fulfilled and the straight line y — kx + b is an 
asymptote. If even one of the limits (4) or (5) does not exist, then
the curve does not have an 
asymptote.

It should be noted that vve 
carried out our investigation as 
applied to Fig. 130, as x —►+ oo, 
but all the arguments hold also 
for the case x —►— oo.

Example 4. Find the asymptotes 
of the curve

x2 +  2* — 1 
lJ= ---- x-----•

Solution. 1) Look for vertical 
asymptotes:

when x — 0 y — >.-f-oo; 
when x — ► -f-0 y — > — oo.

Therefore, the straight line * =  0 
is a vertical asymptote.

2) Look for inclined asymptotes:

ft =  lim JL— lim *2 +  2* — 1 _
* - > ± 0 0  X  J t - y  ± cd X 2

= I'm [ l+  — — U =1,
£ - > ±  oo |_  X  X  J

that is,

b =  lim [ y —x] =  lim h
X -+  ±  00 ±  00 |_

*=1,
x2 -\-2x — 1 J  Um x2-\-2x — 1 —x2

or, finally,

Therefore, the straight line

=  lim
X-+  +  00

~x] =  Hlim 
± ® ] -

b =  2. 

y = x + 2
is an inclined asymptote to the given curve.

To investigate the mutual positions, of a curve and an asymptote, let us 
consider the difference of the ordinates of the curve and the asymptote for 
one and the same value of x:

x2 +  2x — 1 
x U + 2) =  - i .

This difference is negative for x >  0, and positive for x <  0; and so for x > 0  
the curve lies below the asymptote, and for *< 0 , it lies above the asymptote 
(Fig. 131).

7— 3 3 8 8



194 Investigating the Behaviour of Functions

Example 5. Find the asymptotes of the curve
y =  e~x sin x-\-x.

Solution. 1) It is obvious that there are no vertical asymptotes.
2) Look for inclined asymptotes:

£ =  lim JL =  lim +  lim 1] =  i,
X-* + <x>X x->  +  00 X  Jt-i 4- 00 [_ X  J

b =  lim [e~x sin x +  x —x ] =  lim e”x sin* =  0.
JC ->  +  CO x - >  +  CO

Hence, the straight line
y = *

is an inclined asymptote as
The given curve has no asymptote as x-+ — oo. Indeed, the limit lim JL

X—► — oo X
u  e ~ xdoes not exist, since ~ = -----x s in jc + l. (Here, thefirstterm increases withoutx x

bound as x-> — oo and, therefore it has no limit.)

SEC. 11. GENERAL PLAN FOR INVESTIGATING FUNCTIONS 
AND CONSTRUCTING GRAPHS

The term “investigation of a function” usually implies the 
finding of:

1) the natural domain of the function;
2) the discontinuities of the function;
3) the intervals of increase and decrease of the function;
4) the maximum point and the minimum point, and also the 

maximal and minimal values of the functions;
5) the regions of convexity and concavity of the graph, and 

points of inflection;
6) the asymptotes of the graph of the function.
The graph of the function is constructed on the basis of such 

an investigation (it is sometimes wise to plot elements of the 
graph in the very process of investigation).

Note 1. If the function under investigation y — f(x) is even, 
that is, such that upon change of sign of the argument the value 
of the function does not change, i. e., if

f ( —x) = f(x),
then it is sufficient to investigate the function and construct its 
graph for positive values of the argument that lie within the 
domain of definition of the function. For negative values of the 
argument, the graph of the function is constructed on the.grounds 
that the graph of an even function is symmetric about the 
ordinate axis.
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Example I. The function y =  x 2 is even, since ( — x)2 =  x 2 (see Fig. 5). 
Example 2. The function y =  cosx  is even, since cos ( — jc) =  cos x (see 

Fig. 17).

Note 2. If the function y = f(x) is odd, that is, such that for 
any change in the argument the function changes sign, i. e., if

/ ( - * )  =  - / ( * ) .
then it is sufficient to investigate this function in the case of 
positive values of the argument. The graph of an odd function is 
symmetric about the origin.

Example 3. The function y — x 2 is odd, since ( —x)2 = — x 2 (see Fig. 7). 
Example 4. The function y  =  sin* is odd, since sin ( —x) =  — sin* (see 

Fig. 16).

Note 3. Since a knowledge of certain properties of a function 
allows us to judge of the other properties, it is sometimes advi
sable to choose the order of investigation on the basis of the 
specific peculiarities of the given function. For example, if we 
have found out that the given function is continuous and differen
tiable and if we have found the maximum point and the mini
mum point of this function, we have thus already determined 
also the range of increase and decrease of the function.

Example 5. Investigate the function

and construct its graph.
Solution. 1) The domain of the function is the interval — o o < * < o o .  It will 

straightway be noted that for * < 0  we have y < 0, and for * > 0  we have y>Q.
2) The function is everywhere continuous.
3) Test the function for maximum and minimum, from the equation

Find the critical points:

/  1 — * *  A

y -(i+ **)»-0-

*1= — 1, *2=1*
Investigate the character of the critical points:

for X j <  — 1 we have t f  <0; 
for xt >  — 1 we have y' >  0.

Hence, at x =  — 1 the function has a minimum:

And
m̂in — (y)x=*—i — 1 •

7*

for x  <  1 we have y' >  0; 
for x  >  1 we have i f  <  0.
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Hence, at x — \ the function has a maximum:

0 m a x  =  ( { / ) * = > =  1 -

4) Determine the domain of increase and decrease of the function: 
for — oo <  x < — 1 we have y' <  0, the function decreases; 
for — 1 <  x <  1 we have y' > 0 ,  the function increases; 
for 1 <  x <  oo we have y' <  0, the function decreases.

5) Determine the domains of convexity and concavity of the curve and 
the points of inflection: from the equality

we get

„ 2x (x2—3)
y = - j r + 7 * f =

*1 =  — 3, *2 =  0, xs =  Y 3.

Investigating y" as a function of x we find that

tor — oo <  x < — Y 3 y" <  0, the curve is convex;
for — Y  3 <  x <  0 i f  >  0, the curve is concave;
for 0_< x < Y $  if <  0, the curve is convex;
for Y 3 <  x <  oo >  0, the curve is .concave.

.__ Y  3
Thus, the point with coordinates x =  — V 3, y = ------— is a point of

inflection; in exactly the same way, the points (0, 0) and ^ Y  3, are
points of inflection.

6) Determine the asymptotes of the curve:
for x —► +  oo y -+ 0, 
for x — oo y -+ 0.

Consequently, the straight line y =  0 is the only inclined asymptote. The 
curve has no vertical asymptotes because the function does not approach 
infinity for a single finite value of x.

The graph of the curve under study is given in Fig. 132. 
Example 6. Investigate the function

y =  jJ/2 ax2 —x*
and construct its graph.



General Plan for Investigating Functions and Constructing Graphs 197

Solution. 1) The function is defined for all values of x.
2) The function is everywhere continuous.
3) Test the function for maximum and minimum:

, _ Aax—3x2 _  4a —3x
9 "~3 y / (2a*® — x*)2 3 y / x ( 2 a —x)*'

There is a derivative everywhere except for the points

xx = 0  and xz — 2a.

Investigate the limiting values of the derivative as 0 and
as x +  0 :

' . 4 a — 3x .. Aa—3x
l im  ----q —  0 0 , lim   s-- q r -  +  oo

x - » - o 3 y  x y  (2 a-j-x)2 x-++o 3 y  x y  {2a +  x)2

for x <  0 y' <  0 ,. and for x >  0 u' >  0 .
Hence, at x =  0 the function has a minimum. The value of the function 

at this point is zero.
Now investigate the function at the other critical point xz =  2a. As x 2a 

the derivative also approaches infinity. However, in this case, for all values 
of x close to 2a (both on the right and left of 2a), the derivative is nega
tive. Therefore, at this point the function has neither a maximum nor a 
minimum. At and about the point xz =  2a the function decreases; the tangent 
to the curve at this point is vertical.

AaAt * — the derivative vanishes. Let us investigate the character of
this critical point. Examining the expression of the first derivative, we note 
that

4a Aafor x <  - j  y f >  0 , and for x >  y  y' <  0 .

AaThus, at x =  — the function has a maximum: o
3 /-At= - *  y - 4 .

4) On the basis of this study we get the domains of increase and 
decrease of the function:

for — oo < * < T )  the function decreases;
Aafor 0 < *  < " 3 - the function increases;

Aafor -g- <  x <  00 the function decreases.

5) Determine the domains of convexity and concavity of the curve and 
the points of inflection: the second derivative

8a2// =
9* 3 (2a— x) 3
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does not vanish at a single point. Yet there are two points at which the 
second derivative is discontinuous: * ,= 0  and xz =  2a.

Let us investigate the sign of the second derivative near each of these 
points:

for x <  0 we have y" < 0  and the curve is convex up; 
for x > 0  we have i f  < 0  and the curve is convex up.

Hence, the point with abscissa x =  0 is not a point of inflection.
For x <  2a we have y" <  0 and the curve is convex upwards; 
for x >  2a we have tf  >  0 and the curve is convex down.

Hence, the point (!2a, 0) on the curve is a point of inflection. 
6) Determine the asymptotes of the curve:

k =  lim 
± 00

JU lim  ltal f / 2 £ _ 1 = _ , (
X  ±00 X x-+  ± o o  f  X

=  lim
X~*-±  00

b =  lim W /'lax*— *’ +  *1 =

_________ 2 ax2—x9+ x 9__________  2a
yS(lax*— **)*—x £ /§ ax*=x> +  x*~  3 '

*

Thus, the straight line \

is an inclined asymptote to the curve y = y / r2axt —x9. The graph of this 
function is shown in Fig. 133.
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SEC. 12. INVESTIGATING CURVES REPRESENTED PARAMETRICALLY

Let a curve be given by the parametric equations
* = c p ( 0 ,  \

y = $ ( 0- I ( i )

In this case the investigation and construction of the curve is 
carried out just as for the curve given by the equation

y=f ( x) -
Evaluate the derivatives

dx /
(0 .

Tt = W -
(2)

For those points of the curve near which it is the graph of a 
certain function y = f(x), evaluate the derivative

dy y  (t)
dx q>' ( 0 - (3)

We find the values of the parameter i = t x, for which at
least one of the derivatives <p' (/) or (t) vanishes or becomes 
discontinuous. (We shall call these values of t critical values.) 
By formula (3), in each of the intervals (/,, t t)\ (/J( /,); . . . ;  (/*_,, tk) 
and hence, in each of the intervals (*,, xt)\ (xt, x j; . . . ;  (xk_it xk)
(where xt =  cp (/,)), we determine the sign of , in this way determin
ing the domain of increase and decrease. This likewise enables us 
to determine the character of points that correspond to the values 
of the parameter t it l t........ tk. Next, evaluate

t f y  _  f  ( / )  « p '  ( < ) — < p " ( Q t '  ( 0  

d x 2  [ < p '  ( 0 ] ’  •

From this formula, determine the direction of convexity of the 
curve at each point.

To find the asymptotes determine those values of i, upon 
approach to which either x or y approaches infinity, and those 
values of I upon approach to which both x and y approach in
finity. Then carry out the investigation in the usual way.

The following examples will serve to illustrate some of the 
peculiarities that appear when investigating curves represented 
parametrically.
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Example 1. Investigate the curve given by the equations
x =  acos>t,  \
y  =  a s i n * t .  f  '  '

Solution. The quantities x and y are defined for all values of t. But since 
the functions of cos8 / and sin8 t are periodic, with a period 2jt, it is suffi
cient to consider the variation of the parameter / in the range from 0 to 2ji; 
here the interval [ — a, a] is the range of x and the interval [ — a, a] is the 
range ot y. Consequently, this curve has no asymptotes. Next, we find

dx — 3a cos2 / sin /,

du-i t  =  3a sin2 / cos /. at
jt 3jtThese derivatives vanish at t =  0, y ,  Evaluate

dy  3a sin2 / cos / .—  = — r------———  =  — tan /.
dx — 3a cos2 /s in /

On the basis of (2') and (3') we compile the following table:

(3')

Range ol 
t

Corresponding 
range of x

Corresponding 
range of y

Sign

°' !rdx

Type of variat ion 
of y as a function 

of x  ( y=f  (x))

G |<n

VVo

a >  X > 0 0 < y < a — Decreases

Jt
T < i < n 0 >  x >  — a a >  y >  0 + Increases

, 3n 
n < / < T — a <  x <  0 0 >  y > —a — Decreases

<  t <  2ji 0 <  x <  a —a <  y <  0 + Increases

From the table it follows that equations (T) define two continuous functions 
of the type y =  f(x),  for 0 « ^ / ^ j i  y ^ 0 (see first two lines of the table), 
for n < t < t2n y <  0 (see two last lines of the table). From (3') it follows 
that

lim ^ = c o  

2
and

lim co.
an dx

At these points the tangent to the curve is vertical. We now find
dy_
dt / =  0 = 0, dy_

dt /=  0= 0, dt t = 2 ji
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At these points the tangent to the curve is 
horizontal. We then find

d 2y 1
d x 2 3a cos41 sin t  *

Whence it follows that 

d2u
i orO <  t  < n  ~ > 0  the curve is concave, 

a x 2

d 2n
for jx <  t  <  2n <  0 the curve is convex. 

d x 2

On the basis of this investigation we can 
construct a curve (Fig. 134), which is called 
an astroid.

Example 2. Construct a curve given by the following equations (folium of 
Descartes):

3 a t  S a t 2

x =T+i>. y=Y+F- w
Solution. Both functions are defined for all values of t  except / =  — 1, and

lim x  =  lim 3 a t

f->—i —o t-+—\ + o l  +  / 3
=  + 00, 3 a t 2

lim x  =  — oo, 1+o

lim y  =  lim/-►—i—o t~*—i —o 1 + 1
lim y  =  -f oo.

1 +o
Further note that •

" -S -S F -

when / =  0 * =  0, y = o.
when t  ^  +  00 x  -b  0, y ^ O ,
when t  — oo ot y ^  o.

6a
d x V 2  ) dy 3 a t (2-<*>
d t  _ ( ! + < ’)* 9 d t (i (2')

For t  we get the following critical values:

1
y r

Then we find

1, —0, *3 — 3 2 -

dy
d y  _ _ d t  _  t ( 2  —  t 3) 

d x ~  d x ~

d t ( i - ' l

( 3 " )
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On the basis of formulas (1"), (2"), and (3") we compile the following table:

R a n g e  of 
t

C o r r e s p o n d in g  
r a n g e  o f x

C o r r e s p o n d i n g  
r a n g e  o f  y

S ig n

of %  
d x

T y p e  o f v a r i a t i o n  
o f  y  a s  a f u n c t i o n  

o f  x  (y  =  f (x))

— oo <  I <  —  1 0  <  X  <  +  oo 0  >  y >  — oo _ Decreases
— 1 <  t < 0 —  00 <  X  <  0 +  oo >  y >  0 — Decreases

" < ' <  1 / 2
0  <  x <  a j j /  4 0 <  y <  a jJ/"2 v+ Increases

17 t < ( < ^
a y i > x > a p r 2 a p r ~2<y<ay/~4 — Decreases

Y  2  < t  < 0 0 a 2  >  x  >  0 a j j / *  4  >  y >  0 + Increases

From (3") we find

= 0 00.

Thus, the curve cuts the origin twice: with the tangent parallel to the x-axis 
and with the tangent parallel to the y-axis. Further,

At this point the tangent to the curve is vertical.

,d± \  , =0. <dx)tm» n

^ = a  y /  A J
At this point the tangent to the curve is horizontal. Let us investigate the 
question of the existence of an asymptote:

k =  lim M- —
X-T+ +oo X t ■

lim
>-1—0

Z a t* ( \+ t* ) _  
Sat (1 +  /*)

b =  lim (y— kx) =  lim *-> + 00 *->-1+0
r Sat2
L» + .**

- ( - i ) 3 a t  I

1+<*J

t-
lim
- 1 - 0

3a t  (< +  1)1
. !+<' J

lim /-> -1-0
3a/

! — / + /* —a.
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Hence, the straight line y =  —-x — a is an 
asymptote to a branch of the curve as 
x -► -f °°-

Similarly we find

k =  lim =  _ i t
JC—► “ 00 X

b =  lim (y— kx) = —a.
X  — QO

Thus, the straight line is also an asymp
tote to a branch of the curve as x —►— oo.

On the basis of this investigation we 
construct the curve (Fig. 135).

Some problems involving investigation of 
curves will again be discussed in Chapter 
VIII "‘Singular Points of a Curve”.

Exercises on Cha

Find the extremes of the functions: 1. y =  x2—2x +  3. Ans. y m\n =  2 at 
x =  l. 2. y =  ~ — 2*2-f-3x4~ 1. Ans. */max =  y  at x — 1. 3. */ =  jc3 — 9*2-f- 15x +  3.

Ans. y max =  10 at x = \ ,  ym\n =  —22 at x =  S. 4. y =  —x* +  2x2. Ans. ymax =  1 
at x =  ±  ymm =  0 at * =  0. 5. y =  x* — 8x2 +  2. Ans. ymax =  2 at * =  0, 
r/min — — 14 at x = ± 2 .  6. y =  3x5 — 125** +  2160*. i4ns. max at * = —4 and

2

x =  3, min at * =  — 3 and x =  4. 7. £/ =  2— (* — 1)3 . Ans. ymax — 2 at * = 1 .
-I_ xi_Sx 4-2

8. y =  3—2 (* +  1)8 . Ans. Neither max nor min. 9. y — ; . Ans. min
X £ ~1” o  X +  2

at x =  V  2, max at * =  — Y  2. 10. y =  —— — ~ .  Ans. max at x =  ~  •xz 5
11. y =  2ex 4-e~x. Ans. min at * = -----. 12. y =  ̂ — . Ans. y m\n =  e at

x =  e. 13. y =  cos* +  sin* — < * < 4 ^ -  Ans. ymax=  V  2 at * =  ~  .

• 14. r/ =  sin2x—x  ̂ i4ns. max at x =  -2- , min at x = — — .
15. y =  x-j-tan*. Ans. There is neither max nor min. 16. y =  ex smx.

JT 3Ans. min at x — 2kn— — , max at * =  26ji +  — jc. 17. y =  x*—2*2 +  2. Ans.
max'when x =  0; two min when x — — 1 and w h e n * = l. 18. */ =  (*—2)*(2*+ l).
Ans. ym\n ^ —8.24 when * =  -i-. 19. y =  x-p— . Ans. min when * = 1 ; maxo x

awhen x =  — 1. 20. y =  xi (a—x)i . Ans. ymax =  jg when x =  y  ; r/min =  0 when
a *  b * a 2x =  0 and when x =  a. 21. y = ------ 1 . Ans. max when * = ---------- min* x a—x a— ba* j------

whenx =  -q 7^ . 22. y =  x + V  l —x. Ans. ym ax =  l when * =  1; ym\n=  — 1

F/g. 735.

V
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when x — — 1 . 23. y =  x Y~\— x (x < ;l) . Ans. r/ma 

24. y =

= - i / -  3 V 3 when * = y

min when a =  — .e

Ans. min when x = — 1; max when x = l .  25. y =  x \n x .  Ans,
l1 + a2

26. y =  x ln2 x. Ans. max when x =  e 2 ; min when x =  1. 
27. y =  In x —arc tan x. Ans. The function increases. 28. */ =  sin3x—3 sin*. 

A ns. min when * =  y |  max when x =  y  . 29. y — 2* +  arc tan x. Ans. No

■( -  / t )-

Jt
T
31.

two max: when

y =  arc sin (sin x).

extrema. 30. y =  sin * cos2*. Ans. min when x =

,v =  arc cos j / ~ y  and when x =  arc cos
(4 m + l)jt  (4m +  3)jiAns. max when x =  ------^ “  I min when a =  ------ ^—— .

Find the maximum and minimum values of the function on tjie indicated 
intervals: 32. y =  — 3*4-f 6x2 — 1 ( —2 < x ^ 2 ) .  Aris. Maximum # =  2 at
x — ±  1, minimum */= — 25 at * = £ 2 .  33. —— 2* 2 +  3 * + l  (—1 ^ * ^ 5 ) .

23 13Ans Maximum value */ =  y  at a =  5, minimum value # = — — at
_i 3

34. y==—y-y (0 s^ * < ;4 ). Ans. Maximum value */ =  y  at * =  4,

value y — — 1 at * =  0 . 35. y =  sin2* — ~  a ^ y  ̂ . A/is.

* = —1.

minimum

Maximum

i n i Jt-value // =  y  at * = — g"»
. Jt . rtminimum value y = — y  at a =  y  .

36. Using square tin sheet with a side a, make a topless box of maximum 
volume by cutting equal squares at the corners and removing them and then 
bending the tin so as to form the sides of the box. What will the length of
a side of the squares be? Ans. .o

37. Prove that of all rectangles that may be inscribed in a given circle, 
the square has the greatest area. Also show that the square will have the 
maximum perimeter as well.

38. Show that of all isosceles triangles inscribed in a given circle, an equi
lateral triangle has the largest perimeter.

39. Find a right triangle of maximum area with a hypotenuse h. Ans.
Length of each side, y  .

40. Find the height of a right cylinder with greatest volume that can be
2 Rinscribed in a sphere of radius R. Ans. Height,

41. Find the height of a right cylinder with greatest lateral surface that 
may be inscribed in a given sphere of radius R. Ans. Height, R |^ 2 .

42. Find the height of a right cone with least volume circumscribed about 
a given sphere of radius R. Ans. 4R (the volume of the cone is equal to two 
volumes of the sphere).

43. A reservoir with a square bottom and open top is to be lined inside 
with lead. What are the dimensions of the reservoir (to hold 32 litres) that
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will require the smallest amount of lead? Ans. Height, 0.2 metre, side of 
base, 0.4 metre (the side of the base must be twice the height).

44. A roofer wants to make an open channel of maximum capacity with
bottom and sides 10 cm in width, and with the sides inclined at the same 
angle to the bottom. What is the width of the channel at the top? Ans. 
20 cm.

45. Prove that a conic tent of given storage capacity requires the least 
material when its height is Y~ 2 times the radius of the base.

46. It is required to make a cylinder, open at the top, the walls and 
bottom of which have a given thickness. What should the dimensions of the 
cylinder be so that for a given storage capacity it will require the least
material? Ans. If R is the inner radius of the base, v the inner volume of

the cylinder, then
47. It is required to build a boiler out of a cylinder topped by two 

hemispheres and with walls of constant thickness so that for a given volume 
v it should have a minimum outer surface. Ans. It should have the shape of

a sphere with inner radius
48. Construct an isosceles trapezoid, which for a given area S has a mini

mum perimeter; the angle at the base of the trapezoid is equal to a. Ans.

The length of one of the nonparallel sides
i s  V i h -

49. Inscribe in a given sphere of radius R a regular triangular prism of
2/?maximum volume. Ans. The altitude of the prism Is —̂
Y  3

50. It is required to circumscribe about a hemisphere of radius R a cone 
of minimum volume; the plane of the base of the cone coincides with that 
of the hemisphere; find the altitude of the cone. Ans. The altitude of the 
cone is R Y  3.

51. About a given cylinder of radius r circumscribe a right cone of mini
mum volume; we assume the planes and centres of the circular bases of the 
cylinder and the cone coincide. Ans. The radius of the base of the cone is
equal to -^-r.

52. Out of sheet metal, having the shape of a circle of radius R , cut 
a sector such that it may be bent into a funnel of maximum storage capacity.

Ans. The central angle of the sector is 2jt
/ t -

53. Of all circular cylinders inscribed in a given cube with side a so that 
their axes coincide with the diagonal of the cube and the circumferences of 
the bases touch its planes, find the cylinder with maximum volume. Ans. The

altitude of the cylinder is equal to' K3. the radius of the base is
3 / v

54. Given, in a rectangular coordinate system, a point (jc0, y0) lying in the 
first quadrant. Draw a straight line through this point so that it forms 
a triangle of least area with the positive directions of the axes. Ans. The 
straight line intercepts on the axes the segments 2x0 and 2y0; thus, it has the
equation ?^- +  ~ = = l .2*0 2 y0
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55. Given a point on the axis of the parabola y2 =  2px at a distance a 
from the vertex, find the abscissa of the point of the curve closest to it.

^Ans. x =  a—p.
56. Assuming that the strength of a beam of rectangular cross-section is 

directly proportional to the width and to the cube of the altitude, find the 
width of a beam of maximum strength that may be cut out of a log of diameter 
16 cm. Ans. The width is 8 cm.

57. A torpedo boat is standing at anchor 9 km from the closest point of 
the shore; a messenger has to be sent to a camp 15 km (along the shore) 
from the point of the shore closest to the boat. Where should the messenger 
land so as to get to the camp in the shortest possible time, if he does 5 km/hr 
walking and 4 km/hr rowing. Ans. At a point 3 km from the camp.

58. A point moves over a plane in a medium situated outside the line MN 
with velocity vXt and along the line MN with velocity v2. What path 
between A and B, situated on MN,  will it cover in the ' shortest time? The 
distance of A from MN is h, the distance of the projection a of A on the
line MN from B is a. Ans. If ACB is the path of the point, then —nC V2
( aB _  o, . ~ f aB ^ vxfor — —  and aC =  aB for T 5 < ~ .AB v2 AB v2

59. A load w is hoisted by a lever; a force F is applied to one end, the 
point of support is at the other end of the lever. If the load is suspended 
from a point a centimetres from the fulcrum, and the lever rod weighs v 
grams per centimetre of length, what should the length of the rod be for the

2a w cm.force (required to raise the load) to be a minimum? Ans. x =
60. For n measurements of an unknown quantity x the following readings 

have been obtained: x,, x2, . . . ,  xn. Show that the sum of the squares of the 
errors (x —xt)a +  (x—x2)2 +  . . .  +  (x—xn)2 will be least if for x we take'the
number 5' ± £ +  _  + £ ? , 

n
61. To reduce the friction of a liquid against the walls of a channel, the 

area in contact with the liquid must be a minimum. Show that the best shape 
of an open rectangular channel with given cross-sectional area is that for 
which the width of the channel is twice its altitude.

Determine the points of inflection and the intervals of convexity and con
cavity of the curves.

62. r/ =  x5. Ans. For x <  0 the curve is convex; for x > 0  the curve is con
cave; at x =  0 there is a point of inflection. 63. y =  1—x2. Ans. The curve 
is everywhere convex. 64. y =  xa—3x2—9x-f-9. Ans. Point of inflection at 
x =  1. 65. r/ =  (x — b)a. Ans. Point of inflection at x =  b. 66. y =  x4. Ans. The
curve is everywhere concave. 67. r/= - , , . . Ans. Point of inflection atx2+ l
x =  i  . 68. i/ =  tanx. Ans. Point of inflection at x =  nit. 69. y=xe~1

Ans. Point of inflection at x =  2. 70. y =  a —, \ f x —b. Ans. Point of inflec
tion at x = b .  71. y =  a — \ / (x — b)2. Ans. The curve has no point of inflection.

1Find the asymptotes of the following curves: 72. y =  
1y =  0. 73. y = (x +  2)** Ans. x =  —2, y =  0. 74. y =  c +

x — 1 
as

( x - b ) 2'

Ans. x =  1, 

Ans. x =  b.
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y =  c. 75. y =  e x — 1. Ans. x =  0, y — 0. 76. y =  \nx. Ans. x:=0.
4

77. y3 — 6x2 +  xs. Ans. y — x +  2. 78. y 3= a 3 — x3. Ans. */-}-x:=U.
79. t/2 =   ̂ * ■— . Ans. x =  2a. 80. */2 (x — 2a) =  x3—a3. Ans. x =  2a, y = ± ( x  -j-a). 

Investigate the following functions and construct their graphs:
i  Q g 1 _

81. y = x *  2x +10. 82. y =  — ^  ■ 83. y =  e ~ ~ .  84. y = T ^ r  .

85. y =  ~~^~ ■ 88. y = - ^ r x - 87. y =  X- ± ^  . 88. y = ~ -  89. y* =  x>~x.

90. y =  ̂ X_ x2- 91. y = \ / x *  +  2. 92. y =  x — ) / x* +  l. 93. y =  | X ~ .

94, y =  xe~x. 95. y =  x2e~xi. 96. y =  x— ln(x +  l). 97. y =  ln (x2+ l )
98. # =  sin3x. 99.  ̂=  x +  sinx. 100. y =  x sinx. 101. y =  e~x sinx.

102. y =  Insinx. 103. y =  —̂ . 104. |  l 105. /  X
x \  y = ^ u i

106. 1 * =  fl 107. /  * - " ' cos<*
1 j /  =  a (1 — cos0 - I 0  =  0** sin/.

Additional Exercises
x2 -4~ 1Find the asymptotes of the following lines: 108. y =  j - ± — . Ans. x =  — I; 

y —X — 1. 109. y = x- \ - e~ x. Ans. y =  x. 110. 2y (x +  l)2 =  x*. Ans. x =  — 1; 
y =  ̂ x  — 1. 111. y*=a* —x2. Ans. x +  y =  0. 112. y =  e~2X sinx. Ans. y =  0.

113. y =  e~x sin 2x +  x. Ans. y — x. 114. y =  x In Ans. x = —

y =  x +  Y  . 115. y =  xe*2 . Ans. x =  0; */ =  x. 116. x =   ̂ , y =   ̂ .

- * 1 1Ans. {/=± •
Investigate and graph the following functions: 117.. y =  lx |. 118. y =  ln |x | .  

119. */2 =  xs—x. 120.  ̂=  (x -|-l)2(x—2). 121. ^ = x - f |x | .  122. y = y ^ x2—x.

123. y =  x2 l ^ x + 1. 124. t/ =  y  —Inx. 125. y =  ̂ \ n x .  126. y =  •

y In jc —
127. y — Yn~x * i /==;c +  — • 129. * /= x ln x . 130. y ~ e x — x. 131. */--

r= |sin3x|. 132. y  =  S-y-~ • 133. // =  xarctanx. 134. y — x —2 arc tan x.
135. y =  e~2X sin 3x. 136.  ̂=  | sin x | +  x. 137. */ =  sin x2. 138. y =  cos5 x -f sin3 x.



C H A P T E R  VI

THE CURVATURE OF A CURVE

SEC. I. THE LENGTH OF AN ARC AND ITS DERIVATIVE

Let the arc of a curve M0M (Fig. 136) be the graph of the 
function y = f(x) defined on the interval (a, b). Let us determine 
the arc length of the curve. On the curve M„M take the points 

. . . .  M,_,, Mt, . . . .  M. Connecting the points
we get a broken line . .Mn_lM inscribed in

the arc M 0M. Denote the length of this 
M’ - &3 broken line by Pn.

The length of the arc M 0M is the limit 
/ /  \  (we denote it by s) approached by the

Z '  \  length of the broken line as the largest
Mn-l j  °* ^ e  !en§^s of the segments of the bro- 

/  ken line approaches zero, if this
M limit exists and is independent of any 

Fig 136. choice of points of the broken line

It will be noted that this definition of the arc length of an
arbitrary curve is similar to the definition of the length of a
circumference.

In Ch. XII it will be proved that if a function f(x) and its
derivative f' (*) are continuous on an interval [a, b\, then the arc
of the curve y = f(x) lying between the points [a,/(a)] and 
1 b,f(b)] has a definite length; a method will be shown for com
puting this length. There also, it will be established (as a corollary) 
that under the given conditions the ratio of the length of any arc 
of this curve to the length of its chord approaches unity when the 
length of the chord approaches zero, that is,

lim. length M0M _  ]
M„M -► o length M0M

This theorem may be readily proved for the circumference*) of

*) Consider the arc AB, the central angle of which is 2a. (Fig. 137). The 
length of this arc is 2Ra (R is the radius of the pircle), and the length of its

chord is 2/?sina. Therefore, lim length AB =  lim 2/?a = i
a -► o length AB a -*■ o 2R sin ct
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a circle; however, in the general case we shall accept it without 
proof (Fig. 137).

Let us consider the following question.
On a plane we have a curve given by the equation

«/=/(*)•
Let Mn(x0, y0) be some fixed point of the curve and 

some variable point of the curve. Denote by s the arc length 
M,M (Fig. 138).

The arc length s will vary with changes in the abscissa x of 
the point M; in other words, s is a function of x. Find the deri
vative of s with respect to x.

Increase "x by Ax. Then the arc s will change by A s=the
length of MM,. Let MM, be the chord subtending this arc. In

A n

order to find lim =- do as follows: from AMM,Q find Ax ___  . 1 '
MM\ = (Ax)2 + (Ay)2.

Multiply and divide the left-hand side by As2:

( M i ) *  As2 =  (A*)* +  (Ay)\

Divide all terms of the equation by A*2:

(W (iO  = ' + (£)•
Find the limit of the left and right sides as Ax—>-0. Taking into
account that lim =  1 and that lim — =  ̂  we get

5 * . - .  As dx
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or

£ -  < ■ >

For the differential of the arc we get the following expression:

ds= y  l + ( a i ) * ^  (2)
or *)

ds =  j/djc* +  dy*. (2')

We have obtained an expression for the differential of arc 
length for the case when the curve is given by the equation 
y = f(x). However, (2') holds also for the case when the curve is 
represented by parametric equations.

If the curve is represented parametrically,
x = q>(t), y = tp(l),

then
dx = q>'(l)dt, dy — tp'(l)dt, 

and expression (2') takes the form
ds =  /[.<p' ( f ) (0)8dt.

SEC. 2. CURVATURE

One of the elements that characterise the shape of a curve is 
the degree „of its bentness, or curvature.

Let there be a curve that does not intersect itself and has 
a definite tangent at each point. Draw tangents to the curve at 
any two points A and B and denote the angle formed by these 
tangents by a [or, more precisely, the angle through which the 
tangent turns from A to B (Fig. 139)]. This angle is called the 
angle of contingence of the arc AB. Of two arcs of the same 
length, that arc is more curved which has a greater angle of 
contingence (Figs. 139 and 140).

On the other hand, when considering arcs of-different length we 
cannot evaluate the degree of their curvature solely by the appro-

*) Strictly speaking, (2') holds only for the case when d x >  0. But if 
dx <  0, then d s =  — V~dx* +  dy*. For this reason, in the general case this 
formula is more correctly written as \ d s \ = Y d x 1 +  dyt .
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priate angles of contingence. Whence it follows that a complete 
description of the curvature of a curve is given by the ratio of 
the angle of contingence to the length of the corresponding arc.

Definition 1. The average curvature Kav of an arc AB is the 
ratio of the corresponding angle of contingence a to the length of 
the arc:

For one and the same curve, the average curvature of its diffe
rent parts (arcs) may be different; for example, for the curve shown 
in Fig. 141, the average curvature of
the arc AB is not equal to the average
curvature of the arc A iBi, although 
the lengths of their arcs are the same.
What is more, at different points the 
curvature of the curve differs. To cha
racterise the degree of curvature of a 
given line in the immediate neighbour
hood of a given point A, we introduce 
the concept of curvature of a curve at 
a given point.

Definition 2. The curvature KA of a line at a given point A is
the limit of the average curvature of the arc AB when the length 
of this arc approaches zero (that is, when the point B approa
ches the point A)\

Ka=  lim Kav— Hm ^ * ) .
»b-k> AB

*) We assume that the magnitude of the limit does not depend on which 
side of the point A we take the variable point B on the curve.
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Example. For a circle of radius r : 1) determine the average curvature of
the arc AB subtending the central angle a (Fig. 142); 2) determine the 
curvature at the point A.

Solution. 1) Obviously the angle of contingence of the arc AB is a, the 
length of the arc is ar. Hence,

Fig. 142. Thus, the average curvature of the arc of a circle
of radius r is independent of the length and po- 

I sition of the arc, and for all arcs it is equal
to — . Likewise, the curvature of a circle at any point is independent of the

choice of this point and is equal to y  .

Note. It should be noted that, generally speaking, for any curve 
the curvature at its various points differs (this will be seen later).

SEC. 3. CALCULATION OF CURVATURE

Let us develop a formula for finding the curvature of any line 
at any point M(x,y). We shall assume that the curve is represen
ted in the Cartesian coordinate 
system by an equation of the form

</=/(*) (i)
and that the function f(x) has a 
continuous second derivative.

Draw tangents to the curve at the 
points M and A4, with abscissas x 
and-jt +  Ax and denote by cp and 
cp-bAip the angles of inclination of 
these tangents (Fig. 143).

We reckon the length of the
arc M0M from some fixed point A40
and denote it by s; then As =  M0M, — M0M, and lA s^M M ,.

As will be seen from Fig. 143, the angle of contingence corres-
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ponding to the arc MM, is equal to the absolute value*) of the 
difference of the angles <p and cp +  Acp, which means it is equal 
to | Acp |.

According to the definition of average curvature of a curve, on 
the segment AfAf, we have

K  __ 1 A<P I A<P
I As |." As ‘

To obtain the curvature at the point M, it is necessary to find 
the limit of the expression obtained on the condition that the
arc length MMi approaches zero:

K =  Hm A<P
As

Since the quantities cp and s both depend on x (are functions 
of x), cp may thus be considered as a function of s. We may con
sider that this function is represented parametrically by means 
of the parameter x. Then

lim =  ̂
As —► o As ds

and, consequently,

To calculate , we make use of the formula 
ferentiating a function represented parametrically:

(2)

for dif-

dtp
dcp_ dx
ds ~ds * 

dx

To express the derivative jn terms of the function y = f(x), we 

note that tan <P =  ̂ f and, therefore,

cp =  arc tan .

Differentiating the latter equality with respect to x, we get
d 2y

d(p _ dx2

*) It is obvious that for the curve given in Fig. 143, |A<p| =  A<p since 
A<P >  0.
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As regards the derivative we found in Sec. 1, Ch. VI, that

Therefore,

ds
dx

d cp
_dx

ds ds 
dx

d2y
d7z

^ K d x ) ____________ dx1

/ m T K - ? ) ]
or, since K = dq>

ds we finally get

K = (3)

It is thus possible to find the curvature at any point of a
curve where there exists a second derivative — and where it is
continuous. Calculations are done with formula (3). It should be 
noted that when calculating the curvature of a curve only the 
arithmetical (positive) value of the root in the denominator should 
be taken, since the curvature of a line cannot (by definition) be 
negative.

Example 1. Determine the curvature of the parabola y* =  2px:
a) at an arbitrary point M (xt y)\
b) at the point M, (0, 0);
c) at the  ̂point p^.

Solution. Find the first and second derivatives of the function y =  y~2px: 
dy _  p . d*y _  p* 
dx Y W x  ' dx2 (2p*)3/a ’

Substituting the expressions obtained into (3), we get

____ Pi
(2p* +  p2)8/a ’

b) ^ = o = - ;
y -o

1
Kjc=T  2 / 2 p 

y -p
c)
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Example 2. Determine the curvature of the straight line y =  ax +  b at an 
arbitrary point (x, y).

Solution.
y' =  a , y* =  0.

Referring to (3) we get

Thus, a straight line is a "line of zero curvature”. This very same result !g 
readily obtainable directly from the definition of curvature.

SEC. 4. CALCULATION OF THE CURVATURE OF A LINE REPRESENTED
PARAMETRICALLY

Let a curve be represented parametrically:
*=<p(0. y =  l>(0- 

Then (see Sec. 24, Ch. III).
dy  9 ' (t) d*y 9 V —W
dx 9 ' (t) ’ dx* (9 ')*

Substituting the expressions obtained into formula (3) of the 
preceding section, we get

l * Y - W I
' [9 '*  +  i|), , l’/* '

Example. Determine the curvature of the cycloid 

x =  a(t  — sin/), y =  a ( \  — cos/) 
at an arbitrary point (*, y).

Solution.
dx /| d2x . . dy . . d2y~  =  cos/), - j p ^ a s i n t ,  — =  a sin /, ~  =  flcos/.

Substituting the expressions obtained into (3), we get

^  1 a (1 —cos t) a cos / — a sin t-a sin / 1 _  | cos / — 1|

K-

I a2 (1 — cos /)* +  «* sin* 1p* 23,,’a (l —cos l)*/»
.1  1

23/2 a (1 — cos t ) 1/* 4a sin L-to

(1)

SEC. 5. CALCULATION OF THE CURVATURE OF A LINE GIVEN BY AN 
EQUATION IN POLAR COORDINATES

Given a curve represented by an equation of the form
e=/(0). (1)
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Write the transformation formulas from polar coordinates to 
Cartesian coordinates:

*  =  q c o s O ,  t 

t/ =  6 sinO. J
(2)

If in these formulas we replace e by its expression in terms 
of 0, i.e., / (6), we get

x — fW  cos O, \ 
y = f (O) sin 0. '

The latter equations, may be regarded as parametric equations 
of curve (1), the parameter being 0.

Then

^  =  ^ |co s0 —QsinO, sin 0 +  q cos 0,

S = S cos 6 ~ 2 s l sin 0 “  G cos 0> 

S = S sin0+ 2 s l cos6—esin6-

Substituting the latter expressions into (1) of the preceding 
section, we get a formula for calculating the curvature of a curve 
in polar coordinates:

„  I el +2e'*—ee" I
(Q*+Q'*)*/a ' (4)

Example. Determine the curvature of the spiral of Archimedes Q =  afl(a>0) 
at an arbitrary point (Fig. 144).

Solution.
dQ
TQ= a > ^  =  0 dO2

Hence
|o 202 +  2a2 | _ 1  02 +  2

~ (a 26 * + a ‘)3!. a (0 « + i)3/.

It will be noted that for
- large values of 0 we have the

approximate equalities02_L i tJ
1, —— - 1; therefore, rep-02

Fig. 144.
lacing 02 +  2 by 02 and 02+ 1 
by 02 in the foregoing formula,
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we get an approximate formula (for large values of 0)

^ i _ L = i
^  a (02)3/j a0*

Thus, for large values of 0 the spiral of Archimedes has, approximately, 
the same curvature as a circle of radius ad.

. SEC. 6. THE RADIUS AND CIRCLE OF CURVATURE.
CENTRE OF CURVATURE. EVOLUTE AND INVOLUTE

Definition. The quantity R, which is the reciprocal of the cur
vature K of a line at a given point M, is called the radius of 
curvature of the line at the point in question:

Draw a normal, at the point M, to a curve in the direction of 
the concavity of the curve, and lay off a segment MC equal to 
the radius R of the curvature of the curve at the point M. The

point C is called the centre of curvature of the given curve at M\ 
the circle, of radius R, with centre at C (passing through M) is 
called the circle of curvature of the given curve at the point M 
(Fig. 145).

From the definition of circle of curvature it follows that al a 
given point the curvature of a curve and the curvature of a circle 
of curvature are the same.
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Let us derive formulas defining the coordinates of the centre of 
curvature.

Let a curve be given by the equation
« = f(*)- (3)

Take a point M{xy y) on this curve and determine the coordi
nates a and p of the centre of curvature corresponding to this 
point (Fig. 146). To do this, write the equation of the normal to 
the curve at M:

Y - y = - j r ( X - x ) .  (4)

(Here, X  and Y are the moving coordinates of the point of the 
normal.)

Since the point C (a, 0) lies on the normal, its coordinates 
must satisfy equation (4):

P — i f  ( « — * ) •  ( 5 )

Further, the point C (a, P) is separated from M (x , y) by a 
distance equal to the radius of curvature R:

(a -x )*  +  (P - y ) * ~ R \  (6)
Solving equations (5) and (6) simultaneously, we find a and p:

Whence

(a— xY + £ i (a—xY = R t,

(a—xy = r^ n R t.

a = x ± y f w R ' ^ ~ y T v W r R >

and since R = (i +  y , , ) ‘ u  

1 y" I ’
a = x ± y’ V + S ’)

m  ’ P= y T l +y,t 
I / I  •

In order to decide which signs (top or bottom) to take in the 
latter formulas, we must examine the case y " > 0  and the case 
y"<.0. If y " > 0, then at this point the curve is concave, and, 
hence, p> «/ (Fig. 146), and for this reason we take the bottom 
signs. Taking into account that in this case \y"\ = yP, the,formulas 
of the coordinates of the centre of curvature will be

y ’ ( i + y ' ‘)
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Similarly, it may be shown that formulas (7) will hold for the 
case y" <. 0 as well.

If the curve is represented by the parametric equations

* =  <p(0> =

then the coordinates of the centre of curvature are readily obtain
able from (7) by substituting, in place of y' and if, their 
expressions in terms of the parameter

Then

</' =  4 ;  tf: *iyt-*tyt

a = x-

P=y-

y' (*'•+</'*)
x' i f —x"y' 
x ' ^  + y'1) 

' x ' f - x - y '

(7')

Example 1. To determine the coordinates of the centre of curvature of. the 
parabola

y* =  2px:

a) at an arbitrary point M (*, y); b) at the point M0 (0, 0); c) at the 
point M, (  £  , p )  •

Solution. Substituting the values and ^  into (7) we get (Fig. 147):

a) a =  3x +  p, p =  (2*L-  ;

b) at * =  0 we find a =  p, p =  0;

c) at * =  — we have a =  — , p =  — p.
1 1 M,

If at Mt (x, y) of a given line the cur
vature differs from zero, then a very de
finite centre of curvature C, (a, P) corres
ponds- to this point. The totality of all 
centres of curvature of the given line forms 
a certain new line, called the evolute, with Fig. 147.
respect to the first.

Thus, the locus of centres of curvature of a given line is called 
the evolute. As related to its evolute, the given line is called the 
evolvent or involute.

If a given curve is defined by the equation y — f(x)t then equa
tions (7) may be regarded as the parametric equations of the evo-
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lute with parameter x. Eliminating from these equations the para
meter x (if this is possible), we get an immediate relationship 
between the coordinates of the evolute a and (5. But if the curve 
is given by parametric equations jc =  cp(/), t/ =  ip(0> then equa
tions (7') yield the parametric equations of the evolute (since the 
quantities x, y, x ' , y', y" are functions of t).

Example 2. Find the equation of the evolute of the parabola

y2 =  2px.

Solution.. On the basis of Example 1 we. have, for any point (x, y) 
of the parabola,

a  =  3  Jt +  p ,

(2 x)’1'
V p

Eliminating the parameter x from these, 
equations, we get

es= 2 V a- '> ’-
This is the equation of a semicubical 
parabola (Fig. 148).

Example 3. Find the equation of the 
evolute of an ellipse represented by the 
parametric equations

x =  a c o s t , y = b s m t .

Solution. Evaluate the derivatives of x 
and y with respect to t:

x' = —a sin /, y' =  bcost ;  
xn — —a cos t y tj' = — bsint .

Substituting the expressions of the derivatives into (7'), we get 

b cos t (a2-sin2/ +  fr2cos20 _
a =  a cos i- ab sin2 t-\-ab cos21

b2=  a cos t — a cos t sin21------cos* ta cos* t .

Thus,

cos* t.

sin* t.

Similarly we get
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Eliminating the parameter t , we get the equation of the evolute of the ellipse 
in the form

Here, a and p are the coordinates of the evolute (Fig. 149).
Example 4. Find the parametric equations of the evolute of the cycloid

x =  a ( t — sin t ) ,  
y =  a (1 — cos t ).

Solution.
x' — a(  1 —  cos 0 ;  y ' = a s i n t ;  

x'  =  a s m t ;  y" = — a cost .

S u b s t i t u t i n g  th e  e x p r e s s i o n s  o b t a i n e d  
in to  (7 ') ,  w e  ge t

a =  a {t -{-sin t),
P =  — a (1 —  cos t).

R e a r r a n g e  th e  v a r i a b l e s ,  p u t t i n g

a  =  £ — Jta, 
p =^r) —  2a, 
t =  x — n;

t h e n  th e  e q u a t i o n s  of th e  e v o lu te  will  
take th e  form

5 =  a  (t —  sin t ),
T] = f l  (1 — cos t ) ;

they define, in coordinates £, x\, a cycloid with the same generating circle of 
radius a. Thus, the evolute of a cydoid is that same cycloid displaced along 
the x-axis by —Jta and along the #-axis by —2a (Fig. 150).

SEC. 7. THE PROPERTIES OF AN EVOLUTE

Theorem 1. The normal to a given curve is a tangent to its evolute. 
Proof. The slope of the line tangent to an evolute defined 

by the parametric equations (7') of the preceding section is
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equal to
dp

d p_dx
da da ' 

dx
Noting that [by virtue of the same equations (7')]

d a _  , , W y'-y'"-y'y'"  m
dx~~ y'» — y  y,« » vw

dP, Zyny'-~y'"-y'2y''' (9,
d X  y'» ’ '  }

we get the relationship
dp=
da £/'

But y' is the slope of the line tangent to the curve at the corre
sponding point; it therefore follows from the relationship obtained 
that the tangent to the curve and the tangent to its evolute at 
the corresponding point are mutually perpendicular; that is, the 
normal to a curve is the tangent to the evolute.

Theorem 2. If, over a certain segment MlMi of a curve, the 
radius of curvature varies monotonically (i.e., either only increases 
or only decreases), then the increment in the arc length of the evo- 
lute on this segment of the curve is equal (in absolute value) to 
the corresponding increment in the radius of curvature of the given 
curve.

Proof. From formula (2'), Sec. 1, Ch. VI, we have
ds2 =  da2 +  dp2

where ds is the differential of the arc length of the evolute; 
whence

(SHsr+GEy-
Substituting, here, the expressions (1) and (2), we get

( % ) ' = « + » ■ ■ ) { — = 7 ^ ) '  < 3 >

Then find  ̂ . Since
n (1 +y'‘)'U n i  ... ( i+ y 'V

y  i/** ■
Differentiating both sides of this equation with respect to .v, we 
get the following (after appropriate manipulations): 

nn  dR Z ( \ + y ' ' Y ( Z y ' y " ' - y " ' - y ' ' y '")



The Properties of an Evolute 223

2 n  4- it'2)9'2Dividing both sides of the equation by 2R = „ ’ , we havey
dR (1 + . 0 V* (3 
dx -  y"•

Squaring, we get

( g ) ' - o  . <4)

Comparing (3) and (4), we find

whence
dR_=  ds_ 
dx +  dx ‘

It is given that — does not change sign (R only increases or
dsonly decreases); hence, ^  does not change sign either. For the

dR dssake of definiteness, let ^ 0, (which corresponds to

Fig. 151). Hence, S  =
Let the point Af, have abscissa xt and Mt have abscissa Apply 

the Cauchy theorem to the functions s(x) and R{x) on the 
interval [*,, a:,]:

( - )S (xt)—s (a:,) _  V dx)x=\ _  ,
R(x t ) - R ( Xl) -  ( d R \  ~  >

\ d x  Jx=i
where £ is a number lying between x, and x, (* ,•< £ <  *,).

We introduce the designations (Fig. 151)
s W  =  s„ s W  =  s„ R (x t) = R t, J? (*,) =  £ ,.

Then — — 1, or s2—s, =  — (Rt— R}). But this means that
\st— s,\ = \R ,— R l \.

This equality is proved in exactly the same manner if the radius 
of curvature increases.

We have proved Theorems 1 and 2 for the case when the curve 
is given by an explicit equation, y = f{x).
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If the curve is represented by parametric equations, these 
theorems also hold, and their proof is exactly the same.

Note. The following is a simple mechanical method for constructing 
a curve (involute) from its evolute.

to the point C0 and bends round the ruler. If we hold the string 
taut and unwind it, the end of thestring will describe a curve M5A40,

which is the involute (or evol
vent, the name coming from 
this process of “evolving”). Proof 
that this curve is indeed an 
involute may be carried out by 
means of the above-established 
properties of the evolute.

It should be noted that to a 
single evolute there correspond 
an infinitude of various 
involutes (Fig. 152).

Example. Let there be a circle oh 
radius a (Fig. 153). Take the involute 
of this circle that passes through the 
point M0 (a, 0).
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Taking into account that CM =  CM0 =  at, it is easy to obtain the equations 
of the involute of the circle:

OP = x  =  a (cos t +  t sin t),
PM = y  =  a (sin t — t cos t).

It will be noted that the profile of a tooth of a gear wheel is most often 
in the shape of the involute of a circle.

SEC. 8. APPROXIMATING THE REAL ROOTS OF AN EQUATION

Methods of investigating the behaviour of functions enable us to 
approximate the roots of an equation:

f(x) = 0.
IF the equation is an algebraic equation*) of the first, second, 

third, or fourth degree, there are formulas which permit expressing 
the roots of the equation in terms of its coefficients by means of 
a finite number of operations of addition, subtraction, multiplica
tion, division and evolution. Generally speaking, there are no such 
formulas for equations above the fourth degree. If the coefficients 
of any equation algebraic or nonalgebraic (transcendental) are not 
literal but numerical, then the roots of the equation may be cal
culated approximately to any degree of accuracy. It should be noted 
that even when the roots of an algebraic equation are expressed 
in terms of radicals, it is sometimes better, practically speaking, 
to apply an approximation method of solving the equation. Below 
we give some methods of approximating the roots of an equation.

1. Method of chords. Let there be an equation
f(x) =  0 (1)

where /(x) is a continuous, doubly differentiable function on the 
interval [a, b]. Suppose that by investigating the function tj = f(x) 
within the interval [a, b] we isolate a subinterval [x,, x2] such that 
within this subinterval the function is monotonic (either increas
ing or decreasing), and at the end points the values of the func
tion /(x,) and f(x t) are of different signs. For definiteness, we say 
that / (x ,)< 0 , f{xJ  >  0 (Fig. 154). Since the function y = f(x) 
is continuous on the interval [x,, x j ,  its graph will cut the x-axis 
in some one point between x, and xt.

Draw a chord AB connecting the end points of the curve 
y — f{x), which correspond to abscissas x, and x2. Then the

*) The equation /(x) =  0 is called algebraic if /(x) is a polynomial (see 
Sec. 6, Ch. VII).

8  — 3 3 8 8
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abscissa a, of the point of intersection of this chord with the x-axis 
will be the approximate value of the root (Fig. 155). In order to 

this approximate value let us write the equation of the straight 
AB that passes through two given points A [*,, /(x,)]

find
line

Since y = 0 at x =  at, it follows that

whence
a

—{ (x.) _ a,— xx
/ (* , )—/(* ,)  xi —xl ’

(*«—*i) f (*|)
' /(*,)-/(*.) (2)

To obtain a more exact value of the root, we determine /(a,). 
If f (a ,)<  0, then repeat the same procedure applying formula (2) 
to the interval [a,, xs]. If / ( a , ) > 0, then apply this formula to 
the interval [x,, a,]. By repeating this procedure several times we 
will obviously obtain more and more precise values of the root 
atat, etc.

Example 1. Approximate the roots of the equation 
/(*) = *»—6*-f 2 = 0.

Solution. First find the segments where the function f (x) is monotonic. 
Evaluating the derivative /'(*)== 3jt*—6, we find that it is positive for 
x <  — V  2, negative for — 2 <  x <-j- 2 and again positive for x >  V  2
(Fig. 156). Thus, the function has three segments of monotonicity, on each of 
which there is one root.

To make the calculations more convenient, let us narrow these segments 
of monotonicity (but in such manner that there should be a corresponding
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root on each segment). To do this, substitute into expression f (x ), at random,
some values of x, then isolate (within 
shorter intervals that the functions 
points will have different signs:

each segment of 
at the end

*1 =  0, f (  0) = 2 .
*J= 1, f (  l ) = - 3 .
X, =  — 3, /  (— 3) ------7,
x4 =  — 2, /  (— 2) =  6,
x, =  2. f (2) =  — 2,
x ,= 3 , f  (3 )=  11.

Thus, the roots lie within the intervals
(0, 1), ( - 3 ,  - 2 ) ,  (2, 3).

Find the approximate value of the root in the 
interval (0, 1); from formula (2) we have

( 1—  0) 2 _ 2a, =  0- - =  -=- =  0.4.—3—2 5
Since

f (0.4) =  0.48 — 6-0.4 + 2  =  — 0.336, f (0) =  2,
it follows that the root lies between 0 and 0.4. Again 
applying (2) to this interval, we get the following
approximation:

ao = 0- (0.4—0)-2 0.8

Similarly
intervals.

—0.336—2
approximate

2.336 
the roots

=  0.342, etc.

in the other

monotonicity) such

2. Method of tangents (Newton’s method). Again, let f(x t) c 0 ,  
0; and on the interval [x,, x,,] the first derivative does not 

change sign. Then there is one root of the equation /(x) =  0 in the 
interval (x,, x,). Let us assume that the second derivative does not 
change sign in the interval [x,, x,] either; this can be achieved by 
reducing the length of the interval within which the root lies.

Retention of the sign of the second derivative on the interval 
[x,, x,] means that the curve is either only convex or only 
concave on [x,, x,].

Draw a tangent to the curve at the point B (Fig. 157). The 
abscissa a, of the point of intersection of the tangent with the 
x-axis will be an approximate value of the root. To find this 
abscissa write the equation of the line tangent at the point B:

y —f(x t) = f '(x t)(x— xt).

Noting that x =  a, at y = 0, we have
/(*t)

8*

a, =  x. (3)
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Then, drawing the line tangent at the point B,, we analogously 
find a mor£ exact value of the root a2. By repeating this procedure

we can calculate the approximate value of the root to any desired 
degree of accuracy.

Note the following. If we drew the line tangent to the curve 
not at the point B but at A, it might appear that the point of

intersection of the tangent with the jc-axis 
lies outside the interval (xt, x2).

From Figs. 157 and 158 it follows that 
the tangent should be drawn at the end 
of the arc at which the signs of the func
tion and its second derivative coincide. 
Since it is given that on the interval [jc, , 
jc2] the second derivative retains its sign, 
the signs of the function and the second 
derivative must coincide at one of the end 
points. This rule also holds for the case 
when f '(x )<  0. If the line tangent is 

drawn at the left end point of the interval, then in formula (3) 
we must put x t in place of x t:

a, /(*.) 
r  (*.)• (3')

When there is a point of inflection C in the interval (*,, xt), 
the method of tangents can yield an approximate value of the 
root lying without the interval ( .jc, ,  xt) (Fig. 159).

Example 2. Apply formula (3) to finding the root of the equation 
/  ( a: )  =  * 8 — 6 * +  2  =  0  

within the interval (0, 1). We have
/ (0) =  2, /'(0 ) =  (3 * * -6 ) |,=# =  - 6 ,
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and so from (3) we get

a, =  0 — ^  =  4-=0.333. —o o

3. Combined method (Fig. 160). Applying at the same time on 
the interval [xl9 x2] the method of chords and the method of tan
gents, we get two points ax and 
a, lying on either side of the 
desired root a, since f (ax) and 
f ( a j  have different signs. Then, 
on the interval [av a j  again 
apply the method of chords and 
the method of tangents. This 
yields two numbers: a2 and a2, 
which are still closer to the 
value of the root. We continue 
in this manner until the difference 
between the approximate values 
found is less than the required 
degree of accuracy.

It will be noted that in the 
combined method we approach 
the sought-for root from two 
sides simultaneously (i. e., at the same time we approximate 
the root with an excess and with a deficit).

To illustrate, in the case we have examined it will be clear that by 
substitution we have

f (0.333) >  0, /  (0.342) < 0 .

Hence, the root is between the approximate values obtained:
0.333 <  x <  0.342.

Exercises on Chapter VI

Find the curvature of the curves at the indicated points:
1. b2x2-\- a2y 2 — a2b2 at the points (0, b) and (a, 0). Arts. at (0, b);

~  at (a, 0).
242. x y =  12 at the point (3, 4). Ans. .

3. y =  x8 at the point (a ,, //,). Ans. 6a,
0+9*: )a/2‘

4. 16#2 =  4x4—a® at the point (2, 0). Ans. — .
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5. x s +  y 9 =  a 9 at an arbitrary point. Ans. 1

3 ( axy) 8
Find the radius of curvature of the following curves at the indicated 

points; draw each curve and construct the appropriate circle of curvature.

6. y 2 — x 9 at the point (4, 8). Ans. R =  — .

7. x2 — 4ay at the point (0, 0). Ans. R =  2a.

8. h2x2—a2y2 — a2b2 at the point (*,, yx). Ans. R =  1 "— •

9. y =  \nx  at the point (1, 0). Ans. R = 2  V~~2.
10. ty — sin jc at the point , 1  ̂ . Ans. R =  1.

11. aC°S * 1 for t — tx. Ans. R =  3a sin t cos t.y — a sin81 f 1
Find the radius of curvature of the indicated curves:

12. * - 31'y =  3t — t9 for t =  1. Ans. R =  6.

13. Circle Q =  asin0. Ans. /? =  -£ .

14. Spiral of Archimedes Q =  a0. Ans. R = (g,+ a ,),y,
q2 + 2a2

15. Cardioid q =  a (1—cos0).

16. Lemniscate Q2 =  a*cos20.
0

17. Parabola Q =  a sec2 y  .

0

Ans. / ? = y V r2aQ. 

a2Ans. R = — .
00 0

Ans. R =  2a sec8 .

3 0 Ans. R =  — a sin2 — ,4 318. Q =  a sin3 .

Find the points of curves at which the radius of curvature is a minimum:

19. y = \n  x. .4ns. s  l n 2 ) .

4 . ,  ( - { „  £ ) .20. y =  ex.

21. Y  xAr Y  y= V  a

22.

Ans.
■ ( t -  1 )

. f/ =  a ln ^  1—^  * Ans. At the point (0,0)

Find the coordinates of the centre of curvature (a, P) and the equation of 
the evolute for each of the following curves:

23- - , - £ = 1.a2 b2 Ans. a = (a2+ b 2) x3
P =  -

.(<**+*>*) if
b4

2 >

24. x 8 +  y 3 =  a 8 . Ans. a =  x -f 3*8 y 9; p =  ̂ / +  3*8 y 9
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25. y* =  a*x.

-  {

Ans a _-a4+ l V . o_a*y 9y*
',rtS- “ ------6a*y ’ P _  2a* ‘

Ans. a =  - + * ;  p =  3<1- - 1 .

27.
* =  & In cot —— k cos t, Ans.
y =  k sin /.

2g ( x =  a (cos t  +  tsint) ,  
\  y =  a (sin t — t cost). 

29 I * =  a cos’ t ,
| y =  asm*t.  

p =  a sin31 +  3a cos21 sin t.

 ̂  ̂ek -\-e (tractrix).
s -  » = 4 (

Ans. a =  acost;  p =  a s in f  

Ans. a =  a cos* t +  3a cost sin* t;

30. Find the roots of the equation x*—4 +  2 =  0 to three decimal places. 
Ans. *, =  1.675, *2 =  0.539, *3 = — 2.214.

31. For the equation f(x) =  xs—* —0.2 =  0, approximate the root in ,the 
interval (1, 1.1). Ans. 1.045.

32. Evaluate the roots of the equation *4 +  2*2—6 * +  2 =  0 to two decimal 
places. Ans. 0.38 < * , <  0.39; 1.24 <  x2 <  1.25.

33. Solve the equation x*—5 =  0 approximately. Ans. jc, == 1.71,

«=  1-71  ̂ .
34. Approximate the root of the equation * — tan* =  0 lying between 0

Q-n;
and —■. Ans. 4.4935,

35. Evaluate the root of the equation s in * = l—* to three places of deci
mals. Hint. Reduce the equation to the form /(* ) =  0. Ans. 0.5110 <  * <  
<0.5111.

Miscellaneous Problems

36. Show that at each point of the lemniscate Q2 =  a2 cos2q> the curvature 
is proportional to the radius vector of the point.

37. Find the greatest value of the radius of curvature of the curve
Q — a sin* — Ans. R =  —r a. 4

38. Find the coordinates of the centre of curvature of the curve y =  x \n x  
at the point where y ' = 0 .  Ans. (c”1, 0).

39. Prove that for points of the spiral of Archimedes Q =  a<p as <p — ► o o  the 
magnitude of the difference between the radius vector and the radius of cur
vature approaches zero.

40. Find the parabola y =  ax* +  bx +  c, which has common tangent and cur
vature with the sine curve y =  sin* at the point

jt*
Make a drawing.

Ans. y 2 “f* 2  ̂ g *
41. The function // =  /(*) is defined as follows:

/(*) =  * 8 in the interval — 00 <  x < ,  1,
f (x) =  ax2 +  bx-\-c in the interval 1 < * <  +  o o .

What must a, b and c be for the line y =  f(x) to have continuous curvature 
everywhere? Make a drawing. Ans. a =  3, b =  — 3, c = l .
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42. Show that the radius of a curvature of a cycloid at any one of its 
points is twice the length of the normal at that point.

43. Write the equation of the circle of curvature of the parabola y =  x2
(  7 \ 2  lot; v

at the point (1, 1). Ans. (* +  4)2 +  ( y — y ) = — .
44.

the
Write the equation of the circle of curvature of the curve y =  tan* at

point ( - J . l ) .  Ans. ( x - * = ! 2 y + ( „ - .
45. Find the length of the entire evolute of an ellipse whose semi-axes

, . . 4(a* — b*)are a and b. Ans. —■■— r-----ab
46. Find the approximate value of the roots of the equation x e *  =  2 to 

within 0.01. Ans. The equation has only one real root, *=^0.84
47. Find the approximate value of the roots of the equation * ln *  =  0.8 

to within 0.01. Ans. The equation has only one real root, x^:1.64.
48. Find the approximate value of the roots of the equation x 2 arc tan x = \  

to within 0.001. Ans. The equation has only one real root, 1,096.



C H A P T E R  VI I  

COMPLEX NUMBERS. POLYNOMIALS

SEC. 1. COMPLEX NUMBERS. BASIC DEFINITIONS

A complex number is the expression
a + b i (1)

where a and b are real numbers, i is the so-called imaginary unit, 
which is defined by the equalities

i = V — 1 or £* =  — 1; (2)
a is called the real part, and bi, the imaginary part of the complex 
number. Two complex numbers a + bi and a—bi that differ 
only in the sign of the imaginary part are called conjugate.

If a =  0, the number 0 + bi = bi is called a pure imaginary; if 
6 =  0, we get a real number: a +  0 i =  a.

We agree upon the two following basic statements:
1) two complex numbers ai +  bli and at + bxi are equal if

=  b *<

that is, if their real parts are equal and their imaginary parts are 
equal;

2) a complex number is equal to zero:
a + bi — 0

if and only if a = 0, b — 0.
1. Geometric representation of complex numbers. Any complex 

number a + bi may be represented in an xi/-plane as a point A (a, b) 
with coordinates a and b (Fig. 161); and conversely, any point 
M (a, b) in an jn/-plane may be regarded as the geometric image 
of a complex number a + bi.

But if to each point A (a, b) there corresponds a complex 
number a + bi, then, to take a specific case, to points lying on 
the x-axis there correspond real numbers (b = 0). But if a point 
lies on the i/-axis, it represents a pure imaginary number, since 
a = 0. For this reason, when complex numbers are represented in 
the plane, the y-axis is called the imaginary axis or axis of
imaginaries, and the x-axis, the real axis (axis of reals). ___

Joining the point A(a, b) with the origin, we get a vector OA. 
In certaini nstances, it is convenient to consider the vector OA as 
the geometric representation of the complex number a + bi.
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2. Trigonometric form of a complex number. Denote by cp and 
r( r^ O ) the polar coordinates of the point A (a, b) and consider 
the origin as the pole and the positive direction of the *-axis, the 

polar axis. Then (Fig. 161) we have the 
familiar relationships:

a =  r cos 9, & =  rsincp,
and, hence, the complex number may be 

ry given in the form
a-\-bi = r (cos cp +  i sin <p). (3)

Fig. 161. The expression on the right-hand side is
called the trigonometric form of a complex 

number a + bi. The quantities r and cp are expressed in terms of a 
and 6, by the formulas

r =  Y a z +  ft2, <p =  arc tan —

M
mt>)

r / b
/w

0 a

and are called: r, the modulus, <p, the argument (amplitude or 
phase) of the complex number a-^-bi.

The amplitude of a complex number, the angle cp, is considered 
positive if it is reckoned from the positive jc-axis counterclockwise, 
and negative, in the opposite sense. The amplitude cp is obviously 
not determined uniquely but to within the accuracy of the term 
2zik, where k is any integer.

The modulus r of the complex number a-\-bi is sometimes 
denoted by the symbol \ a + bi\:

r =  | a-j- bi\.
It will be noted that the real number A can also be written in 

the form (3), namely:
A = \A \(cos 0 +  i sin 0) for A >  0, 

i4==|i4 | (cosjt +  i sinn) for A<,0.
The modulus of the complex number 0 is zero: |0 | =  0. Any 

angle <p may be taken for amplitude zero. Indeed, for any angle 
9 we have the equality

0 =  0 - (cos cp +  i sin 9).

SEC. 2. BASIC OPERATIONS ON COMPLEX NUMBERS

1. Addition of complex numbers. The sum of two complex 
numbers +  and at + bti is a complex number defined by 
the equality

(a, +  bti) +  (a, +  bti) = (a, +  a2) + (6, + bt) t. (1)
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From (1) it follows that the addition of complex numbers given 
in vectors is performed by the rule of the addition of vectors.

2. Subtraction of complex numbers. The difference of two com
plex numbers a2 + b2i and ax + bxi is a complex number such that 
when it is added to ax + bxi it yields 
at +  b ti

ll is easy to see that
(a2+ b2i)—(ax +  bxi)=(a2—al)+ (b —b1)i.

(2)

It will be noted that the modulus of the 
difference of two complex numbers 
V (ax — a2Y + (bx — b2)z is equal to the 
distance between the points representing 
these numbers in the plane of the com
plex variable (Fig. 162).

3. Multiplication of complex numbers. The product of two com
plex numbers ax + bxi and a2 + b2i is a complex number obtained 
when these two numbers are multiplied as binomials by the rules 
of algebra, provided that
/* =  — 1; ;3 =  (— l ) t = — i\ i5 =  M etc .,
and, generally, for integral ft,

i*k = 1; f4*+, =  r, i4*+a =  — 1; i*k+3 = — L 
From this rule we get

(ax +  bxi) (a2 +  b2i) =  axa2 +  bxa2i +  axb2i +  axb%i\
or

(ax +  bxi) (a2 +  b2i) =  {axa2— bxb2) +  (bxa2 +  axb2) i. (3)
If the complex numbers are written in trigonometric form, we 

have
rx (cos q)j +  i sin <pj) r2 (cos cp2 i sin cp2) =
=  rxr2 [cosq^cosq^ +  i sin (pjCos <p2+* coscpjSin cp2 +i* sin cpx sinq)2] =  
=  r / 2 [ (cos <p, cos q;2— sin q^sin cp2) -f- i (sin qpjCOs cp2 +  cosq^sinq^)] =

=  r / t [cos (<p, +  <p4) +  i sin (<p, + 9,)].
Thus,
r, (cos q>, +  i sin cp,) rt (cos <p, +  i sin <p,) =

=  [cos (cp, -f- (Ps) 1 sin (q>, +  q>,)]. (3')
(he product of two complex numbers is a complex number, the 
modulus of which is ■ equal to the product of the moduli of the
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factors, and the amplitude is equal to the sum of the amplitudes 
of the factors.

Note 1. By virtue of (3), the conjugate numbers a +  bi and 
a— bi satisfy the equality

(a -j- ib) (a— ib) =  a2 +  62;
the product of conjugate complex numbers is equal to the sum of 
the squares of the moduli of each of them.

4. Division of complex numbers. The division of complex 
numbers is defined as the inverse operation of multiplication: if

cij -I- bxi
a2 + bti =  x +  yi

(where V  ^  +  ^=£0), then x and y must be such as to fulfil the 
equality

a, +  <V =  (ai +  M  (x + yi)
or

a, +  b2i =  (a,*— b2y) +  {a2y + b2x) i.
Consequently, 

whence we find
a, = a2x — b2y. h, = b2x + a2 y,

a\bty

and finally we get
ax -f» bxi _axa24- bxb2 . at bt — a\b2 .
at+bzi ~  a*+bl +  al + bl (4)

Actually, complex numbers are divided as follows: to divide 
al i- ib l by a2 + ib2, multiply the dividend and divisor by a num
ber conjugate to the divisor (that is, by a ,— ib2). Then the divisor 
will be a real number; dividing the real and imaginary parts of 
the dividend by it, we get the quotient

+  _  (o, +  fctt) (a2 — b2i) _  (aia2+ b xb2)^-(a2bt —alb2) i  __
a2 +  b2i (a2 +  b2i)(a2— b2i) a‘ +  b‘

_ a , a 2+ b tb2 a2bt — a ,6 , .
~  a* +  b*

For the trigonometric form of a complex number we have
r, (cos (Pi +  i sin <p,) 
r2(cos <p2-f-tsin <p2) -  [cos (9 , — cp,) +  i sin (9 , — 9 ,)]. 

r  2
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To verify this equality, multiply the divisor by the quotient:
r, (cos <p, + i sin (p,) r±  [cos (<p, — (p2) +  i sin (q>, — cp,)] =  r2
— rt7~ [cos (*P* +  <Pi — <P2) + 1 sin (^  +  9 , —<p2)] =  r, (coscp, -H sincp,).rt

Thus, the modulus of the quotient of two complex numbers is 
equal to the quotient of the moduli of the dividend and the divisor; 
the amplitude of the quotient is equal to the difference between 
the amplitudes of the dividend and divisor.

Note 2. From the rules of operations involving complex num
bers it follows that the operations of addition, subtraction, multi
plication and division of complex numbers yield a complex number.

If the rules of operations on complex numbers are applied to 
real numbers, regarding the latter as a special case of complex 
numbers, these rules will coincide with the ordinary rules of 
arithmetic.

Note 3. Returning to the definitions of a sum, difference, pro
duct and quotient of complex numbers, it is easy to show that if 
each complex number in these expressions is replaced by its con
jugate, then the results of the aforementioned operations will yield 
conjugate numbers. Whence follows (as a particular instance) the 
following theorem.

Theorem. If in a polynomial with real coefficients
AQxn -f Axxnmml +  . . .  -|-

we put the number a + bi in place of x , and then the conjugate 
number a— bi in place of x , the results of these substitutions will 
be mutually conjugate.

SEC. 3. POWERS AND ROOTS OF COMPLEX NUMBERS

1. Powers. From formula (3) of the preceding section it follows 
that if n is a positive integer, then

[r(cosq)-H' sin q>)]n = rn (cos n y i  sinnq)). (1)
This formula is called De Moivre's formula. It shows that when 

a complex number is raised to a positive integral power the 
modulus is raised to this power, while the amplitude is multiplied 
by the exponent.

Now consider another application of De Moivre’s formula.
Setting r = l  in this formula, we get

(cos q> -f- i sin cp)" =  cos n q> + 1 sin n q>.
Expanding the left-hand side in a binomial expansion and 

equating the real and imaginary parts, we can express sin mpand
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cos ncp in terms of the powers of sin cp and cos cp. For instance, if 
n = 3 we have
cos* <p+ i 3 cos2cp sin cp— 3 cos cp sin2<p— i sin3 <p= cos 3 cp-f- i sin 3 cp; 
making use of the condition of equality of two complex numbers, 
we get:

cos 3qp =  cos3<p—3coscp sin2cp, 
sin 3qp =  — sin3cp +  3 cos2 <p sin cp.

2. Roots. The nth root of a complex number is another complex 
number whose nth power is equal to the radicand, or

il
r (cos cp +  i sin cp) =  q ( c o s  +  i sin 'll?),

q” ( c o s  n + i sin n \|?) =  r (cos cp +  i sin cp).
Since the moduli of equal complex numbers must be equal, 

while their amplitudes may differ by a number that is a multiple 
of 2ji, we have

Qn =  r, m|) =  cp -f 2kn.
Whence we find

q= V 7 ,  * =

where k is any integer, { /r is the arithmetic (real positive) 
value of the root of the positive number r. Therefore,

y  r (coscp-fi sin cp)= r ^cos - ~ ^ Jt +  i sin —  ̂ . (2)

Giving k the values 0, 1, 2, . . . ,  n— 1, we get n different 
values of the root. For the other values of fe, the amplitudes will 
differ from those obtained by a number which is a multiple of 2jx, 
and, for this reason, root values will be obtained that coincide 
with those considered.

Thus, the nth root of a complex number has n different values.
The nth root of a real nonzero number A also has n values, 

since a real number is a special case of a complex number and 
may be represented in trigonometric form:

if -4 >  0, then A = \A\ (cos 0 +  i sin 0); 
if i4 < 0 , then A =  | A | (cos n + isin  ji).

Example 1. Find all the values of the cube root of unity. 
Solution. We represent unity in trigonometric form;

1 =  cos 0 +  i sin 0.
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By formula (2) we have

3/T 3 / ----n  i •' - n  0 +  2/jJt . 0-f2fcjtj /  1 =  y  cos 0 + 1 sin 0 =  cos——------\-1 sin———

Setting k equal to 0, 1, 2, we find three values 
of the root:

xx =  cos 0 +  r sin 0 =  1; xz =  Cos ^  +  i sin ^  •o «J

4 jt . 4 ji

Noting that 

2 k

=  cos y  -f i sin y  .

1 , 2n V  3.
C0ST = - Y : sin T = ‘ 2

4jt 4jt
cos — — «■ I sin t t  =  —

we get

2 2 * — "2* I

3

/ I

In Fig. 163, the points A , £ , C are geometric representations of the roots 
obtained.

3. Solution of a binomial equation. An equation of the lorm
xn= A

is called a binomial equation. Let us find its roots.
If A is a real positive number, then

n/~ji (  2kn . . . 2 f c j t \x =  y  A ( cos Y  +  isin —  J 

(* =  0, 1, 2, n— 1).
The expression in the brackets gives all the values of the nth. 

root of I.
If A is a real negative number, then

* =  Z /\T \ (cos + 1 sin n- ± ^ )  .

The expression in the brackets gives all the values of the nth 
root of — 1.

If A is a complex number, then the values of x are found Irom 
formula (2).

Example 2. Solve the equation
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Solution.
4 / -------oT— , . . o . - 2 £ j t  , . . 2knx =  j /  cos 2kn - f  t sin 2kn =  cos —— f-1 sin

Setting k equal to 0, 1, 2, 3, we get
=  cos 0 +  i sin 0 == 1,

2ji 2jt=  cos — 4 -1 sin — =  /,

4ji , . 4ji ,x. =  cos -  4 - 1 sin 7 - =  — 1, 4 4
6 ji 6jix. =  cos — 4- / sin — =  — i. 4 4

SEC. 4. EXPONENTIAL FUNCTION WITH COMPLEX EXPONENT 
AND ITS PROPERTIES

Let z ^ x  + iy. II x and y are real variables, then z is called a 
complex variable. To each value of the complex variable z in the 
xy-plane (the complex plane) there corresponds a definite point 
(see Fig. 161).

Definition. If to every value of the complex variable z , out of 
a certain range of complex values, there corresponds a definite 
value of another complex quantity w9 then w is a function of the 
complex variable z. The functions of a complex argument are 
denoted by w = f(z) or w= w(z).

We introduce the concepts of the limit of a function of a com
plex variable, of the derivative, of the integral, and so forth.

Here, we consider one function of a complex variable, the 
exponential function:

w = ez
or

w = e*+*.
The complex values of the function w are defined as follows:*)

ex+iy = e* (cos y + i sin y)t (1)
that is

w (z) =  ex (cos y 4- i sin y). (2)
Examples:

1 1 . « . 1+r  1 (  Jt JiN . V^~2.\1. 2 =  1 4 e = ^ c o s T  +  / s l nT J = - ^ - 5 - + i - 5 - j .

*) The advisability of this definition of the exponential function of a 
complex variable will also be shown later on, Sec. 21, Ch. XIII, and Sec. 18, 
Ch. XVI.
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2. z =  0 +  1j i ,  e 1 =  e°^cos?| +  isln

3. 2 = l  +  i, e ' + ^ e 8 (cos 1 +  i sin 1) =  0 .5 4  +  1 - 0 .8 3 ,

4. z =  x is a real number. 
ex + o y _ gx  (cos o - f  i Sin 0) =  e* is an ordinary exponential function.

Properties of an exponential function.
1. If 2, and zt are two complex numbers, then

Proof. Let
=  £z\ £z7.

then
=  +  zt = xt+  tyv

e* \+ z * =  + ) + <■**+#*) —  e (xx+x*)+t (yt + y2)

=  e*'ex> [cos (t/, + y t) +  i sin (t/, +«/,)].

(3)

(4)

On the other hand, by the theorem of the product of two complex 
numbers in trigonometric form we will have

_  £*,+<?,gx.+or, _  gA, (cos yx +- i sin y1)ex*(cos yt +  i sin yt) =
=  c ^ »  [cos (yt + yt) + i sin (t/, +  j/J|. (5)

In (4) and (5) the right sides are equal, hence the left sides are 
equal too:

g*i+*a =  ez'ez*, etc.
2. The following formula is similarly proved:

3. If m is an integer, then
(6)

(e*)m = em*. (7)
For m > 0, this formula is readily obtained from (3); if m < 0 , 
then it is obtained from formulas (3) and (6).

4. The identity

holds.
Indeed, from (3) and (I) we get

(8)

gz+an/ _  e*emi _  g* (cos 2n +  i sin 2n) =  c*.

From identity (8) it follows that the exponential function e* is a 
periodic function with a period of 2ni.

5. Let us now consider the complex quantity
w — u (x) +  iv (x),
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where u(x) and v(x) are real functions of the real variable x. 
This is the complex function of a real variable.

a) Let there exist the limits
lim u(x) = u(xQ), lim v(x) = v(x0).
X -*> X 0 x  - + x 0

Then u (x0) -f iv (x0) =  w0 is called the limit of the complex variable w.
b) If the derivatives u'(x) and v' (x) exist, then we shall call 

the expression
Wx =  u' (x) +  iV (x) (9)

the derivative of the complex function of a real variable with 
respect to a real argument.

Let us now consider the following exponential function:
w  e a x  + i$ x  e (a + i$) x^

where a and p are constant real numbers, and x is a real variable. 
This is a complex function of a real variable, which function may 
be rewritten, according to (1), as follows:

or
U)=eI*[cos P* +  { sin p*] 

w =  eax cos p* 4- ieax sin px.
Let us find the derivative w'x. From (9) we have 

wx =  (e** cos Px)' 4-1 (eax sin p*)' =
=  e“*(a cosp*—p sin pjt)4-ieax (u sin p x 4- P cosp*)=
=  a[e*x(cosPjc4-< sinp*)]4- ip[e**(cosp*4-*sinpx)] =  
=  (a4-t'P)[e“*(cospx4-t sinpjc)]=(a4-tp)e(,1+'P) *.

To summarise then, if w = e(a+l̂ x then u»' =  (a4-/p) £(“+'P) * or
[tr+f» *]' =  (a4-/p)e(1+'P' *. (10)

Thus, if k is a complex number (or, in the special case, a real 
number) and x is a real number, then

(<?**)' =  kekx. (9')
We have thus obtained the ordinary formula for differentiation of 
ari exponential function.

Further,
(e**)' =  [(e**)']' =  k (ekx)' =  k'ekx 

and for arbitrary n
(ekx)in) =  knekx.

We shall need these formulas later on.
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SEC. 6. EULER’S FORMULA. THE EXPONENTIAL FORM 
OF A COMPLEX NUMBER

If we put x = 0 in formula (1) of the preceding section, we get 
e,y = cos y -J- i siny. (1)

This is Euler's formula, which expresses an exponential function 
with an imaginary exponent in terms of trigonometric functions. 

Replacing y by —y in (1) we get
e~iy =  cos y — i sin y. (2)

From (1) and (2) we find cosy and siny:

cos y 

sin y

eiy +  e~iy 
2eiy — e-iy 
21

(3)

These formulas are used, among other things, to express the pow
ers of coscp and sin cp and their products in terms of the. sine 
and cosine of multiple arcs.

Examples: 1. cos2 y = ( j -—^ ^  2 +  e“ ,’2*>') =

=  -i- [ (cos 2y +  i  sin 2y) +  2 +  (cos 2y —  i  sin 2 y)J =

=  - i  (2 cos 2t/ +  2) =  ~  (1 +cos 2y).

2.> cos2 q> sin2 q> =   ̂6
(e i2?— e - i * F)2 1 I

: L _ _ 2  =  - ._ c o s > + - §..

The exponential form of a complex number. Let us ^represent a 
complex number in trigonometric form:

z ~ r  (coscp +  / sin cp),
where r is the modulus of the complex number and cp is the am
plitude of the complex number. By Euler’s formula,

cos cp +  i sin cp =  e/tp.
Thus, any complex number may be represented in the so-called 
exponential form:

z = ref'.
Examples. Represent the numbers 1, i , —2, — i  in the exponential form.
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Solution. 1 =  cos 2kn +  i sin 2/ejt =  eikKit

n  . . .  n  T  1i — cos y  + 1 sin y  =  e

— 2 =  2 (cos Jt -f i sin Jt) =  2eKi,
tn . . n z 1 .— t =  cos — — i sin y  =  e

SEC. 6. FACTORING A POLYNOMIAL
The function

f(x) = A X + A lxn~ ' + - - - + A n,
where n is an integer, is known as a polynomial or a rational 
integral function of x; the number n is called the degree of the 
polynomial. Here, the coefficients A9, A,, . . . .  An are real or 
complex numbers; the independent variable x can also take on 
both real and complex values. The root of a polynomial is that 
value of the variable x at which the polynomial becomes zero.

Theorem 1 (Remainder Theorem). Division of a polynomial f(x) 
by x —a yields a remainder equal to f(a).

Proof. The quotient obtained by the division of f(x) by x — a 
will be a polynomial f,{x) of degree one less than that of f(x), 
and the remainder will be a constant R. We can thus write

f(x) = (x—a)fl (x) + R. (1)
This equality holds for all values of x different from a (division 
by x— a when x = a is meaningless).

Now let x approach a. Then the limit of the left side of (I) 
will equal f(a), while the limit of the right side will equal R. 
Since the functions fix) and {x—a)fr {x) + R are equal for all 
x 4=- a, their limits are likewise equal as x —*a, that is, f(a) — R.

Corollary. If a is a root of the polynomial, that is, if /  (a) =  0 
then x—a divides f (x) without remainder and, hence, f(x) is 
represented in the form of a product

f(x) = ( x - a ) f l {x) 
where f , (x) is a polynomial.

Example 1. The polynomial f ( x ) =  x*— 6jc*-f-11 jc—6 becomes zero for x =  1; 
thus, f ( l )  =  0, and so x — 1 divides this polynomial without remainder:

x3— 6.v! + l U — 6 = ( x — lM *8— 5* +  6).

Let us now consider equations in one unknown, x.
Any number (real or complex) which, when substituted into the 

equation in place of x, converts the equation into an identity is 
called a root of the equation.



Euler’s Formula. The Exponential Form of a Complex Number 245

Example 2. The numbers jc, = —; x2 =  ~ ;  jc, =  - | s  are the roots of
the equation cos* =  sin*.

If the equation is of the form P (*) =  0, where P(jc) is a poly
nomial of degree n, it is called an algebraic equation of degreen. 
From the definition it follows that the roots of an algebraic equa
tion P(at) =  0 are the same as are the roots of the polynomial P(jc).

Quite naturally the question arises: Does every equation have 
roots?

In the case of rionalgebraic equations, the answer is no: there are 
nonalgebraic equations which do not have a single root, either real 
or complex; for example, the equation ex = 0. *)

But in the case of an algebraic equation the answer is yes. This 
is given by the fundamental theorem of algebra.

Theorem 2 (Fundamental Theorem of Algebra). Every rational 
integral function f(x) has at least one root, real or complex.

The proof of this theorem is given in higher algebra. Here we 
give it without proof.

With the aid of the fundamental theorem of algebra it is easy 
to prove the following theorem.

Theorem 3. Every polynomial of degree n may be factored into 
n linear factors of the form x —a and a factor equal to the 
coefficient of xn.

Proof. Let f (x) be a polynomial of degree n:
f(x) = Atxn + Alxn~ '+  ■■■+An.

By virtue of the fundamental theorem, this polynomial has at 
least one root; we denote it by ar Then, by the corollary of the 
remainder theorem, we can write

f(x) = (x— a,)f1 (x)
where f t (x) is a polynomial of degree n— 1; f1{x) also has a root. 
We designate it by av Then

/, (*) =  (*—az) f2(x) 
where f t (x) is a polynomial of degree n—2. Similarly,

*) Indeed, if the number xx =  a-\- bi were the root of this equation, we 
would have the identity ea+bi =  Q or (by Euler’s formula) ea (cos b -f  i sin b)=0. 
But ea cannot equal zero for any real value of a; neither is cos b +  i sin b equal 
to zero (because the modulus of this number is ]/ cos2 b sin2 b =  1 for any 
b). Hence, the product ea (cos b +  / sin b) ?= 0, i. e., ea+bi £  0; but this means 
that the equation ex =  0 has no roots.
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Continuing this process of factoring out linear factors, we arrive 
at the relation

fn-1 (x) = {x— an) fn
where fn is a polynomial of degree zero, i. e., some fixed number. 
This number is obviously equal to the coefficient of xn\ that is, 
i n = K

On the basis of the equalities obtained we can write
f(x) = A0(x— a j i x — a,) . . .  (x— an). (2)

From the expansion (2) it follows that the numbers alf at, . . . , a n 
are roots of the polynomial f(x), since upon the substitutionx= alt 
x = aiy , . . ,  x = an the right side, and hence, the left, becomes zero.

Example 3. The polynomial / (*) =  x* — bx2+  \ \x  — 6 becomes zero when 
x =  1, jc =  2, x =  3.

Therefore,
jt8~ 6 j c H l l J c - 6 = ( j c - 1) (x—2) (x—3).

No value x = a that is different from a,, at, ...»  an can be a 
root of the polynomial /  (jc), since no factor on the right side of
(2) vanishes when x — a. Whence the following proposition.

A polynomial of degree n cannot have more than n distinct roots.
But then the following theorem obtains.
Theorem 4. If the values of two polynomials of degree n, cp, (x) 

and <p2(a:), coincide for n+  1 distinct values a0, av a2, . . . ,  an of 
the argument xy then these polynomials are identical.

Proof. Denote the difference of the polynomials by f(x):
/(*) =  <p, (*)—<p,M-

It is given that f(x) is a polynomial ol degree not higher than 
n that becomes zero at the points a,, an. It can therefore be
represented in the form

f(x) = At (x— at)(x— aJ . . .  (x— an).
But it is given that f(x) also vanishes at the pointa0. Then/(a„)=0 
and not a single one of the linear factors equals zero. For this 
reason, A„ — 0 and then from (2) it follows that the polynomial 
f(x) is identically equal to zero. Consequently, q>t (a:)—<pt (.t) =  0 
or <p. (*) =  <f>Ax).

Theorem 5. If a polynomial
P(x) = A,xn+ A lxn- ' + . . . + A n_ix + An 

is identically equal to zero, all its coefficients equal zero.
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Proof. Let us write its factorisation using formula (2):
P ( x ) = A ^ + A l^ ‘~1+ .. .+ A n_,x+ An= A ,(x—a1) . . .  (x—a„). (1') 
If this polynomial is identically equal to zero, it is also equal to 
zero for some value of x different from ax, . . . ,  an. But then none 
of the bracketed values x — al% . . . ,  x —an is equal to zero, and, 
hence, j4o =  0.

Similarly it is proved that ^ ,= 0 , A2 = 0, and so forth.
Theorem 6. If two polynomials are identically equal, the coeffi

cients of one polynomial are equal to the corresponding coefficients 
of the other.

This follows from the fact that the difference between the 
polynomials is a polynomial identically equal to zero. Therefore, 
from the preceding theorem all its coefficients are zeros.

Example 4. If the polynomial ax* +  6x2 +  cx +  d is identically equal to the 
polynomial x2—5x, then a =  0, b =  1, c =  — 5, and d =  0.

SEC. 7. THE MULTIPLE ROOTS OF A POLYNOMIAL

If, in the factorisation of a polynomial of degree n 
factors

f(x) = A0(x— al)(x— ai) . . . ( x — an)

into linear 

( 1)
certain linear factors turn out the same, they may be 
and then factorisation of the polynomial will yield

f (x) =  A„ (x— a,)*- (x— a,)*». . .  (x— am)V
And

ki + * » +  • • • =

combined,

O')

In this case, the root a, is called a root of multiplicity kt, or a 
fc,-tuple root, at, a root of multiplicity kt, etc.

Example. The polynomial f ( x ) = x ’—5xs +  8x—4 may be factored into the 
following linear factors:

/(*) =  ( * - 2 )  ( , - 2 ) ( * - l ) .
This factorisation may be written as follows:

f(x) =  ( x - 2 ) ‘ ( x - l ) .
The root a, = 2  is a double root, 0, =  ! is a simple roof.

If a polynomial has a root a of multiplicity k, then we will 
consider that the polynomial has k coincident roots. Then from 
the theorem of factorisation of a polynomial into linear factors 
we get the following theorem.

Every polynomial of degree n has exactly n roots (real or 
complex).
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Note. All that has been said of the roots of the polynomial
f ( x ) = A txn + A lxn-'-\- ..., + A„,

may obviously be formulated in terms of the roots of the 
algebraic equation

a x + a ^ ' a- . . .  +  .. -An=0.
Let us further prove the following theorem.
Theorem. If, for the polynomial f(x), a, is a root of multiplicity 

kx> \ ,  then for the derivative f  (x) this number is a root of 
multiplicity k l— I.

Proof. If a, is a root of multiplicity &,>1, then it follows from 
formula (1') that

/(x) =  (x—at)*'<p (x)
where cp(x) =  (x—a2)ft> . . .  (x—am)*m does not become zero at x= ax\ 
that is, cp(a,)=?fcO. Differentiating, we get

f  (x) =  fc, (x— a,)*-~1 <p (x) -I- (x—a X  <p' (x) =
=  (x—a ,)*'"1 [*,(p(x) +  (x—a,)(p' (x)j.

Put
^  (x) =  6,<p (x) +  (x—a,)<p' (x).

Then
f  (x) =  (x—

and here
^  (a,) =  ft.T (a,) +  (a, — a,)<p' (a,) =  6,<P (a,) =£ 0.

In other words, x =  a, is a root of multiplicity kx— 1 of the 
polynomial f' (x). From the foregoing proof it follows that if =  1, 
then a, is not a root of the derivative /' (x).

From the proved theorem it follows that a, is a root of multi
plicity kx — 2 for the derivative f" (x), a root of multiplicity 6,—3 
for the derivative f"  (x) . . . .  and a root of multiplicity one (simple 
root) for the derivative /‘* ( x )  and is not a root for the deri
vative /«.»(x), or

/ (ai) =  0, f  (fl,) =  0. r (a ,)  =  0 ..................... (a,) =  0,
but

/(A) (at) =£ 0.

SEC. 8. FACTORISATION OF A POLYNOMIAL IN THE CASE 
OF COMPLEX ROOTS

In formula (1), Sec. 7, Chapter VII, the roots a,, a,, . ..,a „ m a y  
be either real or complex. We have the following theorem.

Theorem. If a polynomial f (x) with real coefficients has a complex 
root a-\-bi, it also has a conjugate root a—bi.
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Proof. Substitute, in the polynomial f(x), a+l>i in place of x, 
raise to a power and collect separately terms containing t and 
those not containing i; we then get

f(a + bi) = M + Ni,
where M and N are expressions that do not contain i.

Since a + bi is a root of the polynomial, we have
f (a +  bi) =  M + Ni — 0

whence
M =  0, N =  0.

Now substitute the expression a —bi for x in the polynomial. 
Then (on the basis of Note 3 at the end of Sec. 2 of this chap
ter) we get a number that is a conjugate of the number M +'Ni, or

f (a— bi) = M — Ni.
Since iW =  0 and N = 0, we have f (a— bi) — 0; a—bi is a root of 
the polynomial.

Thus, in the factorisation
f(x) = A0(x— a,)(x— a j  . . .  (x— an)

the complex roots enter as conjugate pairs.
Multiplying together the linear factors that correspond to a 

pair of complex conjugate roots, we get a trinomial of degree two 
with real coefficients:
lx—(a +  bi)] [x—(a— bi)] =

=  [(x—a) — bi] [(x—a)-\-bi] =
— (x— a)* +  b* = x t— 2ax-\-a* + bt = x* +  px + q,

where p = — 2a, q = a*-\-bt are real numbers.
If the number a + b i is a root of multiplicity k, the conjugate 

number a— bi must be a root of the same multiplicity k, so that 
factorisation of the polynomial will yield the same number of 
linear factors x — (a +  bi) as those of the form x—(a—bi).

Thus, a polynomial with real coefficients may be factored into 
real factors of the first and second degree of corresponding 
multiplicity; that is,
f (x) =  A0 (x—at)k■ (x —a„)*»...

. . .  (x—ar)kr(xr+  p,x +  q,)l<. . .  (x* psx 4- qs)1*
where

+  2̂ +  • • • +  +  . •. +  '21 s = n.



250 Complex Numbers. Polynomials

SEC. 9. INTERPOLATION. LAGRANGE’S INTERPOLATION FORMULA

Let it be established, in the study of some phenomenon, that 
there is a functional relationship between the quantities y and x

which describes the quantitative 
aspect of the phenomenon; the 
function y = q>(x) is unknown, 
but experiment has established 
the values of this function r/0,
y, i yt....... yn for certain values
of the argument x0, jc,, xit .... 
xn, in the interval [a, b\.

The problem is to find a func
tion (as simple as possible from 
the computational standpoint; for 
example, a polynomial) which 
would represent the unknown 
function y = (f(x) on the interval 

[a, b] either exactly or approximately. In more abstract fashion 
the problem may be formulated as follows: given on the interval 
[a, b] the values of an unknown function y =  q>(x) at n-f-1 
distinct points x,, ..., xn:

«/,=<P (*,'). •••> */„ =  ?(*„);
it is required to find a polynomial P(x) of degree that ap
proximately expresses the function cp (x).

For such a polynomial, it is natural to take a polynomial whose 
values at the points xv xt, xn coincide with the corre
sponding values «/„, t/,, t/„ . . . ,  yn of the function q>(x) (Fig. 164). 
Then the problem, which is called the “problem of interpolating 
a function”, is formulated thus: for a given function <p(je) find a 
polynomial P (x) of degree which, for the given values of
jc0, xlt . . . ,  xn, will take on the values

y, =  <P (*.)> */, =  <P (■*»). • • •. Un =  <P (*■)•
For the desired polynomial, take a polynomial of degree n of 

the form
P(x) = C,(x—xl)(x—xt) . . .  (x—x„) +

+ Cl {x—xt)(x—xi) . . .  (x—xH) +
+ Ci (x—x,)(x—x 1)(x—x , ) . . .  (x—x„)+. . .

. . . + C n(x—xt)(x—xl) . . .  (*—*„_,) (1)

and define the coefficients C0, C,, . . . ,  Cn so that the following
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conditions are fulfilled:
P(x, )=y„ P (*,) —yl.........P(xn) = yn. (2)

I 1 (1) put x = xQ\ then, taking into account equality (2), we get 
y% = Co (*. — *,) (x„ — xt) . . . (Xt — Xn),

whence
Q _____________________

0 (•*()— *l) (*„ — *l) • ■ • (x„—xn) ■
Then, setting x — xlt we get

4\ =  C, (*,—•*.)(*,—■**) • • • (* ,—*„).
whence

q _____________________
1 (*I —-<0) (*1 —*») • • • (*. —xn) '

In the same way we find
q _______________ y_2_____________ .

‘ (**—*<,) (xt —xt) (xt —xt) . . .  (xt —x„) ’

Q _______________ _______________
n (Xn ^ 0) * 1) (*rt **) * * * (x n *n — 1)

Substituting these values of the coefficients into (1), we get

P(x) (x—xt) ( * — * , )  . .  .(X— xn)
( • * 0 — AC,) (aC„ —  ACj) • • • (X0—X„ ) y0 * **

(■ * — * o )  ( * —  Xj )  ■ ■ ■ (x—xn)
(•<1 — * „ )  ( * i  —xt) ■ . ■ (AT, —  a c „ ) y 1 *r  

( * — * o )  ( a : — AT,) ( * — * , )  ■ ■ ■ ( a : — x„ )
(x2 —x„ ) (X, — AC,) (x,—xt) . . . ( Xt —xn) y* ~t  

(AC— Af0 )  (x— X,) . . . (xn— A C „ _ , )

( x n — * 0 )  ( • * ( . — • * 1 )  •  •  •  (xn— x „ - , )  i / n ‘
(3)

This formula is called the Lagrange interpolation formula.
Let it be noted, without proof, that if q> (jc) has a derivative of 

the (n + l)st order on the interval [a, ft], the error resulting from 
replacing the function. <p(x) by the polynomial P(x), i. e., the 
quantity R(x) = (p(x)— P (x), satisfies the inequality

IK M l <1  (*—*.)(*—*,) • • • (x— x„)| (B+11), max|q>(B+I>(x)|.

Note, From Theorem 4, Sec. 6, Ch. VII, it follows that the 
polynomial P(x) which we found is the only one that satisfies 
the given conditions.
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Example. From experiment we get the values of the function y — <p(x): 
t/0 =  3 for x0 =  l, y l = —5 for jr, =  2, yt =  4 for x2 = — 4.

It is required to represent the function y — q) (*) approximately by a 
polynomial of degree two.

Solution. From (3) we have (for n — 2):

or

P(x) = (x—2) (x +  4) 
( 1 - 2 )  (1 + 4 )

„ , ( x - l ) ( x  +  4) 
d*M2— 1) (2 +  4) ( - 5 )  +

( x - l ) ( x - 2) ,
(— 4 — 1) (— 4 —2)

P (x) — —39 , 123 , 252
30* 30 * +  30 *

SEC. 10. ON THE BEST APPROXIMATION OF FUNCTIONS 
BY POLYNOMIALS. CHEBYSHEV’S THEORY

A natural question follows from what has been discussed in the 
previous section: If a continuous function (p(A;) is given on the 
closed interval [a, ft], can this function be represented approxi
mately in the form of a polynomial P (x) to any preassigned de
gree of accuracy? In other words, is it possible to choose a poly
nomial P (x) such that the absolute difference between (p(jt) and 
P (x) at all points of the interval [a, ft] should be less than any 
preassigned positive number e? The following theorem, which we 
give without proof, answers this question in the affirmative. *)

Weierstrass’ Approximation Theorem. If a function <p (x) is con- 
tinuous on a closed interval [a, ft], then for every e > 0  there 
exists a polynomial P (x) such that |/(*) — P (x) |< e ,  for every x 
in the interval.

The outstanding Soviet mathematician Academician S, N. Bern
stein gave the following method of direct construction of such 
polynomials that are approximately equal to the continuous func
tion qp (jc) on the given interval.

Let cp(jc) be continuous on the interval [0, 1]. We write the 
expression n

b „ w = S < p ( i ) o ” ( i - ^ r .
m=o ' '

Here, C™ are binomial coefficients, <p is the value of the

given function at the pointx=  The expression Bn (x) is an nth 
degree polynomial called the Bernstein polynomial.

*) It will be noted that the Lagrange interpolation formula [see (3) Sec. 9] 
cannot yet answer this question. Its values are equal to those of the function 
at the points x0, x2, . . xn, but they may be very far from the values
ol the function at other points of the interval [a, b].
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If an arbitrary e > 0  is given, one can choose a Bernstein poly
nomial (that is, select its degree n) such that for all values of x 
on the interval [0, 1], the following inequality will be fulfilled:

\Bn (*) —<p (* ) |< e .
It should be noted that consideration of the interval [0, 1], and 

not an arbitrary interval [a, b]> is not an essential limitation of 
generality, since by changing the variable x = a-\-t(b  — a) it is 
possible to convert any interval [a, b\ into [0, 1). In this case, 
the nth degree polynomial will be transformed into a polynomial 
of the same degree.

The creator of the theory of best approximation of functions by 
polynomials is the brilliant Russian mathematician P. L. Cheby- 
shev (1821-1894). In this field, he obtained the most profound 
results, which exerted a great influence on the work of later mathe
maticians. Studies involving the theory of articulated mechanisms, 
which are widely used in machines, served as the starting point 
of Chebyshev’s theory. While studying these mechanisms he arrived 
at the problem of finding, among all polynomials of a given 
degree with the leading coefficient equal to unity, a polynomial 
of least deviation from zero on the given interval. He found these 
polynomials, which subsequently became known as the Chebyshev 
polynomials. They possess many remarkable properties, and at 
present are a powerful tool of investigation in many problems of 
mathematics and engineering.

Exercises on Chapter VII

1. Find (3 +  5t)(4 — 0 Ans. 17+ 17 i. 2. Find (6 + 1 1 0 (7  +  30- Ans. 9 +  95/.
3. Find — . Ans. - r —^r i- 4. Find (4 — 7i)5. Ans. — 524 +  7/.4 +  5i 41 41
5. Find )̂ i  . Ans. ±  — . 6. Find 1^—5 — 12/. Ans. ± ( 2  — 30- 7. Re

duce the following expressions to trigonometric form: a) 1 + /.
Ans. V~2 ^cos-^- +  /sin ; b) 1—/. Ans. V 2  ^cos-~ +  i sin .

8. Find £/7". Ans. —  ; — /; -— • 9* Express the following expres
sions in terms of powers of sin* and cos*: sin 2*, cos 2*, sin4*, cos4*,
sin 5*, cos 5*. 10. Express the following in terms of the sine and cosine of
multiple arcs: cos2*, cos5*, cos6*, cos®*; sin2*, sin5*, sin4*, sin5*. 11. Divide 
/(*) =  **—4*2 +  8* — 1 by * +  4. Ans. /(*) =  (* +  4) (*2—8* +  40) — 161, that 
is, the quotient is equal to *2— 8 * +  40; and the remainder is / ( — 4) =  — 161.
12. Divide f (*) =  *4+  12*5 +  54*2+  108*+ 81 by * +  3. Ans. /(*)=» 
=  (* +  3) (*5 +  9*2 +  27* +  27). 13. Divide /(*) =  *7 — 1 by * — 1. Ans. /(*)=» 
= (* — 1) (*® + *8 * * * 12 + *4 + *5 + *2 + * + 1).
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Factor the following polynomials: 14. / ( x) =  x*— \. Ans. f(x)==
=  (*— 1)(*  +  1 ) (* 2 +  1). 15. /(*) =  x2—x — 2. Ans. f(x) =  (x — 2) ( x +  1).
16. /(*) =  *« + 1. Ans. f(x) =  (x +  \ ) (x2—x + \ ) .

17. Experiment yielded the following values of y as a function of x:
y t =  4 for Jtj =  0, 
yz=  6 for * 2 =  1,
(/8 =  10 for *3 =  2 .

Represent (approximately) the function by a second-degree polynomial. 
Ans. x2 +  x +  4.

18. Find a polynomial of degree four that takes on the values 2, 1, — 1, 5,
q 129

0 for x =  l, 2, 3, 4, 5, respectively. Ans. -^-x*— 17*SH—^ -x 2— 92x +  35.
19. Find a polynomial of the lowest possible degree that takes on the

values 3, 7, 9, 19 for x =  2, 4, 5, 10, respectively. Ans. 2x — 1.
20. Find the Bernstein polynomials of degree 1, 2, 3 and 4 for the func

tion r/ =  sinnx on the interval [0, 1]. Ans. Bl (x )=  0; B2(x) =  2 x ( l —*);
(x) = 2 *  (1 —x) [(2 ] / T - 3 ) * ’ - ( 2  - 3 )  x +  ].
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FUNCTIONS OF SEVERAL VARIABLES

SEC. 1. DEFINITION OF A FUNCTION OF SEVERAL VARIABLES

When considering a function of one variable we pointed out 
that in the study of many phenomena one encounters functions 
of two and more independent variables. Some examples follow.

Example 1. The area S of a rectangle with sides of length x and y is 
expressed by the formula

S =  xy.

To each pair of values of x and y there corresponds a definite value of 
the area S. S is a function of two variables.

Example 2. The volume K of a rectangular parallelepiped with edges of 
length x , y , z is expressed by the formula

V =  xyz.
Here, V is a function of three variables, x, y , z.
Example 3. The range R of a shell fired with initial velocity o0 from a 

gun, whose barrel is inclined to the horizon at an angle q>, is expressed by 
the formula

P _  v o s»n 2q>
8

(air resistance is disregarded). Here, g is the acceleration of gravity.
For every pair of values of o0 and <p this formula yields a definite value 

of R\ in other words, R is a function of two variables, u0 and <p.
Example 4.

x2 +  y 2 +  z2 +  t2 

Here, u is a function of four variables xy y t z, t.

Definition 1. If to each pair (x, y) of values of two independent 
variable quantities x and y (from some range D) there corresponds 
a definite value of the quantity 2, we say that 2 is a function of 
the two independent variables x and y defined in D.

A function of two variables is symbolically given as
z = f(x , y)t z=--F(xt y) and so forth.

A function of two variables may be represented, for example, 
by means of a table or analytically (by a formula) as in the 
four examples given above. The formula may be used to construct
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a table of values of the function for certain number pairs of the 
independent variables. From Example 1 we can build the 
following table:

S = xy

y 0 1 1.5 2 3

1 0 1 1.5 2 3
2 0 2 3 4 6
3 0 3 4.5 6 9
4 0 4 6 8 12

In this table, the intersections of the lines and columns, which 
correspond to definite values of x and y, yield the corresponding 
values of the function 5.

If the functional relation z = f{x, y) is obtained as a result of 
changes in the quantity z in some experimental study of a phe
nomenon, we straightway get a table defining z as a function of 
two variables. In this case, the function is specified by the table 
alone.

As in the case of a single independent variable, a function of 
two variables does not, generally speaking, exist for all values of 
x and y.

Definition 2. The collection of pairs (x, y) of values of x and 
y, for which the function

z = f(x, y)

is defined, is called the domain of definition of this function.
The domain of a function is apparent when illustrated geomet

rically. If each number pair x and y is given as a point M(x,y)  
in the xy-plane, then the domain of definition of the function 
will be a certain collection of points in the plane. We shall also 
call this collection of points the domain of definition of the func
tion. In particular, the entire plane may be the domain. In future 
we shall mainly have to do with such domains as are parts of 
the plane bounded by lines. The line bounding the given domain 
we shall call the boundary of the domain. The points of the do
main not lying on the boundary we shall call interior points of 
the domain. A domain consisting solely of interior points is 
called an open domain; that which includes the points of the 
boundary is called a dosed domain.
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Example 5. Determine the natural domain of definition of the function
z = 2 x —y.

The analitic expression 2 x —y is meaningful for all values of x and y. 
Therefore, the entire xy-plane is the natural domain of the function.

Example 6. z — V  1 — x2—y 2.
For z to have a real va’ue it is necessary that the radicand be a nonne

gative number; in other words, x and y must satisfy the inequality
1—x2—y 2 ^  0, or x2-\-y2^  1.

All the points M (x, y) whose coordinates satisfy the given inequality lie 
in a circle of radius 1 with centre at the origin and on the boundary of 
this circle.

Example 7.
z =  \n(x +  y).

Since logarithms are defined only for positive 
numbers, the following inequality must be 
satisfied:

x + y>  0 or y > —x.
This means that the natural domain of 

'definition of the function z  is the half-plane 
above the straight line y  = —x, the line itself 
not included (Fig. 165).

Example 8. The area of the triangle S is a 
function of the base x and the altitude y\

The domain of this function is x >  0, y  >  0 
(since the base of a triangle and its altitude 
cannot be negative or zero). We notice that the domain of this function 
does not coincide with the natural domain of definition of the analytic 
expression used to define the function, because the natural domain of
the expression ~  is obviously the entire *f/-plane.

It is easy to generalise the definition of a function of two 
variables to the case of three or more variables.

Definition 3. If to every collection of values of the variables
x, y, z, .. ., u9 t there corresponds a definite value of the vari
able w, we shall then call w the function of the independent vari
ables x , y9 z, . . ., u, t and write w = F(x9 y9 z, . . ., u9 t) or 
w = f(x9 y t z, u9 t)9 and so on.

Just as in the case of a function of two variables, we can
speak of the domain of definition of a function of three, four and
more variables.

To take an example, for a function of three variables, the do
main of definition is a certain collection of number triples (x9 y} z). 
Let it be noted that each number triple is associated with some 
point M (x9 y 9 z) in jt^z-space. Consequently, the domain of

9 —  3 3 8 8
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definition of a function of three variables is some collection of 
points in space.

Similarly, one can speak of the domain of definition of a func
tion of four variables u = f(x , y , z, t) as of a certain collection 
of number quadruples (x, y, z, t). However, the doftiain of 
definition of a function of four or a larger number of variables no 
longer permits of a simple geometric interpretation.

Example 2 gives a function of three variables defined for all 
values of x , y , z.

In Example 4 we have a function of four variables.
Example 9. _______________

w — V 1—x2—y 2— z2— u2.

Here w is a function of the four variables x , z, « defined for values of
the variables that satisfy the relationship

1 —x2—y 2—z2— w2 ̂  0.

SEC. 2. GEOMETRIC REPRESENTATION OF A FUNCTION OF TWO
VARIABLES

We consider the function
* = /(* . y). (i)

defined in the domain G in the jt^-plane (as a particular case, 
this domain may be the entire plane), and a system of rec

tangular Cartesian coordinates Oxyz (Fig. 166). At each point (x, y) 
erect a perpendicular to the xy~plane and on it lay off a segment 
equal to f (x t y).

This gives us a point P in space with coordinates
x, y . z = f ( x 9 y).

The locus of points P whose coordinates satisfy equation (1) 
is the graph of a function of two variables. From the course of
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analytic geometry we know that equation (1) (defines a surface 
in space. Thus, the graph of a function of two variables'is a 
surface projected onto the xy-p\ane in the domain of definition 
of the function. Each perpendicular to the xy-plane intersects 
the surface z = f(x> y) at not more than one point.

Example. As we know from analytic geometry, the graph of the function
z =  x2-\-y2 is a paraboloid of revolution (Fig. 167).*

Note. It is improssible to depict a function of three or more 
variables by means of a graph in space.

SEC. 3. PARTIAL AND TOTAL INCREMENT OF A FUNCTION

Consider the line of intersection PS of the surface
z = f(x, y)

with the plane y-const parallel to the xz-plane (Fig. 168).
Since in this plane y remains constant, z will vary along the 

curve PS depending only on the changes in x. Increase the inde
pendent variable x by A*; then z will be increased; this increase 
is called the partial increment of z with respect to x and it is 
denoted by Axz (the segment SS' 
in the figure), so that

&xz = f{x + Ax, y ) - f ( x ,  y). (1)
Similarly, if x is held constant 

and y is increased by Ay, then z 
is increased, and this increase is 
called the partial increment of z 
with respect to y (symbolised by 
A yz, the segment 7T' in the 
figure):

Ay Z = f{x, y +  Ay)—f(X, y). (2)
The function receives the in

crement Ayz “along the line” of 
intersection of the surface z =  f(x, y) with the plane *-const 
parallel to the yz-plane.

Finally, increasing the argument x by A*, and the argument y 
by the increment Ay, we get for z a new increment Az, which is 
called the total increment of the function z and is defined by the 
formula

Az =  / (* +  A*, y + Ay) — f(x, y). (3)
In Fig. 168 Az is shown as the segment QQ'.
9*
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It must be noted that, generally speaking, the total increment 
is not equal to the sum of the partial increments, Az+Axz + Ayz.

Example. z  =  x y .

A xz =  (* +  A*) y —xy =  y Ax,
Aj,z =  x { y +  A y )  — x y — x  A y ,

Az =  (* +  A*) ( y + A y ) — x y = y A x + x  A y + A x  A y -

For x = l ,  y = 2, A x  =  0.2, A y  =  0-3 we have A*z =  0-4, A y z  =  0.3, Az =  0.76.

Similarly we define the partial and total increments of a function 
of any number of variables. Thus, for a function of three variables 
u = f (x, y, t) we have

Axu = f{x + Ax, y, — y, t),
A u = f(x, y+ A y ,  t)— f(x, y, t),
Atu = f ( x , y , t  + At) —f (x, y, t),
Au = f(x + Ax, y +  Ay, t + At)— f{x, y, t).

SEC. 4. CONTINUITY OF A FUNCTION OF SEVERAL VARIABLES

We introduce an important auxiliary concept, that of the neigh
bourhood of a given point.

The neighbourhood, of radius r, of a point Af0 (xt , y0) is the 
collection of all points (x, y) that satisfy the inequality

V ( x —x,)2 +  (y—y9)*<r,  that is, the 
set of all points that lie inside a circle 
of radius r with centre in the point 
M. (x$, f/o).

If we say that a function f(x ,y)  
possesses some property “near the point 
(x0, yQ)" or “in the neighbourhood of the 
point (xt , t/0)” we mean that there is a 
circle with centre at (x0, t/„), at all 
points of which circle the given function 
possesses the given property.

Before considering the concept of 
continuity of a function of several 

variables, let us examine the notion of the limit of a function 
of several variables.*) Let there be a function

z = f(x,  y)
defined in some domain G of an xy-plane.

Let us consider some definite point Af, (x0, ya) in G or on its 
boundary (Fig. 169).

*) We shall mainly consider functions of two variables, since three and 
more variables do not introduce any fundamental changes, but do introduce 
additional technical difficulties.
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Definition 1. The number A is called the limit of the function 
f (x ,y)  as M(x,y )  approaches M„(x0, y 0) if for every e > 0  there 
is an r >  0 such that for all points M(x,y )  for which the 
inequality M M 9< r  is fulfilled we have the inequality

\ f ( x , y ) - A \ < e .
If A is the limit of f(x ,y)  as M ( x ,y )—*-M0 (x#, y„), then we write

lim f(x, y) — A. 
y->yo

Definition 2. Let the point Af0(x0, y0) belong to the domain of 
definition of the function f(x, y). The function z = f(x,y)  is 
called continuous at the point M„ (x0, y„) if we have

lim f  (x, */) =  /(*<,, t/0), (1)
X -+ X Q
y-+yo

and M{x,y)  approaches M„(x(t, y lt) in arbitrary fashion all the 
while remaining in the domain of the function.

Designate x =  x0 +  Ax, y = y„ +  Ay, then (1) may be rewritten as 
follows:

lim /(* ,J,- Ax, y0 +  Ay) =  / (x0, y0) (1')
A3c->-o
A//->o

or
lim [/ (x„ +  Ax, y , +  Ay)— f(x„ y,)] =  0. (1")

Ajc-»-o
A0-*o

We set Aq =  |/(A x)2 +  (Ai/)j (see Fig. 168). As Ax—>-0 and Ay—»0, 
Aq—»0; and conversely, if Aq—*•0, then Ax—>-0 and Ay—►O.

Noting further that the expression in the square brackets in (1") 
is the total increment of the function Az, (1") may be rewritten 
in the form

lim Az =  0. (1'")
Aq-^o

A function continuous at each point of some domain is continuous 
in the domain.

If at some point N (x0, y0) condition (1) is not fulfilled, then 
the point /V(x0, y0) is called a point of discontinuity of the function 
z — f (x, y). For example, condition (1') may not be fulfilled in the 
following cases:

1) z = f (x, y) is defined at all points of a certain neighbourhood 
of the point N (x0, y0) with the exception of the point N (x0, yt) 
itself;
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2) the function z = f ( x yy) is defined at all points of a neigh
bourhood of the point N (xQy y0) but there is no limit lim f{xyy)\

X-+)i0
3) the function is defined at all points of the neighbourhood of 

Nix^y^)  and the limit exists: lim f(x,y),  but
X-+XQ
y -+yQ

lim /(* , y ) H ( x „  y j .
x-+x0
y-+yo

Example 1. The function
z =  x2 +  y2

is continuous for all values of x and y\ that is, it is continuous at every 
point in the xy-plane.

Indeed, no matter what the numbers x and y t Ax and Ay, we have

Az =  [(* +  A*)* +  (y +  Ay)*]— [x*+ y*] =  2x Ax +  2y Ay +  Ax* +  Ay*. 
Consequently,

lim Az =  0.A*-*o 
by -*  o

The following is an example of a discontinuous function.
Example 2. The function

2 xy
Z~~x* + y2

is defined everywhere except at the point * =  0, y =  0 (Figs. 170, 171).

Let us examine the values of z along the straight 
Obviously, along this line

Z 2kx2 2k
x*+k2x2~~l-\-k2=  const.

line y=zkx(k =  const).
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This means that a function z along any straight line passing through the 
origin retains a constant value that depends upon the slope k of the line. 
Thus; approaching the origin along different paths we will obtain different 
limiting values, and this means that the function f (x, y) has no limit when 
the point (x, y) in the xy~plane approaches the origin. Thus, the function is 
discontinuous at this point. It is impossible to redefine this function at the 
coordinate origin so that it should become continuous. On the other hand, it 
is readily seen that the function is continuous at all other points.

SEC. 5. PARTIAL DERIVATIVES OF A FUNCTION OF SEVERAL
VARIABLES

Definition. The partial derivative, with respect to xy of a function 
z = f(x,y)  is the limit of the ratio of the partial increment Axz, 
with respect to x , to the increment Ax as Ax approaches zero.

The partial derivative, with respect to of the function 
z = f(x,y) is denoted by one of the symbols

zx' fx (x<yy< Tx' Jx •
Thus, by definition.

J - =  litH - ^ =  lim** * Axdx Ax-+o Ax-

f (x  +  Ax, y ) -  
&x

f (x.  y)

Similarly, the partial derivative, with respect to y, of a function 
z = f(x,y)  is defined as the limit of the ratio of the partial incre
ment of the function Ayz with respect to y to the increment of Ay 
as Ay approaches zero. The partial derivative with respect to y 
is denoted by one of the following symbols:

Thus,
£ «  lim ^ -2=  lim / . (* •» + * 0 - /(« .» ) .  
dy Atf-o Ay A„_, Ay

Noting that Axz is calculated with y held constant, and Ayz with 
x held constant, we can formulate the definitions of partial deri
vatives as follows: the partial derivative of the function z = f (x, y) 
with respect to x is the derivative with respect to x calculated on 
the assumption that y is constant. The partial derivative of the 
function z — f(x,y) with respect to y is the derivative with respect 
to y calculated on the assumption that x is constant.

It is clear from this definition that the rules tor computing 
partial derivatives coincide with the rules given for functions of 
one variable, and the only thing to remember is with respect to 
which variable the derivative is sought. ,
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dz
dx

Example 1. Given the function z =  x2siny; find the partial derivatives 
and dy
Solution.

dz dz 9r  =  2x sin u\ — = x 2 cos y . dx v dy *

Example 2. z =  xy .
Here

dx y  ’

^ -  = xy lnx. dy
The partial derivatives of a function of any number of variables 

are determined similarly. Thus, if we have a function u of four 
variables x, y, z, t:

u = f(x, y, z, t)
then

d u _  jjm f (x  +  Ax, y, z, I)—f (x, y, z , t) 
d x  A x- t-o  A x

¥ =  lim n*.y+A </,«. t ) - f { x ,  y, z, t) and  so  {orth>
° y  Ax-t-o A y

Example 3.
u  =  x * + y *  +  x t z * ,

■̂ =  2x +  tz’; ^  =  2y; ^  =  3xtz*; ^  =  xz’.dx dy dz dt

SEC. 6. THE GEOMETRIC INTERPRETATION OF THE PARTIAL 
DERIVATIVES OF A FUNCTION OF TWO VARIABLES

Let the equation
* = /(*. y)

be the equation of a surface shown in Fig. 172.
Draw the plane x = const. The intersection of this plane with 

the surface yields the line PT. For a given x, let us consider a 
certain point M(x,y)  in the ;ct/-plane. To the point M there cor
responds a point P (x, y, z) on the surface z ~ f ( x , y ) .  Holding x 
constant, let us increase the variable y by A y— MN — PT'.  Then 
the function z will be increased by Ayz = TT'  [to the point 
N (x, y + Ay) there corresponds a point T (x, y-\- Ay, z + Ayz) on 
the surface z = f(x,y)].
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The ratio is equal to the tan-Aj,
gent of the angle formed by the 
secant line PT  with the positive 
y-direction:

—  =  tan TPT'.Ay
Consequently, the limit

lim
A//-* o

Ay Z  _  dz 
Ay ~  dy

is equal to the tangent of the angle 
P formed by the tangent line PB 
to the curve PT at the point P 
with the positive ^-direction:

g  =  tan P. Fig. 172.

Thus, the partial derivative is numerically equal to the tan
gent of the angle of inclination of the tangent line to the curve 
resulting from the surface z = f{x,y)  being cut by the plane 
x =  const.

Similarly, the partial derivative ^  is numerically equal to the
tangent of the angle of inclination a of the tangent line to the 
surface z — f(x, y) cut by the plane y =  const.

SEC. 7. TOTAL INCREMENT AND TOTAL DIFFERENTIAL

By the definition of the total increment of the function 
z = f (x,y) we have (see Sec. 3, Ch. VIII)

Az = f(x  +  Ax, y + A y ) — f(x,y).  (1)
Let us suppose that f (x ,y)  has continuous partial derivatives at 

the point (x, y) under consideration.
Express Az in terms of partial derivatives. To do this, add to 

and subtract from the right side of (1) f (x ,y+Ay):
' Az = [ f { x + A x ,y + A y ) — f(x ,y+Ay)]  + [f(x,y + Ay)— f(x,y)]. (2)

The expression
fix, y + Ay)— f(x, y)

in the second square brackets may be regarded as the difference 
between two values of the function of the variable y alone (the
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value of x remaining constant). Applying to this difference the 
Lagrange theorem, we get

f(x, y~\-Ay) — f(x, t/) =  At/ - ^  , ' (3)

where y lies between y and y-\-&y.
. In exactly the same way the expression in the first square 
brackets of (2) may be regarded as the difference between two 
values of the function of the variable x alone (the second argument 
retains the same value y+Ay).  Applying the Lagrange theorem to 
this difference, we have

f(x + Ax, y + A y )— f(x, y+Ay) = Ax — Ay), (4)

where x lies between x and x-\-Ax.
Introducing expressions (3) and (4) into (2) we get

4* _  +  . (5)

Since it is assumed that the partial derivatives
Km df (*. y + Ay) _  df (*. y) 

dx "" dxAx
Ly

Vmm x sJ)= d L ^ j )
a * - .  dy dy
Â -m>

are continuous,

(6)

(because x and y respectively lie between x and jt +  A*, and y 
and y+Ay, x and y approach x and y, respectively, as Ax—►O 
and Ay—*0). Equalities (6) may be rewritten in the form

df (*, y +  Ay) _  df (x, y) 
dx dx
df (x, y) _  df (x, y) 

dy dy

where the quantities y, and yt approach zero as Ax and Ay 
approach zero (that is, as Aq — ]/ Ax + Ay2 —► 0).

By virtue of (6'), relation (5) becomes

A z  =  ~ 6 x ~  Ax  + ' '  (d y U) Ay  +  ^ A x  +  Y.‘&y- (5 ')

The sum of the two latter terms of the right side is an infini
tesimal of higher order relative to Ae =  VrAx*+ Ay*. Indeed, the
ratio ^ ^ —*0 asAo—*-0, since y, is an infinitesimal and ^  

a  e * 11 Ae

(6')
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is bounded In similar fashion it is verified that

The sum of the first two terms is a linear expression in Ax 
and Ay. For f'x (x, f/)=£0 and f'y (xt y)^0,  this expression is the 
principal part of the increment, differing from Az by an 
infinitesimal of higher order relative to q =  ]/'A x* +  Ay2.

Definition. The function z = f(x,y) [the total increment (Ae) of 
which at the given point (x, y) may be represented as a sum of 
two terms: a linear expression in Ax and Ay, and an infinitesimal 
of higher order relative to Aq] is called differentiable at the given 
point, while the linear part of the increment is known as the 
total differential and is denoted by dz or df.

From (5') it follows that if the function f(x,y)  has continuous 
partial derivatives at a given point, it is differentiable at this 
point and has a total differential:

dz = f'x (x, y) Ax +  fy (x, y) Ay.

Equality (5') may be rewritten in the form 
Az = dz + yl Ax + yiAy,

and, to within infinitesimals of higher order relative to Aq, we 
may write the following approximate equality:

Az^=dz.
We shall call the increments of the independent variables Ax 

and Ay differentials of the independent variables x and y and we 
shall denote them by dx and dy respectively. Then the expression 
of the total differential will assume the form

dz = %dx  f  — dy.df
dx dy

Thus, if the function z = f{xyy) has continuous partial derivatives, 
it is differentiable at the point (x, y)y and its total differential is 
equal to the sum of the products of the partial derivatives by the 
differentials of the corresponding independent variables.

Example 1. Find the total differential and the total increment of the 
function z =  xy at the point (2, 3) for Ax =  0.1, Ay =  0.2.

Solution.
A z=  (x +  Ax) (y +  A y ) — xy =  y Ax +  x A y +  Ax Ay, 

d z = ! ^ d x  +  ^ d y  =  y d x  +  x d y  =  y Ax +  x Ay-
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Consequently,
Az =  3-0.1 +  2- 0.2 +  0.1-0.2 =  0.72; 
dz =  3-0A -f  2-0.2 =  0.7.

Fig. 173 is an illustration of this example.

The foregoing reasoning and definitions are appropriately 
generalised to functions of any number of arguments.

If we have a function of any number 
...... .. . . of variables

xAy
AxAy

w = f(x, y, z, u,
df

y&x.

Ax

and all partial derivatives^
are continuous at the point 
. . . ,  t), the expression

■ 9,
d±

' d y '  '
(*. y,

df
dt

Z ,  U ,

dfdw = %dx +  d£/ dy +  ̂ d z + . . . + a, dt

Fig. 173. 

difference Aw— dw is

is the principal part of the total increment 
of the function and is called the total 
differential. Proof of the fact that the 
an infinitesimal of higher order than

l/(Ax)2 +  (Ai/)2 +  . . .  +  (A/)2 is conducted in exactly the same way 
as for a function of two variables.

Example 2. Find the total differential of the function u = e x,+y, sin2 a of 
three variables x, y, z.

Solution. Noting that the partial derivatives

^  =  ex,+y>2x sin2 z,dx

— = e xl+yt2y sin2 z,
dy

^  =  e*‘+y,2 sin z cos z =  exl+yt sin 2z az
are continuous for all values of x, y, z, we find that

du =  ^ d x  +  ̂ d y  +  ̂  dz =  exi+yt (2xsln*z dx +  2y sin* z dy +  sin 2z dz).

SEC. 8. APPROXIMATION BY TOTAL DIFFERENTIALS

Let the function z — f(x ,y<) be differentiable at the point (x, y). 
Find the total increment of this function:

Az =  /(x+A x, y + ky)— f(x,y),
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whence
+  y +  Ay) = f(x, y) + Az.

We had the approximate formula

where
Az=s=dz,

d z = % ^ x +%,^y-

(1)

(2) 

(3)

Substituting, into formula (1), the expanded expression for dz in 
place of Az, we get the approximate formula

f(x  + Ax, y + Ay)=f {x, y) +  ~f Ax +  - (-*’y y)- Ay, (4)

to within infinitesimals of higher order relative to Ax and Ay.
We shall now show how formulas (2) and (4) are used for 

approximate calcinations.
Problem. Calculate the volume of material needed to make a cylindrical 

glass of the following dimensions (Fig. 174):
radius of interior cylinder R, 
altitude of interior cylinder H, . 
thickness of walls and bottom of glass k.

Solution. We give two solutions of this problem: exact and approximate, 
a) Exact solution. The desired volume v is equal to the difference between 

the volumes of the exterior cylinder and interior 
cylinder. Since the radius of the exterior cylinder is 
equal to R +  k, and the altitude is H + k ,

or

v =  n (R +  k)2 (H +  k)— nRzH

v =  n (2RHk +  R*k +  Hk2+  2Rk2 +  k5). (5)

i •,
i / 
i

H
1 H

k j

t i '
k !
T

Fig. 174.

b) Approximate solution. Let us denote by f the 
volume of the interior cylinder, then f — nR2H. This is 
a function of two variables R and H. If we increase R 
and H by k , then the function f will increase by A/; 
but this will be the sought-for volume o, v =  Af-

On the basis of relation (1) we have the approximate equality
v z z d f

or

t±R = hH = k,
But since
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we get
v ^ n ( 2 R H k  +  R2k). (6)

Comparing the results of . (5) and (6), we see that they differ by the quan
tity jt (Hk2~\-2Rk2~\- ks), which consists of terms of second and third order of 
smallness relative to k.

Let us apply these formulas to numerical examples.
Let R =  4 cm, H =  20 cm, k =  0A cm.
Applying (5), we get, exactly,

v =  n (2-4.20-0.1+ 42*0.1+20.0.12 +  2 .4 .0 .12 +  0.1s)=17.881jt.

Applying formula (6), we have, approximately,
(2.4.20.0.1 +  42*0.1)= 17.6jc.

Hence, the approximate formula (6) gives an answer with an error less than
0,3jr, which is 100 • %, which is less than 2% of the measured1/.oolrt
quantity.

SEC. 9. ERROR APPROXIMATION BY DIFFERENTIALS

Let some quantity u be a function of the quantities x, y, z, , . . ,  t
“ =  /(*. y, . . . .  0

and let there be errors Ax, Ay, ...... At made in determining the
values of the quantities x, y, z, Then the value of u
computed from the inexact values of the arguments will be 
obtained with an error

Au=r-f(x + Ax, y+Ay ,  . . . ,  z + Az , t  + At)—f ( x , y , z ........ 0-
Eelow we shall investigate the evaluation of the error Au, provided 
the errors Ax, Ay, . . . ,  At are known.

For sufficiently small absolute values of the quantities Ax,
Ay.........At we can replace, approximately, the total increment
by the total differential:

Au<^—Ax +  -^ At/+ • • • +%At.

Here, the values of the partial derivatives and the errors of the 
arguments may be either positive or negative. Replacing them by 
the absolute values, we get the inequality

I Au I df
dx A *|+  g  |A i/|+  . . .  +  | At ( 1)

If in terms of |A*x|, |A*y|, . . . ,  |A*u| we denote the maximum 
absolute errors of the corresponding quantities (the boundaries for 
the absolute values of the errors), it is obviously possible to take

A*x| dl
dy A*y\ + + ^1

dt A*t\ ( 2)
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Examples.
1 .  Let u = x  +  y - \ - z .  then

I A*u| =  l A**| +  | A*y | +  | A*z |-
2. Let u  =  x —y ,  then

I A * u  | =  | A** | + 1 A*y |.
3. Let u  =  x y t then

I A*u l =  | * l l  A*y 1 + 1 # 11 A*-* I-
4. Let u =  — , theny

I A*« | = rlu'*l+ . . . . .  I » I U * « I  +  I«IIA , «1y i ..I

5. The hypotenuse c and the leg a of a right triangle A B C , determined with 
maximum absolute errors |A*c| =  0.2, |A *a| =  0.1, are, respectively, c =  7 5,
a  — 3 2 .  Determine the angle A  from the formula sinA =  -^-; and determine the 

maximum absolute error \ A A \  when calculating the angle A .

Solution. sini4 =  — , A =  arc sin— , hence, c c

da

From formula (2) we get

i a i i = - ~  1
V  (75)*—(32)?

Thus,

1 d A  a
j/ ĉ2—a2 * ĉ c V  c2—a2

0 . 1H------- 7 = =  • 0.2=0.00275 radian =  9'38".
75 V (75)*—(32)*

A  =  arc sin == ±  9'38\ 
t o

6. In the right triangle A B C , let the leg 6 =  121.56 and the angle 
A  =25°21,40//, and the maximum absolute error in determining the leg b  is 
1^*6 1=0.05 metre, the maximum absolute error in determining the angle A  

is | AM | =  12".
Determine the maximum absolute error in calculating the leg a from the 

formula a =  6 tan A .
Solution. From formula (2) we find

1 A*a I =  I tan A \ \ A*b A*A |.

Substituting the appropriate values (and remembering that | a M  | must be 
expressed in radians), we get

191 19
I A*. | =  lan 25-2 l-40 -.0 .05+ - 7^ 2.| .<0. ^ i.s -

=  0.0237 +  0.0087 =  0.0324 metre.
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The ratio of the error Ax of some quantity to the approximate 
value of x of this quantity is called the relative error of the 
quantity. Let us designate it 6x,

6* =  ^ .
X

The maximum, relative error of a quantity x is the ratio of the 
maximum absolute error to the absolute value of x and is denoted 
by 16**1,

16** | I A* *| 
1*1 (3)

To evaluate the maximum relative error of a function u, divide 
all numbers of (2) by \u\ = \f (x, y, z ........ Oh

but

dl d[ d[
dx
T 1 A **| + dy

f | A * y | + . . . +
dt
T A *f|,

dl
dx d , , f ,
7  =  ^ lnl/1;

dl
dt d « i£i
J - d t  n l^l‘

(4)

For this reason, (3) may be rewritten as follows:

l8*«| = £ l n | / |  |A**| + £ l n l |A *</|+ ...+  -£ ln |/ | |A*/|...,(5)

or briefly,
|8*« | =  | A*ln | / | | (6)

From both (3) and (5) it follows that the maximum relative error 
of the function is equal to the maximum absolute error of the 
logarithm of this function.

From (6) follow the rules used in approximate calculations.
1. Let u = xy.
Using the results of Example 3, we get

|6 *u 1 * 1 1  A**l ly 11 A*y 1 |A**|
I xy I **" \xy I 1*1

that is, the maximum relative error of a product is equal to the 
sum of the maximum relative errors of the factors.

2. If “ =  then, using the results of Example 4, we have 
|6*m| =  |6*x| +  |6*i/|.
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Note. From Example 2 it follows that if u — x —y, then

1 1 \ * — y  I

If x and y are close, it may happen that |6*u| will be very great 
compared with the quantity x — y being determined. This should 
be taken into account when performing the calculations.

Example 7. The oscillation period of a pendulum is

r - 2„ / 1 ,

where / is the length of the pendulum and g is the acceleration of gravity.
What relative error will be made in determining T when using this for

mula if we take Jt=5r3.14 (accurate to 0.005), / =  1 m (accurate to 0.01 m)f 
g =  9.8 m/sec2 (accurate to 0.02 m/sec2).

Solution. From (6) the maximum relative error is

|6*7M =  |A * ln r |.
But

In r  =  ln2 +  ln Jt + y  In / — Ing.

Calculate |A * ln 7 ’ | .  Taking into account that Jt 3.14, A*jt =  0.005, 
/ =  1 m, A */=  0.01 m, g =  9.8 m/sec2, A*g =  0.02 m/sec2, we get

A*
_  A** , A*/ , A *g_0.005  
"" jt +  21 +  2g 3.14

0.01
2

0.02
■*“2.9.8 =  0.0076.

Thus, the maximum relative error is
6*r =  0.0076 =  0.76%.

SEC. 10. THE DERIVATIVE OF A COMPOSITE FUNCTION.
THE TOTAL DERIVATIVE

'Let us assume that in the equation
z = F(u, v) (I)

u and v are functions of the independent variables x and y.
u = y(x, y); o =  r|>(x, y). (2)

In this case, 2 is a composite function of the arguments x and y. 
Of course, z can be expressed directly in terms of x, y; namely,

z=F[(p(*, y), y)]. (3)
Example 1. Let

z — u*v3 +  u -f- 1; u — x2-\-y2\ v = e x+  ̂-\-l;
then

*=(** ■+ (.ex+y +  ij*+(**+#*) + 1-
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Now suppose that the functions F(u, v), q>(x, y), i|>(x, y) have 
continuous partial derivatives with respect to all their arguments,

dz dzand we pose the problem: evaluate — and ^  on the basis of
equations (1) and (2) without having recourse to equation (3).

Increase the argument x by A*, holding the value of y cons
tant. Then, by virtue of equation (2), u and v will increase by 
Axti and Axv.

But if u and v receive increments Axu and Axv, then the func
tion z = F(u, v) will receive an increment Az defined by formula 
(5), Sec. 7, Ch. VIII:

Az =  Tu A*u +  % A*y +  V , 4-  y 2Axu.

Divide all terms of this equality by Ax:
Az _  dF Axu . dF A x v   ̂ _  Axu Axv
Ax du Ax ' d v  Ax ' ' 1 Ax Ax *

If Ax—*►O, then A*u—1>0 and Axv —►O (by virtue of the conti
nuity of the functions u and v). But then y, and yt also approach 
zero. Passing to the limit as Ax—►O, we get

, .  Az dz hm 7- =  3- 
A*-*o A x  d x

and, consequently,

A*-*o A X  d x  A x  d x

lim y, =  0; lim ys =  0Ax-+o Ax-vo

dz OF du dF dv 
dx ~~ du d x '  dv dx * (4)

If we increased the variable y by Ay and held x constant, then 
by similar reasoning we would find that

Example 2.

d z  dF du . d F  dv
dy du dy dv dy “

z =  \n(u2+ v ) ;  u = e x+y*t t +
dz __ 2u # dz _  1
du~~u2-\~v ' dv~~u2 +  v *

du v . vi du n v.ii* dv n dv=zex+y \  — =  2 yex+y\  — =  2x\ ^- =  1.dx dy dx dy

Using formulas (4) and (4') we find
dz _  2 u 
dx u2-\-v 

dz _  2u
dy

ex +y*+ 1
u2 +  u

¥ T v 2yeX*y'+^ > = ^

2x = - ^ — (ue*+y' +  x),«* + t>
(2 uyex+y‘+ 1).

(4')
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Formulas (4) and (4') are. readily generalised to the. case of a 
larger number of variables.

For example, if w = F (zy «, v, s) is a function of four argu
ments z, u, u, s, and each of them depends on x and yy then 
formulas (4) and (4') assume the. form

d w _dwdz dw du dw dv
dx ~  dz d x '  du dx dv dx

dw ds 
ds

dw
dy'

ds \ 
dx ’ I

dw dz ■ dw du dw dv , dw ds t  
' dz d y '  du dy ' dv dy~  ̂ ds dy  * J

(5)

If a function is given z=F(x ,  y, u, v), where y, u, v in turn 
depend on a single independent variable (argument) x :

y = f{x)\ u = q>(*); u =

then z is actually a function only of the one variable x, and we 
may pose the question of finding the derivative ^ .

This derivative is calculated from the first of the formulas (5):
dz _ d z  dx dz dy . d z  du dz dv̂
dx dx dx dy dx ' du d x '  dv dx ’

But since y, u, v are functions of x alone, the partial derivatives 
become ordinary derivatives; in addition ^ = 1 .  For this reason,

d z_dz . dz dy . dz du . dz dv
dx dx~ *~  d y d x '  du d x '  dv dx * ' '

This formula is known as the formula for calculating the total 
derivative (in contrast to the partial derivative^).

Example 3.
? =  y=smx>

v.   _
dx * dy 2 V  y ' d*

1 dy — ; — =  cosx.

Formula (6), here, yields the following result:

dz _ dz dzdj/  1_
dx dx"' dy dx ' 2  Y y cos* =  2*-}~

1
2 Y  sin*

cos x.
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SEC. 11. THE DERIVATIVE OF A FUNCTION DEFINED 
IMPLICITLY

Let us begin this discussion with the implicit function of one 
variable.*) Let some function y of x be defined by the equation

F(x, y) =  0.
We shall prove the following theorem.

Theorem. Let a continuous function y of x be defined impli
citly by the equation

F(x, y) = 0
where F (x, y), Fx (x, y), Fy (x, y) are continuous functions in 
some domain D containing the point (x, y) whose coordinates satisfy 
equation (I); also, at this point Fy (x, y)=h0. Then the function 
y of x has the derivative

■ ____ F x  (*. y )

y *  P'y (*. y ) '

Proof. Let the value of the function y correspond to some value 
of x. Here,

F{x, y)=  0.

Increase the independent variable x by Ax. Then the function y 
will receive an increment Ay; that is, to the value of the argu
ment x-f- Ax there corresponds the value of the. function y + Ay. 
By virtue of equation F (x, y) — 0 we shall have

F(x + Ax, y + Ay) = 0.
Hence

F{x+Ax,  y + Ay) — F{x, y) = 0.
The left member of the latter equality, which is the. total incre
ment of the function of two variables by formula (5'), Sec. 7, may 
be rewritten as follows:

F (x 4 -Ax, y + Ay)— F{x, y) = ^  Ax + ^  Ay+ y ,Ax+ ytAy,

where Yi and Y2 approach zero as Ax and Ay approach zero. Since 
the left side of the latter expression is equal to zero, we can

*) In Sec. 11, Ch. Ill, we solved the problem of the differentiation of 
an implicit function of one variable. We considered individual cases and 
did not find a general formula that would yield the derivative of an impli
cit function; likewise we failed to clarify the conditions of the existence of 
this derivative.
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write
% A* 4- ̂  Ay +  Y, A* +  =  0.

Divide the latter equality by Ax and calculate — t

A y

Ax

dF , 
d i+Y‘ 
dF , 
55+v.

Let Ax approach zero. Then, taking into account that y, and y2
d Falso approach zero and that we have, in the limit,

y'x= —

dF_
dx
dF
dy

( 1)

We have proved the existence of the derivative y ’x of a function 
defined implicitly, and we have found the formula for calcu
lating it.

Example 1. The equation
*2 + t/2—1=0

defines y  as an implicit function of x. Here,

dF dF F(xt y )= x *  +  y > - 1 , ^ = 2 * ;  °fy =  2y.

Consequently, from (1),
dy _  2x _  x
dx ~~ 2y~~ ~y *

It will be noted that the given equation defines two different functions 
[since to every value of x in the interval (— 1, 1) there correspond two 
values of y]\ however, the value that we found of yx holds for both functions. 

Example 2. An equation is given that connects x and y:

ey — e* + xy = 0.
Here, F (x, y ) = e y — ex -\-xyt

dF dF
T  = ~ eX+y< i r = ey+x'dx ^y'

Consequently, from formula (1) we get

dy ~-ex +  y ex —y 
dx “ e y + x  ey +  x '
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Let us now consider an equation of the form
F(x9 y, z) =  0. (2)

If to each number pair x and y in some domain there correspond 
one or several values of z that satisfy equation (2), then this 
equation implicitly defines one or several single-valued functions 
z of x and y .

For instance, the equation
x* + y* + z*—R* = 0

implicitly defines two continuous functions z of x and y% which 
functions may be expressed explicitly by solving the equation for 
z; in this case we have

z = Y R t— xt— y1 and z =  — Vt f 1— j/L

Let us find the partial derivatives ^  and ^  of the implicit
function z of x and y defined by equation (2).

When we seek we consider y fixed. And so formula (1) is
applicable, provided x is considered the independent variable and 
z the function. Thus,

dF
' dx

Z*= ~ d F '  
dz

In the same way we find
dF

dz

Similarly, we determine the implicit functions of any number 
of variables and find their partial derivatives.

Example 3.
x* +  y* +  z2 — R* =  0,

dz _  2a:  x t y
d x ~  2z~~ z ’ d y ~  z

Differentiating this function as an explicit function (after solving the 
equation for z), we would obtain the very same result.

Example 4.
ez -F x*y -\-z-\- 5 =  0.
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Here, F {x, y , z) =  ez +  x2y +  z +  5t ’

dF 0 dF 2 dF z , f — =  2xy\ -— —x2\ T  — I;

a* 2*̂  dz
e* +  1 ’ dy ez 1

SEC. 12. PARTIAL DERIVATIVES OF DIFFERENT ORDERS

Let there be given a function of two variables:

2 =  /(*. y)-

The partial derivatives =  £  {x, y) and ^  =  £,(*, y) are, gene
rally speaking, functions of the variables x and y. And so from 
them we can again find partial derivatives. Thus, there are four 
partial derivatives of the second order of a function of two vari
ables, since each of the functions ^  and ^  may be differentiated
both with respect to x and with respect to y.

The second partial derivatives are denoted as follows:
| p = /**(•*, y)\ here f  is differentiated twice successively with

respect to x\
f'*y(x, y)\ here / is first differentiated with respect to x and 

then the result is differentiated with respect to 
y \

Hydic ~  iyx (x, y); here f is differentiated first with respect to y and 
then the result is differentiated with respect to x\

d2z •• y)> here the function / is differentiated twice succes
sively with respect to y.

Derivatives of the second order may again be differentiated 
both with respect to x and y . We then get partial derivatives of 
the third order. Obviously, there will be eight of them:

dsz d*z d*z m dzz m d*z m d*z m d*z # d*z
dx* ’ dx*dy * dxdydx 9 dxdy2 * dydx2 ’ dydxdy 9 dy2dx * dy8 '

Generally speaking, a partial derivative of the nth order is the 
first derivative of the derivative of the (n— 1) st order. For exam-

dnzpie, £XPdyn-f is a derivative of the /ith order; here the function
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z was first differentiated p times with respect to x , and then 
n— p times with respect to y.

For a function of any number of variables, the higher-order 
partial derivatives are determined in similar fashion.

Example 1. Compute the second-order partial derivatives of the function
f(x,  y) =  x2y +  y*.

Solution. We find successively

dL
dx =  2 xy\ dy =  x2 +  3y2;

d*f _ d(2xy) d2f _ d(x2 +  3y2) n
dx dy dy ’ dy dx dx '

21
dy2 =  6y.

Example 2. Compute and if z =  y*ex +  x*y* + 1.
Solution. We successively find

d±  =  y*e* +  2xy\  % p = y 2e* +  2y'; ^ = 2 y e x +  6y2,

-  =  2ye* +  3 x V -  £ L .  =  2ye* +  6xy*; ^ ^ y e * +  6yK

d*u
Example 3. Compute $y qz if u =  z2ex+y%.
Solution.

%L = z*ex+y';dx dx2 z2ex +y \ d*u
d&Ty 2 yz2ex±y\ d'u =  4uzex+yt 

dx2 dy dz y

The natural question that arises is whether the result of differ
entiating a function of several variables depends on the order of 
differentiation with respect to the different variables; in other 
words, will, for instance, the following derivatives be identically 
equal:

*t and 11L
dx dy d u dy dx

or
ay (*. y. o ctnA y> o

dx dy dt dt dx dy ’

and so forth. It turns out that the following theorem is true.
Theorem. If the function z = f(x, y) and its partial derivatives 

fx, f  , f  and i" are defined and continuous at a point M (*, y) 
and in some neighbourhood of it, then at this point

j?!L = Z L  (r = f ) ,
dx dy dy dx " w  yx*'
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Proof. Consider the expression 
A = [/(x +  Ax, y + Ay) — f (x+ A x ,  «/)] —[f(x, y + Ay)— f{x, y)].

If we introduce an auxiliary function <p(x) defined by the 
equality

<P (*) =  /(*, y + A y ) — f(x, y),
then A may be written in the form

A =  q> (x +  Ax) — (p (x).
Since it is assumed that f'x is defined in. the neighbourhood of 
the point (x , y), it follows that <p(x) is differentiable on the 
interval [x, * 4- Ax]; but then, applying the Lagrange theorem, 
we get

A — Ax<p' (x)

where x lies between x and x +  Ax.
But

cp'(x) =  /;(x, y + Ay)—f'x (x, y).

Since f  is defined ip the neighbourhood of the point (x, y), 
fx is differentiable on the interval [y, y +  At/]; and so by applying 

once again the Lagrange theorem (with respect to the variable y) 
to the difference obtained we have

fx (x, y +  Ay) — fx (x, y) =  Ayfxy (x, y),
where y lies between y and y-\- Ay.

Consequently, the original expression of A is
A =  AxAyfXy (x, y). (1)

Changing the places of the middle terms we get
A = \f(x +  Ax, y +  Ay)— f(x, y +  Ay)] — [f (x +  Ax, y)— f(x, y)].

Introducing the auxiliary function
y ( y ) = f ( x  +  Ax, y)— f(x, y),

we have
4̂ =  ^ (1/ + At/) — y(y).

Again applying the Lagrange theorem we get

A = AyV(y), 
where y lies between y and y + Ay.
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But
'I5' (y)=f'u (x +  Ax, y) — fv (x, y).

Again applying the Lagrange theorem we get
fy (x+ Ax, y)— fy (x, y) =  Axfyx (x, y),

where x lies between x and x+Ax.
Thus, the original expression of A may be written in the 

form _ _
A =  Ay AxfyX (x, y). (2)

The left members of (1) and (2) are equal to A, therefore the 
right ones are equal too; that is,

Ax Ayf"xy (x, y) =  Ay Axfyx (x, y).
whence

f x y  (x, y) —f y x  (x, y).
Passing to the limit in this equality as Ax—>-0 and Ay—>-0, 

we get _ _
lim f"xy (x, y)=  lim fyx (x, y).

Ajc -► o A* -► o
Â / -► o by -+ o

Since the derivatives f  and f  are continuous at the point 
(x, y), we have lim fxy (x, ~y)=fxy{x, y)

A* -► o
_  0 ,s  :

and lim fyx (x, y) =  fyx (x, y). And finally we get
A* -► o 
A</ -► o

fxy (X, y)=f"yX (X, y),
as required.

A corollary of this theorem is that if the partial derivatives
dnf dnfand ,■ „ are continuous, then

dxk dyn~k dyn“k dxk
dnf d“f

dxkdyn~k dyn~k dxk

A similar theorem holds also for a function of any number of 
variables.

Example 4. Find  ̂ ^  a. and  ̂  ̂ if u = e xy sine.
Solution.

dx dy dz dy dz dx

= yexy sin z\ =  *xy sin z +  xyexy sin z =  exy (1 +  xy) sin z;
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d'u 
dx dy dz =  exy (1 +  xy) cosz; — sinz;dy

d2u 
dx dz = x e xy cos z;

Hence,

d*u 
dy dz dx = exy cos z +  xyexy cosz =  exy (1 + x y )  cosz.

d*u __ d*u 
dx dy dz ~~ dy dz dx

(also see Examples 1 and 2 of this section).

SEC. 13. LEVEL SURFACES

In a space (x , y, z) let there be a region D in which the 
function

u = u(x, y, z) ( 1)

is defined. In this case we say that a scalar field, is defined in 
the region D. If, for example, u(x , y, z) denotes the. temperature 
at the point M(x, y, z), then we say that a scalar field of tem
peratures is defined; if D is filled with a liquid or gas and 
u(x, y, z) denotes pressure, we have a scalar field of pressures, 
etc.

Consider the points of a region D in which the function 
u{x, y, z) has a fixed value c:

u(x, y, z) = c. (2)
The totality of these points forms a certain surface. If a different 
value of c is taken, we obtain a different surface. These surfaces 
are called level surfaces.

Example 1. Let there be given a scalar field
. . x2 . y2 , z2u(x, y.  2) =  t + _  +  _ .

Here, the level surfaces are
x2 u2 z2
T + V + T B - '

or ellipsoids with semi-axes 2 y  c,, 3 y  c , 4  v  c.
If the function u is a function of two variables x and y,

u = u(x, y),
then the level “surfaces” are lines on the xy-plane:

u(x, y) = o
which are called level lines.

(2')
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If we plot values of u on the 2-axis:
2 =  «(jc, y),

the level lines in the xy-plane will be projections of lines obtained 
at the intersection of the surface z = u(x, y) with the planes

2 =  c (Fig. 175). Knowing the
level lines, it 
the character 
z = u(x, y).

is easy to study 
of the surface

Example 2. Determine the level lines of the function z =  l — x*— y !. They 
are lines with equations 1—x!—y2 =  c, which are (Fig. 176) circles with radius 
V l— c- In particular, when c = 0  we get the circle =

SEC. 14. DIRECTIONAL DERIVATIVE

In a region D, consider the function u — u(x, y, z) and the 
point M (x , y, z). Draw from M a vector S whose direction cosines 
are cosa, cosp, cosy (Fig. 177). On the vector S, at a distance

Fig. 177.
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As from its origin, let us consider a point M, (*+  Ax, y + Ay, z-f- Az). 
Thus,

As =  Y  Ajc* +  Ay1 -f- Az1.

We shall assume that the function u (x, y, z) is continuous and 
has continuous derivatives with respect to their arguments in the 
region D.

As in Sec. 7, we will represent the total increment of the 
function as follows:

Au =  -  Ax +  Ay +  ̂  Az +  e, Ax +  e2 Ay +  e,Az, (1)

where e|f e2 and e# approach zero as As—►O. Divide all terms of 
(1) by As:

A* , p Ay-, A2 /9x
A s dx As ' dy As ' dz As ' 1 A s '  2 AS 3 As * ' '

It is obvious that
Ax
AS cos a, — =  cos P, A s

Az-7 -  =  c o s  A s Y-

Consequently, equation (2) may be rewritten as
=  ̂  cos a +  ̂  cosp +  —cosv +  e.cosa +  SjCOsp +  e.cosY. (3)

The limit of the ratio ^  as As —>-0 is called the derivative of 
the function u=u(x,  y, z) at the point (x, y, z) along the direction 
of the vector S  and is denoted by ^ ; thus

lim
As -* o

A u _du
As ds * (4)

So, passing to the limit in (3), we get
du du , du n , du-  =  - c ° s a  +  r y CO^ +  Jzcosy. (5)

From formula (5) it follows that if we know the partial derivatives 
it is easy to find the derivative along any direction S. The 
partial derivatives themselves are a particular case of a directional 
derivative.

Jt TtFor instance, when a =  0, p =  y , y =  ~2' > we get
d u_du
dx dx

n , du n , du Jt ducos 0 +  -5- c o s -  cos — =  —. 1 dy 2 1 dz 2 dx
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Example. Given a function
u =  x2 -f- y* -f- z2.

du
Find the derivative at the point M ( 1, 1, 1): a) along the direction of

the vector 5, =  2 /-t-y'4 - 3k; b) along the 
direction of the vector S2 =  l + j - t - k .

Solution, a) Find the direction 
cosines of the vector S2:

cos a =
j /4+ 1+9 V u '

dx **'

„ 1 3cos p =  —7= ,  cos y = —7=  . 
^14 r VT*

Hence,

du _ d u  2 du 1 du 3 
d s ~ d x  j/ 14 dy Y~\A V \ i  ’

du du
w  y< s i =2z'

Thus,
( £ - ) . - » ■  . ( £ ) . - * ■

12du —o _̂ ig *_ ig ^ __
<*>1 V\4 ^ 1 4  VU

b) Find the direction cosines of the vector S2:

1 ■ o 1 ■ 1cos a =  —r — , cos p =  , cos v = —7^  ,
f  3 * V 3

Hence,

— =2---!=  + 2.—  + 2- —  = —  =  2 K'T
V  3 3 3

du
ds.

We note here (and it will be needed later on) that 2

(Fig. 178).
V 14

SEC. 15. GRADIENT

At every point of the region D, in which the function 
u = u(x, y, z) is given, we determine the vector whose projections 
on the coordinate axes are the values of the partial derivatives
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ITx' dy' % °f ^ IS Unction-at the appropriate point:
w « du . , du . , du u /1v
8 ™Au=d-xi + d-yJ+lTzk- ^

This vector is called the gradient of the function u (.x, y , z). We 
say that a vector field of gradients is defined in D. Let us now 
prove the following theorem which establishes a relationship 
between the gradient and the directional derivative.

Theorem. Given a scalar !field u = u(xt y , z); in this field, let 
there be defined a field of gradients

_ i du . . du . , da *
gra * “ = §;t + ryJ+T2k -

The derivative ^  along the direction of some vector S  is equal to
the projection of the vector grad u on the vector S.

Proof. Consider the unit vector 5°, which corresponds to the 
vector. S: . ,-.i

5° =  i cos a + j cos {} -4- k cos y.

Find the scalar product of the vectors grad u and 5°:

gradu-S° =  ̂  cosa-F ^cosp  +  ̂ cosv . (2)

The expression on the right is a derivative of the function 
u(x, y, z) along the vector S. Hence, we can write

gradu-5“ =  | .

If we designate the angle between the vectors grad u and S° by 
<p (Fig. 179), we can write

| grad u | cos <P =  ^  (3)
or

projection 5° grad u =  ̂  (4)

and the theorem is proved.
This theorem gives us a clear picture of the relationship 

between the gradient and the derivative, at a given point, along 
any direction. Referring to Fig. 180, construct the vector gradu 
at some point M(x, y, z). Construct a sphere for which gradu 
is the diameter. Draw the vector 5 from M. Denote by P the 
point of intersection of 5 with the surface of the sphere. It is
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then obvious that MP = \ grad u | cos cp, if cp is the angle between 
the directions of the gradient and the segment MP ^here, ,

or MP =  — . Obviously, when the direction of the vector 5  is

reversed the derivative changes sign, while its absolute value 
remains unchanged. .

Let us establish certain properties of a gradient.
1) The derivative; at a given point along the direction of the 

vector S has a maximum if the direction of S coincides with that 
of the gradient;' this maximal value of the derivative is equal to 
| grad a |.

The truth of this assertion follows directly from (3): ^  will be 
a maximum when <p =  0, and in this case

=  Igrad «|.

2) The derivative along a vector that is tangent to a level 
surface is zero.

This assertion follows from formula (3). Indeed, in this case, 

cp =  ~  , cos cp =  0 and ~  =  | grad u | cos cp =  0.

Example 1. Given the function
u ^ x ' +  y' +  z*.

a) Determine the gradient at the point M( l ,  1, 1). The expression of the 
gradient of'this function at an arbitrary point will be

grad u =  2xi +  2 y j  -j- 2 zk.
Hence,

(grad a)M =2/ +  2y-j-2Af, | grad u / I T

b) Determine the derivative of the function u at the point M( l ,  1, 1) 
along the direction of the gradient. The direction cosines of the gradient.
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will be

And so

or

2 1 0 1 1 cos a =  . - t-=. =  —==. , cos 6  =  —7=  , cos v =  -7 =  .
V 2 8 +  2 2 +  2 * Y  3 Y  3 K 3

- = 2  -^=  + 2 —J=  + 2—J=. =  2 1^3;
*  /  3 Y 3 3

=  I grad u |.

Note. If the function u = u(x, y) is a function of two variables,
then the vector „Va

 ̂ , du . . du .grad M =  a- /  +  d- y gradu
\ n °

lies in the xy-plane. We shall prove.that 
grad u is perpendicular to the level line 
u{x, y) — c lying in the j«/-plane and 
passing through the corresponding point. 
Indeed, the slope of the tangent to ther 0 x
level line u{x, y )=c  will equal Fig. 181.

(see Sec. 11). The slope kt of the gradient is kt = -4.  Obviously,
u x

k lkt = — l. This proves our assertion (Fig. 181). A similar prop
erty of the gradient of a function of three variables will be 
established in Sec. 6 of Chapter IX.

X 2 U2Example 2 . Determine the gradient of the function u=-~- +  Ar (Fig. 182)Z o
at the point M (2, 4).

10— 3388



2 9 0 Functions of Several Variables

Solution. Here
d u  _  I _  9 d u  _ _  2 I _  8
d x ~ X \M ~ ~  ' dy~~ ?> \ m ~  2> '

Hence

grad « =  2/ +  | - /

The equation of the level line (Fig. 183) passing through the given point

SEC. 16. TAYLOR’S FORMULA FOR A FUNCTION 
OF TWO VARIABLES.

Let there be a function of two variables
z = /C*> y)

which is continuous, together with all its partial derivatives up 
to the (/z+ l)st order inclusive, in some neighbourhood of the 
point Af(a, b). Then, like the case of one variable (see Sec. 6, 
Ch. IV), represent the function of two variables in the form of a 
sum of an /ith degree polynomial in powers of (x — a) and (y— b) 
and some remainder. It will be shown below that for the case 
of n = 2 this formula has the form
f (x> y) = A0 + D(x—a) + E(y — 6) +

4- -gj [A (x—a)* +  2B (x—a) (y — b) +  C (y — 6)2] +  (1)

where the coefficients A0, D, £ , A, Bt C are independent of x 
and y , while R2 is the remainder, the structure of which is simi
lar to the structure of the remainder in the Taylor formula for a 
function of one variable.

Let us apply the Taylor formula for a function f ( x , y) of one 
variable y considering x constant (we shall confine ourselves to 
second-order terms):

/(■*. =  b) +  /'. (X. t> )  +

+ ^ r „ < x . t ) + l* f i $ r m (x . r o .  (21

where t), =  6 +  9,(i/—b), O<0,<1. Expand the functions f(x, b), 
fy (x> b), f“w (x, b) in a Taylor’s series in powers of (*—a), con
fining yourself to mixed derivatives up to the third order inclu
sive:
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f (x,  b) =

=  /(«. b) +  x- = ^ r x (a, b) +  {- ^ f f " xx(a, +  *>. (3)

where
g, =  A; +  02(Ar—a), O < 0 2< 1 ; 

f,(*. b) =  f'y (a, b) + — fyx(a, b) + &=g£ f e d , ,  b), (4)
where

£* =  * + 0,(jf — a), 0 < 02<  1;

fyy{x ,b) =  fyyifl, b)-\ j fyyx(Xj> b), (5)

where
g, =  x +  04(x—a), 0< 64< 1.

Substituting expressions (3), (4) and (5) into formula (2), we get 

f  (*. y) — f(a, &) +  —y—/*(<*! b) +  (-— ^ f xx(a, b) +

+  T i r  « t .  b )+ y— [fy (a, b) +  x- ^  fyx (a, b) +

+ {- ^ f  Qx  6)] [ fyy (a, 6 ) a. ,  *>] +

Arranging the numbers as indicated in formula (1), we get

f(x, y) = f(a, b) + (x— a)fx (a, b) + (y— b)f'y (a, b) +
+ ̂ [ ( x — a)t fxx(a, b) + 2(x— a)(x— b)fxy(a, b) +

+ (y— b)*fm (a, b)H-jil(AC—a)' fxxx{lx, b) +

+ 3  (x— a)x (x— b) fxxy (E„ b) + 3  {x— a) (y — b)* fxyy (£, b) +

+ (y— b), fyyy(a, t|)J. (6)

This is Taylor’s formula for n =  2. The expression

R t = ^ [ ( x - a ) ’f7xx( t t, b ) + Z ( x - a ) ' ( y - b ) f x'xy{l lt b) +

+  3 (x—a) (y— by fxyy (g}, b) f  (y— by fuyy (a, n;j
10*
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is called the remainder. Further, let us denote x — a =  Ax, y — b — Ay, 
Aq = V{A x)* + {Ay)'. Transform R 2:

R,  =  j i  [ - J  U  (h,  b) +  3 ^  fxxy ( l2, b) +

+  3 fx'vv (E.. &) +  ffr  fyyy (<*, T))l Ae’-

Since |Ax |< A q, |A i/ |< A q and the third derivatives are bounded 
(this is given), the coefficient of Aq’ is bounded in the domain 
under consideration; let us denote it by a0.

Then we can write
R t = a,AQ*.

In this notation, Taylor’s formula (6) will then, for the case n = 2, 
take the form

f{x,y) = f(a, b) + Axfx (a, b) + Ayf’y {a, b) +

+  ̂ IA x*fxx(a, b) + 2AxAyfxy[a,b) + Ay*fyy{a, b)] + aaAq*. (6') 

Taylor’s formula is of a similar form for arbitrary n.

SEC. 17. MAXIMUM AND MINIMUM OF A FUNCTION 
OF SEVERAL VARIABLES -

Definition 1. We say that the function z = f(x ,y)  has a maxi
mum at the point Mt (x0, y 0) (that is, when x = x0 and y = yt) if

f(x t , y0) > f ( x ,  y)
for all points (*, y) sufficiently close to the point (jr#, t/0) and 
different from it.

Definition 2.' Quite analogously we say that a function z =  / (x, y) 
has a minimum at the point M0 (jc0, y„) if

/(*.. y%)<f(x, y)
for all points (x, y) sufficiently close to the point (x0, y0) and 
different from it.

The maximum and minimum of a function are called extrema 
of the function; we say that a function has an extremum at a 
given point if this function has a maximum or minimum at the 
given point.

Example 1. The function
z =  (x—  l) ! + ( y - 2 ) ! - l  

attains a minimum at x =  1, i/ =  2; i .  e., at the point (1, 2). Indeed, /  (1, 2) =  — 1,



Maximum and Minimum of a Function of Several Variabes 293

and since (x — l )2 and ( y—2 )2 are always positive for x 7= 1 , y  7= 2 , so 
(x — \)Zj\r(y—2)*— 1>  — l t

that is,
/(* . y ) > f {  1, 2 ).

The geometric analogy of this case is shown in Fig. 184.

Example 2. The function

z =  y — sln(x* +  y*)

for x =  0, y =  0 (coordinate origin) attains a maximum (Fig. 185).
Indeed,

/ ( 0 . 0 ) = 1 .

Inside the circle * 2 +  #2=  let us take the point (x, y) different from

the point (0, 0). Then for 0< * 2 +  ̂ 2< -^ - ,0
sin (*J+ y * )> 0

and therefore

/(*. y ) = \ — s>n (**+</*)< y
or

f(x,  y ) < f  (0 , 0).

The definition, given above, of the maximum and minimum of 
a function may be rephrased as follows.

Let x = x0 +  Ax; y = y» + Ay, then
f(x, y)— f(x0, y,) = f(x0 +  Ax, y^ +  Ay) — f{x„ t/0) =  Af.

1) If A/<0 for all sufficiently small increments in the independ
ent variables, then the function f(x, y) reaches a maximum at 
the point M (x0, y0).
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2) If A/>0 for all sufficiently small increments in the independ
ent variables, then the function f (x t y) reaches a minimum at 
the point M (x0, yQ).

These formulations may be extended, without any change, to 
functions of any number of variables.

Theorem 1. (Necessary conditions of an extremum). If a function 
z — f(xyy) attains an extremum at x = x0, y = yQ then each first- 
order partial derivative with respect to z either vanishes for these 
values of the arguments or does not exist.

Indeed, give the variable y a definite value y = yQ. Then the 
function f (x , yQ) will be a function of one variable, x. Since at 
x = xQ it has an extremum (maximum or minimum), it follows
that _ is either equal to zero or does not exist. In exactly

U = Uo
the same fashion it is possible to prove that is either:*0
equal to zero or does not exist.

This theorem is not sufficient for investigating the extremal 
values of a function, but permits finding these values for cases 
in which we are sure of the existence of a maximum or minimum. 
Otherwise, more investigation is required.

For instance, the function z =  y 2—x* has derivatives ^  =  — 2*; ^ = + 2 y,
which vanish at x =  0 and y — 0. But for the given values, this function has

neither maximum nor minimum. Indeed, this 
function is equal to zero at the origin and 
takes on both positive and negative values at 
points arbitrarily close to the origin. Hence, 
the value zero is neither a maximum nor a 

X minimum (Fig. 186).

Points at which ^  =  0 (or does not

exist) and *̂  = 0 (or does not exist) are
Fig- 186. called critical points of the function

z = f(x,y).  If a function reaches an 
extremum at some point, then (by virtue of Theorem 1) this can 
occur only at a critical point.

For investigating a function at critical points, let us establish 
sufficient conditions for the extremum of a function of two vari
ables:

Theorem 2. Let a function f(x,y) have continuous partial deri
vatives up to order three inclusive in a certain domain containing 
the point M0(x0, y Q)\ in addition, let the point M0(x0, yQ) be a
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critical point of the function f(x,y)\ that is,
df (-<0. </o )  _  n df (*„, y0) _  n 

dx ’ dy ~  '

Then for x = x„ y = ya:
1) f(x, y) has a maximum if

d2f ( * o .  y<,) 
dx2

an(J

2) f ( x , y) has a minimum if

. ?.?(*«• *»>_  ( */(«.• ^ V> 0  and ?■?<*•; *>> 0;ox2 ay2 \ oxoy ) ox2 9
3) / (*. y) has neither maximum nor minimum if

d2f (x0. y«) d2f (x ,, y0) f  d2f (x0, j/o) \ n . 
dx2 * dy2 \  . dx dy )  ^ u’

^  ;f d2f(x0, y t) d2f (xa, ya) f d 2f (xa, ya) \ t  _  n tUn„ tu __  ___  __
4> l > ---- d T 2-----------d f 2------- \ ~ d x d y  )  = 0 t t h e n  t f l e r e  m a y  0 r

may not be an extremum (in this case, an additional investigation 
is required).

Proof. Let us write the second-order Taylor formula for the 
function f(x, y) [Formula (6), Sec. 16]. Assuming

a =  *„, b = yt„ x = xt + Ax, y =  yt +  Ay,
we will have

/(xt + Ax, ya + Ay) = f(xt , ya) +  df (x£  ya) Ax +  df (*°y' yo) Ay +

+  T  [  "  f x '2 ^  +  2 ^ d x d y ^  A x A y  +  ^ % 2 y<>) + “ o(A e)s,

where Aq =  ]/ A x 2 +  Ay* and a0 approaches zero as Ae—>0.
It is given that

df (*o» y0) n df (x0, yD) « 
dx ~ U' dlj U>

Hence
A f ^ f i X '  + Ax, yo + Ay)—f(xi, y0) =

~  2i [dPAxt +  2 ^ i^  A*Â + |p  Ai,‘] + ao(Ae)’- 0)
Let us now denote the values of the second partial derivatives 

at the point M0(x0h yt) in terms of A, B, C:

{ d ? ) * . ^ ' ’
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Denote by 9 the angle between the direction of the segment M 0M, 
where M is the point M (x0 + Ax, y0 +  Ay), and the A>axis; then

Ax =  Aqcoscp; A«/ =  Aesincp.
Substituting these expressions into the formula for Af, we find

Af =  —- ( Aq)* [j4 cos* 9 + 2  B cos 9 sin9 +  Csin*9 +  2a# Aq] . (2)

Suppose that A=£0.
Dividing and multiplying by A the expression in the paren

theses, we have
A / = 4  ( Aq)* j~Mcos(p+Bsin^+MC-fl»)sin»(p +  ^  A(?j _ (3)

Let us now consider four possible cases.
1) Let AC—£*>0, /4<0. Then in the numerator of the fraction 

we have a sum of two nonnegative quantities. They do not vanishA
simultaneously because the first term vanishes for tan 9 =  — ,
while the second vanishes for sin 9 =  0.

If /1<0, then the fraction is a negative quantity that does not 
vanish. Denote it by —m*; then

A/ =  y  (Aq)*[—m* +  2ct#AQ],

where m is independent of Aq, cx0Aq—*Q as Aq—>-0. Hence, for 
sufficiently small Aq we have

A/<0
or

/(*, +  A*, t/0 +  A«/)—/(*,, y%) < 0.
But then for all points (jc0 +  Aa:, yQ + hy) sufficiently close to 

the point (xQfy Q) we have the inequality
f(x, +  a*, y, + b y X f ( x t, y0),

which means that at the point (*„, y0) the function attains a 
maximum.

2) Let AC — B*>0, 4 > 0 . Then, reasoning in the same way, 
we get

A/ =  -(Aq)* [m* +  2a0 Ae]
or

f(xv + Ax, y t + Ay)>f{xt, y t), 
that is, f {x, y)  has a minimum at the point (+,, «/0).
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3') Let AC—B*<0, /4>0. In this case the function has neither 
a maximum nor a minimum. The function increases when we move 
from the point (x0, y0) in certain directions and decreases when 
we move in other directions. Indeed, when moving along the ray 
cp =  0, we have

A /= 4 (A e)! M +  2a0 Ae]>0; 

when moving along this ray the function increases. But if weP
move along a ray cp =  <p0 such that tan cp0 =  — , then for /4 >0  
we have

A/r =  -^(Ae)* sin2*?, +  2a0Agj <0;

when moving along this ray the function decreases.
3") Let AC—B2<0, j4<0. Here the function again has neither a 

maximum nor a minimum. The investigation is conducted in the 
same way as for 3'.

3"') Let AC—B2< 0, j4 =  0. Then Bi= 0, and equality (2) may 
be rewritten as follows:

A/ — -y (Aq)* [sin <p(2B cos<p +  C sin q>) +  2a0Ap].

For sufficiently small values of <p the expression in the parenthe
ses retains its sign, since it is close to 2B, while the factor sin <p 
changes sign depending on whether <p is greater or less than zero 
(after the choice of <p>0  and q><0 we can take q so small that 
2a,, will not change the sign of the whole square bracket). Conse
quently, in this case, too, A/ changes sign for different q?, that 
is, for different Ax and Ay; hence, in this case too there is neither 
a maximum nor a minimum.

Thus, no matter what the sign of A we always have the follow
ing situation:

If .4C—B ‘< 0 at the point (x0, y0), then the function has nei
ther a maximum nor a minimum at this point. In this case, the 
surface, which serves as a graph of the function, can, near this 
point, have, say, the shape of a saddle (see Fig. 186). The func
tion at this point is said to have a minimax.

4) Let AC — B‘ = 0. In this case, by formulas (2) and (3), it is 
impossible to decide about the sign of A/. For instance, when 
i4#0 we will have

v - i m -  [ ( » “ »T+»»hT) . + 2 a . A(i] ,
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when cp =  arc tan  ̂— ir') ’ s'2n ^  *s determined by the
sign of 2a0; here, a special additional investigation is required
(for example, with the aid of a higher-order Taylor formula or in 
some other way). Thus, Theorem 2 is fully proved.

Example 3. Test the following function for maximum and minimum:

* =  xy+y* +  Zx—2^ +  1.
Solution. 1) Find the critical points

g  =  2 * - j ,  +  3 ;  2 .

Solving the system of equations

2x — £/ +  3 =  0, 1 

—x +  2y — 2 =  0 , J
we get

4 1
yasT -

2) Find the second-order derivatives at the critical point 
and determine the character of the critical point:

dh
dx2 dx dy — > c ~ 9 ~ *

AC—B2= 2 -2  —( — 1)4= 3 > 0 .

Thus, at the point  ̂ the given function has a minimum, namely

_  _A _
2min 2 *

Example 4. Test for a maximum and minimum the function z =  *8-f y*—3xy. 
Solution. 1) Find the critical points using the necessary conditions of an 

extremum:

£  =  3 ^ - 3i/ =  0 ,

S  = V -3 *  = 0.

Whence we get two critical points:

*i =  l, 0 i =  l and * 2 =  0 , 02 =  0 .

2) Find the second-order derivatives:
d2z _ d2z 0 dh c
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3) Investigate the character of the first critical point:

y= i  y = i  y - \
AC — £ 2= 3 6 —9 =  27>0; A > 0.

Hence, at the point (1, 1) the given function has a minimum, namely:

* m i n = —  1 -

4) Investigate the character of the second critical point M2 (0 , 0): 
A =  0; B =  — 3; C =  0;

AC — B2=  — 9 <  0.

Hence, at the second critical point the function has neither a maximum nor 
a minimum (minimax).

Example 5. Decompose a given positive number a into three positive terms 
so that their product is a maximum.

Solution. Denote the first term by xt the second by y\ then the third will 
be a —x —y. The product of these terms is

u = x - y  (a—x —y).

It is given that *> 0 , #> 0 , a—x —y > 0. that is, x +  y<a ,  u > 0. Hence, x and y 
can assume values in the domain bounded by the straight lines * =  0, y =  0, 
x +  y =  a.

Find the partial derivatives of the function u:

dJL =  y ( a - 2x - y ) ,  

*? =  x ( a - 2y - x ) .

Equating the derivatives to zero, we, get a system of equations: 

y (a— 2x —y) =  0; x (a—2y —x) =  0.

Solving this system we get the critical points:
xx =  0, y t = 0, M, (0, 0);
*2 =  0, y t = a . M2(0, a);
*3 =  a, y , = o. M,.(a, 0);

a a M (  a a
*4“ “3 ’ y*= t - Ml \  3 ’ 3

The first three points lie on the boundary of the region, the last one, inside. 
On the boundary of the region, the function u is equal to zero, while inside
it is positive; consequently, at the point the function u has a max
imum (since it is the only extremal point inside the triangle). The maximum 
value of the product

— £L£l ( _ ___
““ " I I  Va s  . 3 y 27'
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Investigate the character of the critical points using the sufficiency condi
tions. Find the second-order partial derivatives of the function u:

d2u _  
dx2~~ - 2  y\

d2u 0 0 d2u 0
3—5— =  a — 2x —2y\ —2x.dx dy * dy2

d2u d2uhave 4 = g = 0;B =  ̂  = a,C =  ̂ = 0,At the point M, (0 , 0 ) we
i s a . VA. u y  u y

AC — B2 = — a2< 0. Hence, at the point Mx there is neither a maximum nor
d2u

a  minimum. At the point M2 (0, a) we have A =  =

AC — B2=  —a2<  0.

- 2a\ B =  ^ - £ -  =  — a; dxdy

Which means that at the point M2 there is neither a maximum nor a m ini
mum. At the point M3 (a, 0 ) we have A = 0 , —a, C = —2 a:

AC — B2=  —a2< 0.
At M8 too there is neither a maximum nor a minimum. At the point 
.. f  a a \  , „ 2a D - a ~ 2a
m* \ T ’ t J  we *iave = 3 > c = - j >

A C - B ‘ = ^ 1 ~ > 0 ;  A<0.
Hence, at M4 we have a maximum.

SEC. 18. MAXIMUM AND MINIMUM OF A FUNCTION 
OF SEVERAL VARIABLES RELATED BY GIVEN EQUATIONS 

(CONDITIONAL MAXIMA AND MINIMA)

In many maximum and minimum problems, one has to find the 
extrema of a function of several variables that are not indepen
dent, but are related to one another by side conditions (for 
example, they must satisfy given equations).

By way of illustration let us consider the following problem. 
Using a piece of tin 2a in area it is required to build a closed 
box in the form of a parallelepiped of maximum volume.

Denote the length, width and height of the box by x, y, and z. 
The problem reduces to finding the maximum of the function

v = xyz
provided that 2xy +  2xz +  2yz =  2a. The problem here deals with 
a conditional extremum: the variables x, y, z are restricted by the 
condition that 2xy-{-2xz +  2yz = 2a. In this section we shall con
sider methods of solving such problems.

Let us first consider the question of the conditional extremum 
of a function of two variables if these variables are restricted by 
a single condition.
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Let it be required to find the maxima and minima of the func
tion

“ = /(*» y) (1)
with the proviso that x and y are connected by the equation

9 (*> y) — 0* (2)
Given condition (2), of the two variables x and y there will be 

only one which is independent (for instance, *) since y is deter
mined from (2) as a function of x. If we solved equation (2) for 
y and put into (1) the expression found in place of y, we would 
obtain a function of one variable, x, and would reduce the prob
lem to one that would involve finding the maximum and minimum 
of a function of one independent variable, x.

But the problem may be solved without solving equation (2) for 
x or y. For those values of x at which the function u can have 
a maximum or minimum, the derivative of u with respect to x 
should vanish.

From (1) we find remembering that y is a function of x:

d u _ df . df dy
dx dx ' dy dx *

Hence, at the points of the extremum

d x ^ d y  d x ~ " ‘

From equation (2) we find

*E +  *R*£ =  0
dx ‘ dy dx

This equality is satisfied for all x and y that satisfy equation (2) 
(see Sec. 11, Ch. VIII).

Multiplying the terms of (4) by an (as yet) undetermined coef
ficient X and adding them to the corresponding terms of (3), 
we have

( a. i a. dy\ — n 
U *  +  dy d x ) + K  d Z j ~ °

or

( l + ^ ) + ( £ + ^ ) § - ° -  (5)

The latter equality is fulfilled at all extremum points. Choose X 
such that for the values of x and y which correspond to the extre
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mum of the function a, the second parentheses in (5) should vanish: *)

f  + x f  = 0 .dy 1 dy

But then, for these values of x and y , from (5) we have

f + ^  =  0.dx 1 dx

It thus turns out that at the extremum points three equations 
(with three unknowns xy y, X) are satisfied:

g  +  * S - o . )

<p(*> y ) = o. J

From these equations determine xy y , and X\ the latter only played 
an auxiliary role and will not be needed any more*

From this conclusion it follows that equations (6) are necessary 
conditions of a conditional extremum; or equations (6) are satisfied 
at the extremum points. But there will not be a conditional extre
mum for every x and y (and X) that satisfy equations (6). A sup
plementary investigation of the nature of the critical point is re
quired. In the solution of concrete problems it is sometimes pos
sible to establish the character of the critical point from the 
statement of the problem. It will be noted that the left-hand sides 
of equations (6) are partial derivatives of the function

F(x, y , X) = f(x, y) + Xy(x, y) (7)
with respect to the variables x, y and X.

Thus, in order to find the values of x and y which satisfy con
dition (2), for which the function u = f(x, y) can have a condi
tional maximum or a conditional minimum, one has to construct 
an auxiliary function (7), equate to zero its derivatives with re
spect to x, y, and X, and from the three equations (6) thus 
obtained determine the sought-for x, y (and the auxiliary factor X). 
The foregoing method can be extended to a study of the condition
al extremum of a function of any number of variables.

Let it be required to find the maxima and minima of a function 
of n variables, u = f(xlt x , . . . ,  xn) provided that the variables

*) For the sake of definiteness, we shall assume that at the critical points

d<V ^ n
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xv xzi xn are connected by m (m < n) equations:

cpi (*̂ i» *„ •••. xn) = 0,
<M*,. X......... . *„) =  °>

<P« (•*..
In order to find the values of xl% x2, xn> for which there 

may be conditional maxima and minima, one has to form the 
function
F {Xy, Xz, • • • > Xnt , . • . , f (Xx» • • •» %n) î(Pi » • • * » ^n) “I”

+  K < P z ( * i ............ * n )  +  - - - + K V m ( X v  *n)»
equate to zero its partial derivatives with respect to xx, xz, . . . ,  xn:

djt,a*,
+  i . . .  + 1 - ^  =  0,dx2 1 1 dx2 1 1 m dx2

( 9 )

d*n ■ 1
and from the m + n equations (8) and (9) determine xz, . xn 
and the auxiliary unknowns kl9 . . . ,  Xm. Just as in the case of a 
function of two variables, we shall, in the general case, leave 
undecided the question of whether the function, for the values 
found, will have a maximum or minimum or will have neither. 
We will decide this matter on the basis of additional reasoning.

Example 1. Let us return to the problem formulated at the beginning of 
this section: to find the maximum of the function

provided that
v =  xyz

xy +  xz +  y z —a =  0 (x >  0, y >  0, z >  0). 

Wc form the auxiliary function
F (x, tjt X) =xyz  +  A, (xy -\-xz-\-yz—a).

Find its partial derivatives and equate them to zero:
y z - \ - X ( y + z )  =  0, \ 
xz +  X (x +  z) =  0, >
xyJrX{x + y) = 0. J

(10)

(11)

The problem reduces to solving a system of four equations (10) and (11) 
in four unknowns (x, y t z and A,). To solve this system, multiply the first of
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equations (11) by x, the second by y , the third by z, and add; taking (10) 
into account we find that X = - - ^ £ .  Putting this value of X into equations, 
(11) we get

yz [ 1~ £ (y+z)] =0>

** [ ‘ - S (* + 2)] =o>

xy = 0 -

Since it is evident from the statement of the problem that x , y, z are diffe
rent from zero, we get from the latter equations

g(f/ + *)=l. | [  (* + *)=!. U (* + *)«!•
From the first two equations we find x — y t from the second and third equations, 

y =  z. But then from equation (10) we get x =  y =  z =  ^ ■ • This is the
only system of values of x, y , and z, for which there can be a maximum or 
minimum.

It can be proved that the solution obtained yields a maximum. Incidentally, 
this is also evident from geometrical reasoning (the statement of the problem 
indicates that the volume of the box cannot be big withotit bound; it is 
therefore natural to expect that for some definite values of the sides the 
volume will be a maximum).

Thus, for the volume of the box to be a maximum, the box must be a

cube, an edge of which is equal to
Example 2. Determine the maximum value of the nth root of a product 

of numbers x l9 x2, . . ., xn provided that their sum is equal to a given num
ber a . Thus, the problem is stated as follows: it is required to find the max
imum of the function u =  y / x t . . . xn on the condition that

x i +  * 2 +  • • • +  x n —  a  =  0 
(*! >  0, x2 >  0..........xn >  0).

Form an auxiliary function:
F(xv  . . . , x n, > .)= £ /* ,  . . .  *„+A, (*, +  * , +  . . .  + * n —  a)- 

Find its partial derivatives:
1 x2xs . . .  xn , , 1 u
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From the foregoing equations we find 

and from equation (12) we have

By the meaning of the problem these values yield a maximum of the
function y /x ,  . . .  xn equal to .

Thus, for any positive numbers x2, . xn connected by the relation
ship xt -\-xt +  . . .  + * n  — a> inequality

y * x  . . .  a s )

is fulfilled (since it has already been proved that — is the maximum of this 
function). Now substituting into (13) the value of a obtained from (12), we get

y XlXt +  : - Xn- (14)

This inequality holds for all positive numbers xv x2, . . . ,  xn. The expression 
on the left-hand side of (14) is called the geometric mean of these numbers. 
Thus, the geometric mean of several positive numbers is not greater than 
their arithmetic mean.

SEC. 19. SINGULAR POINTS OF A CURVE

The concept of a partial derivative is used in investigating 
curves.

Let a curve be given by the equation
F{x, y) = 0.

The slope of the tangent to the curve is determined from the 
formula

dif
d y   dx
dx dF

dy
(see Sec. 11, Ch. VIII).

If at a given point M{x, y) of the curve under consideration,
dF dFat least one of the partial derivatives ^  and ^  does not vanish,

then at this point either o r ^  is completely determined. The
curve F(x, y) = 0 has a very definite line tangent at this point. 
In this case, the point M (x, y) is called an ordinary point.
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But if at some point Af0(x0, y a) we have

=  0 and*0 =  0 ,

then the slope of the tangent becomes indeterminate.
Definition. If at the point Af0(x0, yt) of the curve F (x, y) = 0,

both partial derivatives^- and ^vanish, then such a point is called
a singular point of the curve. Thus, a singular point of a curve 
is defined by the system of equations

F =  0; dF
dx 0;

Naturally, not every curve has singular points. For example, 
for the ellipse

a* 6*
obviously,

F(x, y) = -^r + j f — 1; dF__ 2*. dF__ f y .  
dx ~  a‘ ’ dy 6* ’

dF dFthe derivatives and vanish only when * =  0, y = 0, but these
values of x and y do not satisfy the equation of the ellipse. 
Consequently, the ellipse does not have any singular points.

Without undertaking a detailed investigation of the behaviour 
of a curve near a singular point, let us examine some examples 
of curves that have singular points.

Example 1, Investigate the singular points of the curve

y*—x ( x —a)2 =  0 (a > 0 ).

Solution. Here, F (x, y) — y2—x (x — a)2 and therefore

g  = (*-a)'(a-a*); -- = 2y.
Solving the three equations simultaneously,

F ( x , y )  =  0. g = 0 .  |  =  0,

we find the only system of values of x and y that satisfy them:
=  y0 =  o.

Consequently, the point M0(a, 0) is a singular point of the curve.
Let us investigate the behaviour of the curve near a singular point and 

then construct the curve. 1
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Rewrite the equation in the form
y — ± (*—«) V~X-

From this formula it follows that the curve: 1) is defined only for 
2) is symmetrical about the jc-axis; 3) cuts the jc-axis at the points (0, 0) and 
(a, 0). The latter point is singular, as we have pointed out.

Let us first examine that part of the curve which corresponds to the plus 
sign:

y =  (x—a) l / T

Find the first and second derivatives of y with respect to x:
, 3jc—a 
' ~ 2 Y~x'

3x -f- a 
4x Y x

For x =  0 we have y =  oo. Thus, the curve touches the y-axis at the origin. 
For jc =  -|- we have y ' =  0, #" >  0, which means that for x== ~  the func
tion y has a minimum:

On the interval 0 <  x <  a we have y <  0; for x >  y' >  0; as x -*■ oo y oo,o
For x =  a we have tf =  Y  at which means that at the singular point M0(a, 0) 
the branch of the curve y = + ( x —a) Y  x has a tangent

y =  V a (x—a).

Since the second branch of the curve y =  ~~ (x—a) ]^x  is symmetrical 
with the first about the *-axis, the curve has also a second tangent (to the 
second branch) at the singular point

y =  — Y  a (x—a).
The curve passes through the singular point 

twice. Such a point is called a nodal point.
The foregoing curve is shown in Fig. 187. 

Example 2. Test for singular points the curve 
(semicubical parabola)

y2—x* =  0.
Solution. The coordinates of the singular 

points are determined from the following set of 
equations:

y*—x*=  0; 3x* =  0; 2y =  0.

Consequently, M0(0, 0) is a singular point.
Let us rewrite the given equation as

y =  ±  \r x r-
To construct the curve let us first investigate 

the branch to which the plus sign in the equation Fig. 187.
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corresponds, since the branch of the curve corresponding to the minus sign is 
symmetric with the first about the *-axis.

The function y is defined only for it is nonnegative and increases
as x increases.

Let us find the first and second derivatives of the function y =  V x l:

y =-3 1
4 y * '

For * =  0 we have y=*0, «/'=*0. And so the given branch of the curve has a 
tangent y =  0 at the origin. The second branch of the curve y =  — Y  x3 also 

passes through the origin and has the same tangent y =  0. 
Thus, two different branches of the curve meet at the ori
gin, have the same tangent, and are situated on different 
sides of the tangent. This kind of singular point is called 
a cusp of the first kind (Fig. 188).

Note. The curve y 2—x3 =  0 may be regarded as a limit
ing case of the curve y2 =  x (x—a)2 =  0 (considered in Exam
ple 1) as a 0; that is, when the loop of the curve is 
contracted into a point.

Example 3. Investigate the curve

( y—x2)2—x* =  0 .

Solution. The coordinates of the singular points are de
fined by the following set of equations:

—■4x (y—x2) — 5x4 =  0; 2 ( y—**) =  0,

which has only one solution: x =  0, y =  0. Hence, the 
origin is a singular point.

Rewrite the given equation in the form
y =  x2 +  Y x *.

From this equation it follows that x can take on values from 0 to + o o .
Let us determine the first and second derivatives:

.« '= 2 x ± iv 7 ;  </’ = 2 ± i5  y r

Investigate, separately, the branches of the curve corresponding to plus and 
minus. In both cases, when * =  0 we have y =  0, # '= 0 ,  which means that for 
both branches the *-axis is a tangent.

Let us first consider the branch
y =  x * +  V x T

As x increases from 0 to oo, y increases from 0 to oo.
The second branch

y —x2— Yx*
cuts the x-axis at the points (0, 0) and (1, 0).

For x =  the function « =  x2— Y x ?  has a maximum. If *-»* +  oo, then
25

y  — oo.



Singular Points of a Curve 309

Thus, in this case the two branches of the curve meet at the origin; both 
branches have the same tangent and are situated on the same side of the 
tangent near the point of tangency. This kind of singular point is called a 
cusp of the second kind. The graph of this 
function is shown in Fig. 189.

Example 4. Investigate the curve

y 2—x* +  x* =  0.

Solution. The origin is a singular point.
To investigate the curve near this point re
write the equation of the curve in the form

y =  +  x2 Y 1 —x2.

Since the equation of the curve contains 
only even powers of the variables, the curve 
is symmetric about the coordinate axes and, 
consequently, it is sufficient to investigate 
that part of the curve which corresponds to 
the positive values of x and y. From the 
latter equation it follows that x can vary over the interval from 0 to 1, that 
is, 0 *^ x< ,  1.

Let us evaluate the first derivative for that branch of the curve which is 
a graph of the function y = + x 2 Y l —x2:

. _ x (2 - 3x*)
V l - x 2 '

For x = 0  we haye y =  0, / =  0. Thus, the curve touches the *-axis at the 
origin.

For x =  \ we have y =  0, t / =  oo; consequently, at the point (1, 0) the 

tangent is parallel to the ^-axis. For * =  j / * ~  the function has a maximum

(Fig. 190).
At the origin (at the singular point) the two branches of the curve corre

sponding to plus and minus in front of the radical sign are mutually tangent.
A singular point of this kind is 
called a point of osculation (also 
known as tacnode or double cusp). 

Example 5. Investigate the curve
y 2—x2(x — 1) =  0.

Solution. Let us write the sys
tem of equations defining the sin
gular points:

y 2—x2 (x—-1) =  0;
—3*2 +  2* =  0, 2y =  0.

This system has the solution 
* =  0, y =  0. Therefore, the point 

(0, 0) is a singular point of the curve. Let us rewrite the given equation in 
the form

y =  ±  x Y x — l .
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It is obvious that x can vary from 1 to oo and also take the value 0 (in 
which case // =  0 ).

Let us investigate the branch of the curve corresponding to the plus sign 
in front of the radical. As x increases from 1 to oo, y increases from 0 to oo.

The derivative

3* —
2 y  x—

When x = l  we have y ' — oo; hence, at the 
point (1 , 0 ) the tangent is parallel to the //-axis.

The second branch of the curve corresponding 
to the minus sign is symmetric with the first about 
the jc-axis.

The point (0, 0 ) has coordinates that satisfy the 
equation and, consequently, belongs to the curve, 
but near it there are no other points of the curve 
(Fig. 191). This kind of singular point is called an 
isolated singular point.

Exercises on Chapter VIII

Find the partial derivatives of the following 
functions:

1. z — x2sm2y. Ans. — =  2xsin*//; ^  =  *2sin2y . 2 . z =  xy%. Ans. ^  =  

= y2xy*~1; ~̂ =  xy i -2y  In x.

— =2 +■»"+**; 
ay

3. u = e xt+y,+*t . Ans. ^  =  2xe*, +•>',+ ,̂;dx

4. u =  V  Jt2 +  j/2+z*. 
V Sz x

^  =  2 zex*

. du x „ . , v A dzAns. — =  . 5 . 2 =  arc tan (xy). Ans. T  =  - — r-r , -•. , , - .
dx Y x 2 +  y2+ z 2 K y} dx 1 +  x2y2 ' .dy  1 +  x*y2

„ . y A dz — y
6 . z =  arc tan — . A n s . ----------- — dz

dx x2-\-y2 9 dy x2-\-y2 . 7 . 2 =  In Vx2+yz—*

, dz 2Ans. 3-  -----7-------
dx V^x' +  y*

a X zd u  X  —  Z -T
T  = --------2 e J --------- 2 eyf i n  i f  y *dy

1 dz

(*+ y)2 dy

2xdz ___________

du 1 • -  „r  =  -  e «  . 9. dz y

10. 2 = a rc  tan

8 . u =  e J + e

X

a du 1 ny Ans. rr~ =  — e dx y

z — arc sin (* +  y).

dz

Ans. =  dx

V x* +  y*
Ans. dx ' x Y x * —y* *

—y
°y  | f  x4—yx

Find the total differentials of the following functions: 11. z =  x2 +  xy2-{-slny. 
Ans. dz =  (2x y 2) dx-\-(2xy + cos  y) dy. 12. z =  \n(xy). Ans. =  — +  .
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\3. z =  ex*+yi. Ans. dz =  2exi+yi (x dx-\-y dy). 14. w =  tan (3*—y)-\~§y+z.

Ans- du= c o / ( i K - y )  +  { -  cos*{l - y )  +  &,+2 ln 6 )d i ,+ 6 r +«ln 6d*. 15. ® =
. * A , y d x —x d y=  arc s in — . Ans. dw =  —-------------■ .

y  ' \ y \ V  y * - x *

16. Evaluate fx (2, 3) and fy (2, 3) if f(x, j/) =  *2-f*/2. Tins. /^(2, 3) =  4, 
£<2. 3)=27.

17. Evaluate df (x ,y )  for * =  1, y =  0\ d* =  y , d y=~£  if f (x, y) =  V  x2-\-y2 .

i4“ - T  •
18. Form a formula which, for small absolute values of the quantities *,

1 -4-x
(1 -f  ̂ ) (1 -f-g) * ^ ns% *

(x —y —2)-

19. Do the same for 1 / . -A/is. 1 + i (*—-//—z).r 1+ 1/+2 2 v J 7
20. Find ^  and , if z =  u +  u2; u =  x2-\-sinyt i> =  ln (x +  y).

Ans. — =  2x +  2 v —J— ; ^  =  cos« +  2i>—\— . dx x + y '  dy x + y

21. Find ~  anddx dy
dz .. - , / l  +  u
Tyl i z = V  T+Z’ “ = - cos*: acos x. Ans. -r- = 0*

dz
=  0.« * x ' dy2cos*-2- *

22. Find ~  and ^  if z =  eu~2Vt a =  sin*, u =  *s -f i/2. j4ns. ~  =dx dy » - r » a*

= e “- w (cos * —6*2), — =  “ 217 (0—2 -2y ) =  —4 yea-*°.

23. Find the total derivatives of the given functions: 2 =  arc sin(a-fu); 

u =  sin* cos a; v =  cos* sin a. Ans. ^  =  1 if 2kn — y  < * - f a < 2 ^ j t - |- i  ,

5^ =  — 1 if2 ftn + y  < *  +  a < (2 *  +  l ) n + y  . 24. u =  g y =  asinje;

z =  cos*. -4ns. y = e a* sin *. 25. z =  ln (1 —x*)-, x =  J^sin 0 ; —2 tan 0.

Find the derivatives of implicit functions of * given by the following equa

tions: 26. — 1 = 0 . Ans. — — — .a2 Z?2 dx a2 y
dy

27. -4ns.a2 b2 dx
dy _
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Ans. dy y [cos (xy) — exy — 2x] 
dx~~ x [x +  exy — cos (xy)] *

go. 4 + g + £! =  1; find p-  and %  .
a2 b2 1 c2 dx dy

, dz c2x dz c2y r. , dw , dw A dwAns. v  = -----r  =  - r f  • 31. u — v tan aw — 0; find 3— and -3-  . Ans. -3-  =dx a2z dy b2z du dv du
cos2 aw dw sin 2 aw

dv' 2 av

33

. 32. z2 +  — =  Y y * —z2\ show that x 2^  +  = — .x v dx ‘ y d y  z

. — — F f  — show that x^-  4 - y ^ - = z .  no matter what the differentiable x \  z J dx dy
function F.

Compute the second-order partial derivatives:

34. z — x3 Ax2y-\-5y3. Ans. ^ ~ —6x 8y; ^  =  - 8*; |^ = 1 0 .dydx"
XI , • i a d2z x i sin y 35 . z =  ex In (/-fs in y  In x. Ans. ^  =  ex \ n y ----

dy
d2z ex cos y 

dxdy ~  y ' x
d2z ex . .r . = ----- 2 sin y  In x .
dy2 y2

36. Prove that if u- 1 .. d2u . d2u , d2u ... . —~ , then 3—« -f- 3 —i -f-3 - ,  =  0 .
Y x 2 +  y2 +  z2 dx dy dz2

— 9dz 
~~ dx

dx2
x2u2 d2z d2z

37. Prove that if z = ——- , then x 5—, +  y  -3- 3-x +  y dx2 J dxdy
d2z d2z

38. Prove that if z =  In (x2 +  y2), then g p  +  ĝ -a =  0.

d2z d2z
39. Prove that if z =  <p ( //+  a*) +  ̂  ( y—ax), then a2^ —^-2 =  0 f°r anY

doubly differentiable <p and \|).
40. Find the derivative of the function z — 3*4—xy +  y* at the point M (1, 2)

11 1 /3in the direction that makes an angle of 60° with the Jt-axis. Ans. 5-1----- g—  .

41. Find the derivative of the function z =  5x2—3x—y  — 1 at the point
' 47M (2, 1) in the direction from this point to the point TV (5, 5). Ans. -̂ - =  9.4.

42. Find the derivative of the function f (x , y )  in the direction of: 1) the

bisector of the quadrantal angle Oxy. Ans. *» the ne6ative
a t

semi-axis Ox. Ans. —^  .

43. f(x,  y ) =x *  +  3x2 +  4xy +  y 2. Show that at the point M the

derivative in any direction is equal to zero (the “function is stationary”).
44. Of all triangles with the same perimeter 2p, determine the triangle 

with greatest area. Ans. Equilateral triangle.
45. Find a rectangular parallelepiped of greatest volume for a given total

surface S. Ans. A cube with edge * j /" ~  .



Exercises on Chapter VIII 313

46. Find the distance between two straight lines in space whose equations 
x — 1

1 J L - L  J L - I L - ±  Arts 2 ~  1 ' 1 ~  I ~  r  A 2 - '
Test for maximum and minimum the functions:
47. z =  x*y2(a—x —y). Ans. Maximum z at x = . — \y  — ̂ .

48. 2 =  x2 +  xy-{- y 2 +  — 4 -  — . Ans. Minimum z at x =  u =  ̂  - ■ .
*  *  y  Y  3

Tt 3X \49. z =  sin* +  sin y +  sin (x +  ty) 0 ^ y ^ — \ Ans. Maximum

z at x =  y =  ~£

50. z =  sin x sin y sin (a: +  £/) (0 ^  Jt; 0 ^ y  <  Jt). Ans. Maximum z at
Tt

x~ y  ~~3
Find the singular points of the following curves, investigate their character 

and form equations of the tangents at these points:
51. x* +  yB— 3axy =  0. Ans.. M0(0,0) is a node; * =  0, y =  0 are the 

equations of the tangents.
52. a*y2 =  x* (a2—x2). Ans. A double cusp at the origin; the double tangent

y 2 =  0 . x*
53. y2= _ _ e A ns M0(0,0) is a cusp of the first kind; y2 =  0 is a

tangent.
54. y 2= x 2( 9—x2). Ans. M0(0, 0) is a node; y = ± 3 x  are the equations of 

the tangents.
55. a*4— 2ax2y — axy2 +  a2x2 =  0. Ans. M0 (0, 0) is a cusp of the second kind; 

y2= 0 is a double tangent.
56. y 2(a2 +  x2) =  x2 (a2—x2). Ans. M0 (0, 0) is a node; y =  +  x are the 

equations of the tangents.
57. b2x2 +  a2y2= x 2y 2. Ans. Mo(0,0) is an isolated point.
58. Show that the curve y =  x l n x  has an end point at the coordinate 

origin and a tangent which is the y-axis.
x59. Show that the curve y — ------- r- has a nodal point at the origin and

l +  ex
that the tangents at this point are: on the right # =  0, on the left y =  x.



C H A P T E R  IX

APPLICATIONS OF DIFFERENTIAL CALCULUS TO SOLID
GEOMETRY

SEC. I. THE EQUATIONS OF A CURVE IN SPACE

Let us consider the vector OA = r  whose origin is coincident 
with the coordinate origin and whose terminus is a certain point 
A (x, y, z) (Fig. 192). A vector of this kind is called a radius 
vector.

Let us express this vector in terms of the projections on the 
coordinate axes:

Fig. 192.

r = x i + y j + z k .  (1)
Let the projections of the vector r  be 
functions of some parameter t:

x —(f (t), 

z =  X(0 -
(2)

Then formula (1) may be rewritten as follows:
r  = <p (0 / + 1|> (t) y + X (0 * O')

or, in abbreviated form,
r  =  r ( 0 . (1”)

As t varies, x, y, and z vary; and the point A (the terminus of 
the vector r) will trace out a line in space that is called the 
hodograph of the vector r — r(t). Equation (1') or (T) is called 
the vector equation of the line in space. Equations (2) are known 
as the parametric equations of the line in space. With the aid of 
these equations, the coordinates x, y, z of the corresponding point 
of the curve are determined for each value of t.

Note. A curve in space can also be defined as the locus of 
points of the intersection of two surfaces. It can therefore be 
given by two equations of two surfaces:

(D^x, y, z) =  0, 1 
0*2 (x, y, z) =  0. f  

Thus, for example, the equations
x2 +  y2 +  z2 =  4, z = 1

(3)
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are the equations of a circle obtained at the intersection of a 
sphere and a plane (Fig. 193).

Thus, a curve in space may be represented either by paramet
ric equations (2) or by two equations of surfaces (3).

If we eliminate the parameter t from equations (2) and get two 
equations connecting x, y , z, we will thus make the transition 
from the parametric method of representing a line to the surface

method. And conversely, if we put * =  (p(/), where (p(/) is an ar
bitrary function, and find y and z as functions of t from equations

[<p(0.f/.2] = ° .  [<p (0. */. =  o,

we will then make the transition from representation of a line by 
means of surfaces to its parametric representation.

Example 1. The equations

x =  4 t — 1,. y =  3t, z =  i -\-2

are parametric equations of a straight line. Eliminating the parameter t we 
get two equations, each of which is an equation of a plane. For instance, if 
from the first equation we subtract, termwise, the second and third, we get 
x-*-y—z = — 3. But subtracting (from the first) four times the second we get 
x —4z = — 9. Thus, the given straight line is the line of intersection of the 
planes x — y ~ z  +  3 =  0 and x —4z +  9 =  0.

Example 2. Let us consider a right circular cylinder of radius a, whose 
axis coincides with the z-axis (Fig. 194). Onto this cylinder we wind a right 
triangle CtAC so that the vertex A of the triangle lies at the point of inter
section of the generator of the cylinder with the jt-axis, while the leg j4C, is 
wound onto the circular section of the cylinder lying in the xy-plane. Then 
the hypotenuse will generate on the cylinder a line that is called a helix.
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Let us write the equation of the helix, denoting by x , y , and z the coor
dinates of its variable point M and by t the angle AOP (see Fig. 194). Then

x =  acosf, y =  a sin t , z =  PM = A P  tan 0,

where 0 denotes the acute angle of the triangle Cjj4C. Noting that A P = a t ,
since AP is an arc of the circle of radius a corresponding to the central angle 
/, and designating tan 0 in terms of m, we get the parametric equations of 
the helix in the form

x =  a c o s t t // =  asin f, z — amt

(here t is the parameter), or in the vector form:

r =  ia cos t + j a  sin t -f  kamt.

It is not difficult to eliminate the parameter t from the parametric equa
tions of the helix: square the first two equations and add. We find x ^ y 2 — a2. 
This is the equation of the cylinder on which the helix lies. Then, dividing 
termwise the second equation by the first and substituting into the obtained 
equation the value of t found from the third equation, we find the equation 
of another surface cn which the helix lies:

This is the so-called helicoid. It is generated as the trace of a half-line 
parallel to the xy-plane if the end point of this half-line lies on the z-axis and 
if the half-line itself rotates about the z-axis at a constant angular velocity, 
and rises with constant velocity so that its extremity is translated along the 
z-axis. The helix is the line of intersection of these two surfaces, and so can 
be represented by two equations:

2 ,.2_n2 y
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SEC. 2. THE LIMIT AND DERIVATIVE OF THE VECTOR 
FUNCTION OF A SCALAR ARGUMENT. THE EQUATION 

OF A TANGENT TO A CURVE. THE EQUATION OF A NORMAL
PLANE

Reverting to the formulas (1') and (1") of the preceding section, 
we have

r = y ( t ) i  + y{ t ) j+ % (t)k
or

r = r ( 0 .
When t varies, the vector r  varies in the general case both in 
magnitude and direction. We say that r  is a vector function of 
the scalar argument t. Let us suppose that

litn (p(0 =  <P„. z r(t)'A

lim (/) =  i|>0,
M 0
lirn x (0 =  Xo*
t-rt„

Then we say that the vector r0 — <p0j +  t y j+  
+  is the limit of the vector r= r{ t )  and 
we write (Fig. 195)

y o  y
y.

Fig. 195.
lim r(/) =  r #.
t-rt.

From the latter equation follow the obvious equations
lim | r (0 —r 01 =  lim ]/ [q?(0 —<p0]! +  [^ (0 — 8 +  [X (0 - X,11 =  0t-+to M 0
and

lim | r ( 0 l =  kol-
t-+t o

Let us now take up the question of the derivative of the 
vector function of a scalar argument,

r(t) = <f (t)i +  <p(t)j+1 (t)k, (1)

assuming that the origin of the vector r(t) lies at the coordinate 
origin. We know that the latter equation is the equation of some 
space curve.

Let us take some fixed value t corresponding to a definite point 
M on the curve, and let us change t by the increment we 
then get the vector

f ( t +  A0==<P(  ̂+  A0< +  1M^ + A O y + X  (* +  At)h.
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which defines a certain point Af, on the curve (Fig. 196). Let us 
find the increment of the vector

Ar =  r(f  +  Af) — r(t) =
— [<p (f +  Af)—*p (0 ] f +
+  ['I5 (f +  Af)— *( t ) ]J+

In Fig. 196, where OAf =  r(f), OAf, =  
=r(t+At) ,  this increment is shown by 
the vector Af Af, =  Ar (f).
Let us consider the ratio of theAt

increment of a vector function to the 
increment of a scalar argument; this is 
obviously a vector collinear with the 

vector Ar(t), since it is obtained from the latter by multiplication
with the scalar factor . We can write this vector as follows: A t

Ar( t )  <p(t +  A i ) - < p ( t ) f , ♦(Z +  A O -W O  -• . X(< +  A *)-^C (0fc
At ~  At * At •/"* AC~'

If the functions <p (/), x(f) have derivatives for the chosen
value of t, the factors of i, j, k will in the limit become the de
rivatives q>'(f), o|/ (t), x' (i) as A t—<-0. Therefore, in this case the
limit of ^£as A t—»0existsand is equal to the vector «jp' (f)/+ '|’, (0,/+
+  (0 fit

lim f^  =  (p' V) i  +  V ( t ) j+ x ' ( t ) t i -
A/-*-o “ 1

The vector defined by the latter equation is called the deriva
tive of the vector r(t) with respect to the scalar argument t. The
derivative is denoted by the symbol ^  or r ' .

Thus,
* : « r '= q > '( o /+ t '( / ) y + x '( o *  (2)

or
—-  — / +  — ft IT\
d t ~ d t l  +  d t J + d t R '

Let us determine the direction of the vector at
Since as A t —*-0 the point Af, approaches Af, the direction of 

the secant AfAf, yields, in the limit, the direction of the tangent.
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dt*Hence, the vector of the derivative jj- lies along the tangent to

the curve at M. The length of the vector —■ is defined by the 
formula *)

sf |=vVwr+w (or+tx* (oi*. o)
From the results obtained it is easy to write the equation of the 

tangent to the curve
r = xi + y j+ zk

at the point M (x, y} z), bearing in mind that in the equation of 
the curve * =  q>(/), y==ty(t)t z = %(l).

The equation of the straight line passing through the point 
M (x , y , z) is of the form

X —x _Y — y __ Z—z
m n p 9

where X, Y , Z are the coordinates of the variable point of the 
straight line, while m, ny and p are quantities proportional to the 
direction cosines of this straight line (that is to say, to the pro
jections of the directional vector of the straight line).

On the other hand, we have established that the vector
u*!L \ A - - k  d t ~ ~  d t 1 ^  dt  di  R

is directed along the tangent. For this reason, the projections of 
this vector are numbers that are proportional to the direction co
sines of the tangent, hence also to the numbers m, nt p. Thus, 
the equation of the tangent will be of the form

(Lx dy dz ' *
dt  Tt  dt

Example 1. Write the equation of a tangent to the helix 

x =  a cost, y =  as\nt ,  z =  amt

for an arbitrary value of t and for t —- 
Solution.

dx . .
-t t  =  — a  sin t ,  dt

dy . dz■— — a cos t, — =  am. dt dt

*) We shall assume that, at the points under consideration dr
dt 5* G0
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From formula (4) we have
X — acos t _Y — a sin / Z— amt
— a sin t a cos t am
n + =  — we get

V a V 2 
X 2 I

1 to
l

1

7 71Z—am — 4
a f l a Y  2 am

2 2

Just as in the case of a plane curve, a straight line perpendi
cular to a tangent and passing through the point of 
tangency is called a normal to the space curve at the given point. 
Obviously, one can draw an infinitude of normals to a given space 
curve at a given point. They all lie in the plane perpendicular 
to the tangent line. This plane is the normal plane.

From the condition of perpendicularity of a normal plane to a 
tangent (4), we get the equation of the normal plane:

( Y - y ) + % ( Z - z ) - 0 .  (5)

Example 2. Write the equation of a normal plane to a helix at a point
for which / =  .4

Solution. From Example 1 and formula (5) we get

Let us now derive the equation of a tangent line and the nor
mal plane of a space curve for the case when this curve is given 
by the equations

0 \(* . y, z) =  0, O, (x, y, z) =  0. (6)
Let us express the coordinates y, z of this curve as functions
of some parameter t :

* =  <P(0, y =  9 ( 0 .  z =  x (0 -  (7)
We shall assume that cp(/), 9 ( 0 .  %(i) are differentiable functions 
of t.

Substituting into equations (6), in place of x, y, z, their 
values for the points of the curve expressed in terms of t, we get 
two identities in t :

M O, 9 ( 0 .  X(0] =  0> (8a)
<M«P(0, 9 ( 0 ,  X(0] =  0. (8b)

Differentiating the identities (8a) and (8b) with respect to t, we
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get
dO,dx  dO, dy dO, dz 
dx dt ' dy dt dz dt 
d® 2 dx d0 2 dy d0 2 dz 
dx dt dy dt-*~ dz dt

( 9 )

From these equations it follows that
dx_ do,  dO^__ d®i d®2 dy_ d®i d®\ d® 2
dt  _  dy dz ~~ dz dy dt __ dz dz dx dz
dz dO, d P 2 dO,  dtp2 * dz d® 2 d®t d® 2
dt dx dy dy dx dt dx dy dy dx

( 10)

Here, we naturally assume that the expression
=£0; however, it may be proved that the final formulas (11) and 
(12) (see below) hold also for the case when this expression is 
equal to zero, provided that at least one of the determinants in 
the final formulas differs from zero.

From equations (10) we have
dx dy dz
dt dt dt

d O , d P 2 dO, d P 2~~ dO, dP 2 dO, dP 2~~ dO, d P 2 dO, dQ2' 
dy dz dz dy dz dx dx dz dx dy dy dx

Consequently, from formula (4) the equation of the tangent line 
wilUhave the form

X —x Y —y _  Z — z
dO, d 0 2 dO, d 0 2 d 0 2^  dO, d 0 2 dO, d<D2 d<D, d® 2 *
dy dz dz dy dz dx dx dz dx dy dy dx

or, using determinants,
X — jc__________ Y — y__________ Z — z

dtf), ddJj dO, dO, dO, dO,
~dy ~dz dz dx dx dy
d® 2 d0 2 d0 2 d0 2 d0 2 d0 2
dy ~dz dz dx dx dy

( i i )

The normal plane is represented by the equation

(* — x)

dO, dO, dO, dO, dO, dcDi
dy dz dz dx dx dy

dOt <?0 2 +  ( Y — y) dtf>2 d0 2
+  (Z — z)

dOz d 0 2
dy dz dz dx ~dx"~W

=  0. ( 12)

These formulas are meaningful only when at least one of the 
determinants involved is different from zero. But if at some point
1 1 — 3 3 8 8
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ot the curve all three determinants
d<D, a<D, ao, a<D, ao, dd>x
dy dz dz dx dx dy
aa>2 dO>2 » d ® 2 d 0 2 * ao>2ao2
dy  dz dz dx dx dy

vanish, this point is called a singular point of the space curve. 
At this point the curve may not have a tangent at all, as was the 
case with singular points in plane curves (see Sec. 19, Ch. VIII).

Example 3. Find the equations of a tangent line and a normal plane to 
the line of intersection of the sphere x 2- \ -y2 +  z 2 =  4r2 and the cylinder

x 2 +  y 2 =  2ry at the point M (r, r t r 
1^2) (Fig. 197).

Solution.
y, z) =  x * + y * + z i — 4r*. 

<!•»(*. y, z) = x* +  y*— 2ry.

™ l - 2 x  *® I-2 *
dx ~  X' dy ~ Zy '

d O t _
dz

= 2 2,
d0 2
dx =  2x, ^ = 2 y — 2r, ^ = 0 .

dy * dz

The values of the derivatives at the given 
point M will be

P  =  2r ,  P = 2  r ,  ? ! = 2 r V T
dx dy dz

^  =  2r 
dx ^  = 0. ^  = 0.dy dz

For this reason the equation of the tangent line has the form 

X — r Y — r Z — 7 V T
o ~  y r ~  - i  '

The equation of the normal plane is

V T  (Y —r )—(2—r v"2j=0.

SEC. 3. RULES FOR DIFFERENTIATING VECTORS 
(VECTOR FUNCTIONS)

As we have seen, the derivative of a vector
r ( t )  =  < p ( t ) i  +  W ) j + % ( . t ) k ,  (1)

is, by definition, equal to
/ • ' ( 0  =  <P' (* ) / +  ¥ '  ( 0 7 + X' ( 0 * . ( 2)
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Whence it straightway follows that the basic rules for differen
tiating functions hold for vectors as well. Here, we shall derive 
the formulas for differentiating a sum and a scalar product of 
vectors; the other formulas we shall write down and leave their 
derivation for the student.

I. The derivative of a sum of vectors is equal to the sum of the 
derivatives of the vectors.

Indeed, let there be two vectors:
M 0 = q>,(0*+'M0./+Xl (0*. I
rAO = ‘p8( 0 / + ^ ( 0 y + x l (0ft; I { )

their sum is
r, (0 + r2 (0 = [<p, (0 + % (01 i + N>, (0 + (01J+ lx, (0 + x, (01 *•

By the definition of a derivative of a variable vector, we have 
? I M 0 + M 0 J =  [% (t) +  %  ( /)] , l  +  ^  {t) +  %  (t)y J +  [Xi (/) +  %i(t)y k

or
• 1̂ -(0+ fi(<)1 =  [<pi (t) +  «pt'(0] I +  [♦,' (t) + 1|»,'(/)] j +  Ix.V) +  X*' (01* =  

=  <pi (0 i +  y'l (0 j +  Xi (t ) k +  <p'i (t) i + t|>2 (t) j +  x* (0 k =  rx +  rt.
Hence

d fr, (Q +  r2(Q] dr, , dr2
d< ~d<  'r df • vU

II. The derivative of a scalar product of vectors is expressed by 
the formula

d (r,r,) dr, , dr,
d/ d< r * ‘ r * dt (II)

Indeed, if r, (f), r ,(0  are defined by formulas (3), then, as we 
know, the scalar product of these vectors is equal to

, M 0M 0 = q>,<p, + ’M>,+x.x.-For this reason
d (r,r2) 

dt ' : M >  +  <P,<P«* +  M 2 +  'P . 'k  +  X<X2 +  XtXt =

^= (vfv* +  ’p to . +  x i'x*) +  (<p,q>* +  +  XtXt) =
=  ( q ) i V + ^ ' + x . ,A)(q>2f + ’P2y + X 2* ) + ( < P , f + ^ J + X ,A ) ( < p ; f  +̂V*j+X*k) =

= dJ±r + r  *s 
d t  x ' r ' d t  *

The theorem is proved.
From formula (II) we have the following important corollary. 
Corollary. If the vector e is a unit vector, that is, | e |= l ,  then 

its derivative is a vector perpendicular to it.
11
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Proof. It e is a unit vector, then
e e = l.

Let us take the derivative, with respect to t, of both sides of 
the latter equation:

d e . d e  n
e 5 7 + 5 7 e  =  0 >

or
2 « a? -o .

that is, the scalar product

deand this means that the vector ^  is perpendicular to the vector e.
III. The constant numerical factor may be taken outside the 

sign of the derivative:
dar(t)  

dt  :
dr( t )  ,  . . .■ a-+ d = ar’ (t). (Ill)

IV. The derivative of a vector product of vectors r, and r, is 
determined by the formula

d (r, xr,l 
dt

—‘ x r  .j_r x dh
dt  x r « r r ' * d t  ' (IV)

SEC. 4. THE FIRST AND SECOND DERIVATIVES 
OF A VECTOR WITH RESPECT TO THE ARC LENGTH.

THE CURVATURE OF A CURVE. THE PRINCIPAL NORMAL

The arc length*) of a space curve Af0.4 =  s (Fig. 198) is deter
mined just as in the case of curves in a plane. When a variable 
point A (x, y, z) moves along a curve, the arc length s varies; 
conversely, when s varies, the coordinates x, y, z of a variable 
point A lying on the curve also vary. Therefore, the coordinates 
x, y, z of a variable point A of the curve may be regarded as 
functions of the arc length s:

x  =  <p ( s ) ,  
y = V(s), 
z = x(s).

*) The arc length of a space curve is defined in exactly the same way as 
the arc length of a plane curve (see Sec. 1, Ch. VI and Sec. 3, Ch. XII).
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In these parametric equations of the curve, the arc length s is 
the parameter. The vector OA =  r  is, accordingly, expressed as

r =  cp(s)/ +  'l>(s)./+x(s)*
or

r  =  r(s). (1)
Thus the vector r  is a function of the arc length s.

Let us find out the geometrical meaning of the derivative ^ . 
As is evident from Fig. 198, we have the following equations:

M qA =  s, AB =  As, M9B — s -f As, 
OA = r(s), OB — r(s + As),
AB =  Ar =  r  (s +  As)—r(s),

Ar _  AB 

As AB ‘

We have already seen in Sec. 2 that the vector —=  lim ^ i sds AS-.As
in the direction of the tangent to the curve at the point A towards

A D

increasing s. On the other hand, we have the equality lim =  1
AB

[the limit of the ratio of the chord length to the arc length *)].

*) In Sec. 1, Ch. VI, we mentioned this relation for a plane curve. It: 
also holds for a space curve: r( t)  =  9  ( f ) /  +  ( t ) j  +  % (t) k if the functions 
<p(0* ^ (0  and X(t) have continuous derivatives that do not vanish simulta
neously.
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Hence, j s is a unit vector in the direction of the tangent; let us 
denote it by cr:

(2)

If the vector r  is represented by the projections
r = x i+ y j+ z k ,

then

’ - % <  +  & +  E * . <3>
and

/ ( £ ) ■ + © ' +  ( £ ) - ' •
Let us now examine the second derivative of the vector func

tion that is, the derivative with respect to and deter
mine its geometric significance.

From formula (2) it follows that
d*r  d [ d r j   do
ds* ds [d sj d s ’

Consequently, we have to find lim
As o ___

From Fig. 199 we have TIB =  As, i4L =  <r, BK =  o 4- Aff. Draw 
irom the point B the vector BLt = o. From the triangle S/CL, 
we find

BK = ~BLt + LJ<
or

a + Ao =  o -f LtK.

Thus, Z.1/C =  A<r. Since, by what has been proved, the length of 
the vector o does not change, |<r| =  |o-|-.A<r|; hence, the triangle 
BKLt is an isosceles triangle.

The angle Atp at the vertex of the triangle is the angle through 
which the tangent to the curve turns from the point A to the 
point B] in other words, it corresponds to the increment in the 
arc length As. From the triangle BKL1 we find

L,/C =  | Aa | =  2 |o 
(since |oj =  1).

sin A<p
2
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Divide both sides of the latter equation by As:

A a _  o
. Aq> s m - j r . A<p s in  —

1 A f
A s —■ L As- A<P

2
1 A s

Let us now pass to the limit on both sides of the latter equation 
as As—>-0. On the left side we have

Then

lim
As -► o

Act

As
I d a

|dF *

lim
As -> o

=  1,

since in this case we consider curves such that there exists a limit 
lim A? and, consequently, Aq>—<-0 as As—<-0. Thus, after passing

A»-.o A*
to the limit we have

1 — 1= lim
I d s  I As-*-0

A?
A s ( 4 )

The ratio of the angle of turn Aqp of the tangent, when the point 
A goes to the point B, to the length As of the arc AB (in abso
lute value) is called (just as it is in the case of a plane curve) 
the average curvature of the given line on the segment AB:

average curvature =  |^ r

The limit of the average curvature as As—*-0 is called the curva
ture of the line at the point A and is denoted by K-

lim
As -> o

Aqp 
A s  *

But then from (4) it follows that — =  /C; which means that the
length of the derivative of a unit vector*) of a tangent with res
pect to the arc length is equal to the curvature of the line at the 
given point. Since the vector a is a unit vector, its derivative
^  is perpendicular to it (see Sec. 3, Ch. IX, Corollary).

*) It should be remembered that the derivative of a vector is a vector 
and for this reason we can speak of the length of the derivative.
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Thus, the vector ^  is equal, in length, to the curvature of the
curve, and, in direction, is perpendicular to the vector of the 
tangent.

Definition. The straight line that has the same direction as the
vector ^  and passes through the corresponding point of the curve
is called the principal normal of the curve at the given point. 
We denote by n  the unit vector of this direction.

Since the length of the vector is equal to K, which is the
curvature of the curve, we have

The reciprocal of the curvature is called the radius of curva
ture of the line at the given point and is denoted by R, j f = R ‘ 
So we can write

d2r _d a __n
d ?  ~~ ds ~  ~R #

From this formula it follows that

R2^ [ d s 2)  ’
But

d j r _ d 2x . . d2u . , d 2z u 
ds2"" ds2* ^  ds*J ~t  ds2*'

Hence,

^ / ( £ . ) ' + ( S ) ' + ( S ) '

This formula enables us to compute the curvature of a line at 
any point provided that this line is represented by parametric 
equations in which the parameter is the arc length s (in other 
words, if the radius vector of the variable point of the given line 
is expressed as a function of the arc length).

Let us consider the case when the radius vector r  is expressed 
as a function of an arbitrary parameter t:

r= r(t) .
In this case the arc length s will be regarded as a function of 
the parameter t. Then the curvature is computed as follows:

dr drds

( 5 )

(6)

(6')
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Since

we have

(8)

Differentiating the right and left sides of (8) and reducing by 
two, we get

drd2r  dsd*s ,q.
didr*~dtdTa- W

Further, from formula (7) it follows that

dr _  dr 1 

ds dt ds 
dt

Differentiate, with respect to s, both sides of this equation:

d*s
d‘r  d‘r 1 dr dt2 
ds‘ ~ d t * ( d s y  d t / d s y '

\ d t )  \ d t )

Substituting into formula (6) the expression obtained for ~-jjz we get

R2
d 2r  1
dt2

( r
9  d2r d r ds d2s
Z dT2 7Tt dt dt  ‘

*) This equation follows from the fact that

is a chord subtending an arc of length As. Therefore

As 0.

=  lira 1 ^ 1 .  But Ar
A s  -*• o I A s  |

—  approaches 1 as
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Expressing — and ~  by formulas (8) and (9) in terms of the 
derivatives of r(/), we get*)

Formula (10) may be rewritten as follows: **)

We have obtained a formula that enables us to calculate the 
curvature of a given line at any point for an arbitrary paramet
ric representation of this curve.

If in a particular case the curve is a plane curve and lies in 
the ;o/-plane, then its parametric equations have the form

* =  <p (0.

2 =  0.

Putting these expressions of x, y, z into formula (11), we get the 
earlier derived (in Ch. VI) formula that yields the curvature of a 
plane curve represented parametrically:

l<p'«) s»* « ) - * ' ( / )  qf(f) l 
A ~  {W M Y + w w ryh  •

Example. Compute the curvature of the helix

r =  i a cos / + j  a s m t  +  k amt
at an arbitrary point.

*) We transform the denominator as follows: |  =

==l(5 i )  I * ^ere we canno* wr*te ( 57) • (s i) We mean sca âr
square of the vector ; by ( » the third power of . The ex

pression ls meaningless.
**) We utilised the identity a2b*— {ab)2 — ( a x b )2 whose validity is readily 

recognisable if one rewrites the identity as follows: a2b2—{ab cos q>)2 =  (ab sin <p)*.
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Solution.

-tt =  — i a s\n t -\-ja cos t +  k am.

d 2r  / , , . ,-^ 2  =  — i a cos t —J a sin /,

j  *
t a cost am =*la2m s in t—J a2m cos t +  ka2t 
t —a sin t 0—a cos t

Consequently,
I _  a4(m2-H)______ 1
R2 [a2 (1 +  m2))s a2 (1 +  m2)2 ’

whence
R =  a (1 + m 2) =  const.

Thus, the helix has a constant radius of curvature.

Note. If a curve lies in a plane, then without violating genera
lity, we can assume that it lies in the ja/-plane (this can always 
be achieved by transforming the coordinates). Now if the curve

quently, the vector n  likewise lies in the xy-plane. We thus con
clude that if a- curve lies in a plane then its principal normal 
lies in the same plane.

Definition 1. The plane passing through the tangent line and the 
principal normal to a given curve at the point A is called an 
osculating plane at the point A.

For the plane of a curve, the osculating plane coincides with 
the plane of the curve. But if the curve is not a plane curve, 
and if we take two points on it, P and P lf we get two different 
osculating planes that form a dihedral angle p. The bigger the 
angle p, the more the curve differs in shape from a plane curve. 
To make this more precise, let us introduce another definition.

Definition 2. The normal (to a curve) perpendicular to an oscu
lating plane is called a binormal.

On the binormal let us take a unit vector b and make its 
direction such that the vectors o, n , b form a triple with the

SEC. 5. OSCULATING PLANE. BINORMAL. TORSION
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same orientation as the unit vectors /, j ,  k lying on the coordi
nate axes (Figs. 200, 201).

By virtue of the definition of a vector and scalar product of 
vectors we have

6 =  ax /r, 6 6 = 1 . (1)

We find the derivative of ^  . By formula (IV), Sec. 3,

db d (oXn) __ da 
ds ds ds

, dn 
x n + o x dT '

=  (see Sec. 4), therefore

! |x f f  =  - r t x »  =  01
and formula (2) takes the form

(2)

— - < r x  — 
ds °  X ds (3)

From this it follows (by the definition of a vector product) 
that ^  is a vector perpendicular to the vector of the tangent a.

dt)On the other hand, since b is a unit vector, is perpendicular 
to b (see Sec. 3, Corollary).

dbThis means that the vector ^  is perpendicular both to a and
to b; that is, it is coll inear with the vector n.

db 1*Let us denote the length of the vector ^  by y ; we put
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The quantity is the torsion of the given curve.
The dihedral angle p between the osculating planes that corre

spond to two points of the curve is equal to the angle between 
the binormals. By analogy with formula (4), Sec. 4, Ch. IX, one 
can write

d b
ds lim

As-*- o
p

I As I

To summarise, then, the torsion of a curve at a point, A is 
equal, in absolute value, to the limit which is approached 
(as As—>-0), by the ratio of the angle p between the osculating 
planes at the point A and the neighbouring point B to the length 
| As | of the arc AB.

If the curve is plane then the osculating plane does not change 
its direction and, consequently, the torsion is equal to zero.

From the definition of torsion it is clear that it is a measure 
of the deviation of a space curve from a plane curve.

The quantity T is called the radius of torsion of the curve.
Let us find a formula for computing torsion. From (3) and (4) 

it follows that

Multiplying scalarly both sides by «, we get

On the right side of this equation we have the so-called mixed
(or triple) product of three vectors n, a  and — ■. In a product
of this kind the factors, as we know, may be circularly permuted. 
In addition, taking into consideration that n n =  1, we rewrite the 
latter equation in the following form:

or

T  = - a [n x ~d?1- ' <5>

But since ^  = 8 - ^ 2 1  we '1ave
d n  o  d z r  , d R  d 2r
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and

[ * x £ ] - k  £ * { * £ + § £ } -
- * ' [ S x £ ] + * S [ £ x £ ] .

But since the vector product of a vector into itself is equal to 
zero,

[ £ x £ ] - 0 .
Thus,

h £ ] - * ' [ £ x . £ ] .

Noting that a = ~s and reverting to (5), we get

J _ _ _  r>! dr\ d‘T y dVl (R\
T *  d s [ d s * X ds> \  •

If the factor r  is expressed as a function of an arbitrary param
eter t, it may be shown, *) much like was done in the preceding

*) Indeed,
dr _  drds_ 
dt~~ d s T f

Differentiating this equality once again with respect to t t we get 
d2r __ d f d r \  ds d s d r  d h  d̂ r_ ( d s \ 2 ,_dr  dh
dt2 ~ d s  \ d s )  d td t  +  dsdt* ds2 [ d t )  +  ds dt2 '

Differentiate it once more with respect to t:
d'r _  d ( d2r \ d s /d s \ 2 d2r ^dsd*s d Idr\ ds d2s dr d*s 
dt8 ~~ds V ds J dt [dt) + ds2 dt dt2 +ds [ds] didf2 + Hdt*

_  d*r ( ds\* d2r dsd2s drd*s
“  ~ds*~ [ d t )  ^ ^ l & T t d F  +  TsJr*'

Let us now form a triple product:
d r ( £ r _  d * r \ _  
dt V dt* X dt“ ) ~

_ d r d s  j  f~ d2r  ( d s \ 2 dr d2s “I f~d*r / ds \ 8 d2r d s d h  dr d*r "I 1
~ T s T t \ { ' d s r [ d i )  + 3s 1 F \  X [ds* \ d ? )  +  6 T F T t d t ‘ +  T s ' d F ' \ l ‘

Opening the brackets of this product by the rule of multiplying polyno
mials, and disregarding those terms that contain even two identical vector 
factors (since the triple product of three factors where at least two are equal 
is zero), we get

dr f d2r d*r \ _ d r f  d2r d*r \  f ds\*
Tt \~dt‘ X H F ) ~ d s \ d s i X"3s*~ J \ d t )  '
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section, that

ds [ ds* ds
d*r 1
ds3 J

dr\d?r_ d'r ]
dt [ dt l X J

' { ( s ) T
Putting this expression into formula (6) and replacing R* by 

its expression from formula (11), Sec. 4, we finally get

(7)
1

' dV d'r  ]
dl‘ X dt* J

T ~ j 'dr d*r \*
d t d t * J

This formula makes it possible to compute the torsion of the 
curve at any point if the curve is represented by parametric 
equations with an arbitrary parameter t .

Concluding this section, we note that the formulas which 
express the derivatives of the vectors a, b> it are called Serret- 
Frenet formulas:

da _  n db __ n dn __ a  b
ds~~ R ' ds ~~ T ' ds ~~ ~~R  T  *

The last one of them is obtained as follows:
n = b x o t

dn
ds

but

therefore

^ - £ x .  + » x £ - f x . + » x * .

=  | » X ( i  +  - i X B ;

n x a  = — b; b x n  = — a.

d n   b a
ds T  7 T '

Finally, noting that

( £ ) ■ - ( £ ) ■ •

or

(3 H G 0 T-
we obtain the required equality.
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Example. Compute the torsion of the helix

r=  ia  cos t + j a  sin / + k  a m t .
Solution.

[
dr d*r 1 2 
d t X ~dtr \ ==fl4(1+ m2) (see Example, Sec. 4).

Consequently,
T a* (1 +/w*) _  a (1 +  m*) . 

a ‘m m

SEC. 6 . A TANGENT PLANE AND NORMAL TO A SURFACE

Let there be a .surface given by an equation of the form
F(x, y, z) — 0 . (1)

We introduce the following definition.
Definition 1. A straight line is a tangent to a surface at some 

point P (x , y, z) if it is a tangent to some curve lying on the 
surface and passing through P.

Since an infinitude of different curves lying on the surface pass 
through the point P, then, generally speaking, there will also be 
an infinitude of tangents to the surface passing through this 
point.

We introduce the concept of singular and ordinary points of 
a surface F {x, y, z) =  0.

If at the point Af(jc, y, z) all three derivatives^ , ^ a r e
equal to zero or at least one of these derivatives does not exist, 
then M is called a singular point of the surface. If at M (x, y, z)
all three derivatives . 37 ex*st a°d are continuous, and at
least one of them differs from zero, then M is an ordinary point 
of the surface.

We can now formulate the following theorem.
Theorem. All tangent lines to a given surface (1) at an ordinary 

point of it P lie in one plane.
Proof. Let us consider, on a surface, a certain line L, (Fig. 202) 

passing through a given point P of the surface. Let this curve be 
represented by parametric equations:

* = y = ty(ty, z = X(t).

dr r d*r d V ]  
dt [d P  X d f  I

■ a sin t a cos t am  
a cos t — a  sin t 0 
a sin / — a cos / 0

=  a*m,

(2)
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A tangent to the curve will be a tangent to the surface. The 
equations of this tangent have the form

X —x  Y —y  Z — z
dx dy ~  dz
dt di di

If we put expressions (2) into equation (1), the latter will be
come an identity in t , since the curve (2) lies on the surface (1). 
Differentiating it with respect to t , we get *) 

dF dx . dF dy . dF dz ~ 
dx dt ’’ dy dt "* dz dt ~  ' ' *

Let us further examine the vectors N  and ~dt
that pass through P :

N - d± i + d- L i + d± k
N  dx l  +  dy J + dz R‘

Fig. 202.The projections of this vector
depend on x, y, z, which are the coordinates 
of P‘, it will be noted that since P is an ordinary point, these 
projections at the point P do not simultaneously vanish and 
therefore

The vector
-  — — iA-— kd t ~  dt J +  dtdi dt (5)

is tangent , to the curve passing through the point P and lying on 
the surface. The projections of this vector are computed from 
equations (2) with the value of the parameter t corresponding to 
the point P. Let us compute the scalar product of the vectors N  

dt*and which product is equal to the sum of the products of 
like projections:

kt dr _  dF dx . dF dy . dF dz 
dt dx d t '  dy dt  ' dz dt ’

*') Here we apply the rule for differentiating a composite function of three
dFvariables. This rule is applicable here since all the partial derivatives ~ tdx

^  dF . . .
3- ,  *5-  are, as stated, continuous. dy 9 dz
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On the basis of (3), the expression on the right is equal to 
zero; hence

n 7 !-0 -

From the latter equality it follows that the vector N and the
dt*tangent vector to the curve (2) at the point P are perpendicu

lar. The foregoing reasoning holds for any curve (2) passing 
through the point P and lying on the surface. Therefore, every 
tangent to the surface at the point P is perpendicular to one and

the same vector N  and for this reason 
all these tangents lie in a single plane 
that is perpendicular to the vector
N. The theorem is proved.

Definition 2. The plane in which 
lie all the tangent lines to the lines 
on the surface passing through the 
given point P is called the tangent 
plane to the surface at the point P 
(Fig. 203).

It should be noted that there 
may not exist a tangent plane at 

the singular points of the surface. At such points, the tangent 
lines to the surface may not lie in one plane. For instance, the 
vertex of a conical surface is a singular point. The tangents to 
the conical surface at this point do not lie in one plane (they 
themselves form a conical surface).

Let us write the equation of a tangent plane to a surface (1) 
at an ordinary point. Since this plane is perpendicular to the 
vector (4), its equation has the form

{ Y - y )  + % ( Z - z )  = 0. (6)

If the equation of a surface is given in the form 
z = f(x, y), or z —f(x, t/) =  0,

then
d F ____ d[ - d f  _ d /  dF_ _  .
dx dx * dy dy ’ dz ~~ *

and the equation of the tangent plane is then of the form
d f , v  /A,X

Fig. 203.
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Note. If in formula (6') we put X —x= A x\ Y —y = Ay, then 
this formula will take the form

z - z = r ' 4* + f ^
its right side is the total differential of the function z — f(x, y). 
Therefore, Z — z = dz. Thus, the total differential of a function of 
two variables at the point M (x, y), which corresponds to the 
increments Ax and Ay of the independent variables x and y, is 
equal to the corresponding increment on the 2-axis of the tangent 
plane to the surface which is a graph of the given function.

Definition 3. The straight line drawn through the point P(x, y, z) 
of surface (1) perpendicular to the tangent plane is called the nor
mal to the surface (Fig. 203).

Let us write the equations of the normal. Since its direction 
coincides with that of the vector N, its equations will have the 
form

X—* _  Y—y _  z —z
dF ~  dF dF •
dx dy dz

If the equation of the surface is given in the form z = f(x, y), or
2 — f{x, {/) =  0,

then the equations of the normal have the form
X —x _Y —y Z —z
Z K ~ Z H ~ ~ r '

dx dy

Note. Let the surface F (x, y, z) = 0 be the level surface for 
some function of three variables u = u(x, y, z)\ that is,

F (x, y, z) = u(x, y, z)—C =  0.
Obviously, the vector N  defined by formula (4) and in the 
direction of the normal to the level surface F = u(x,y,  z)—C =  0, 
will be

• f du • , du . , du - 
N = d ^ l + T y J + r ^ ,

that is,
IV=grad u.

We have thus proved that the gradient of the function u(x, y, z) 
is in the direction of the normal to the level surface passing through 
the given point.



340 Applications of Differential Calculus to Solid Geometry

Example. Write the equation of the tangent plane and the equations of 
the normal to the surface of the sphere x2 y 2 z2=  14 at the point P (1, 2, 3). 

Solution.

F(x, y, z) =  x* +  y ‘ +  z*— 14 =  0; g£ =  2*; %  =  2r'

for x = l ,  y — 2 , z =  3 we have

3— =  2 ; £ - 4 ;ox d*/ dz

Therefore, the equation of the tangent plane will be
2 (x— l) +  4 (y —2) + 6  (z — 3) =»0 or x +  2*/ +  3z- 

The equations of the normal are

-14 =  0.

x — 1 y — 2 z —3
2 ^  4 6

or
a — 1_ y — 2 z — 3 

1 “  2 3 *

Exercises on Chapter IX 

Find the derivatives of the vectors: 1. r = i  cot t + j arc tan t.

Ans. r, =  — ilij1? * +  TT7»^- 2 • r = l e ~ i + j 2t +  k \n  t. 4/ts. r ' = — fe_t +

+  2 / +  j .  3. r = t * l  — t  +  JT- Ans■ r' =  2 t l + J i  — jT •
4 . Find the vector of a tangent, the equations of the tangent and the

equations of the normal plane to the curve r ^ t i  +  t y + t ' k  at the point

(3 , 9 , 27). Ans. r/ = /  +  6y+27fc; tangent: ; normal
plane: x +  6*/ +27z =  786.

5 . Find the vector of a tangent, the equations of the tangent and the

equation of the normal plane to the curve r = i  cos2 +  y y s in  t +  fcsin y  . 

Ans. r̂  =  — ~  / sin t + -^-ycos t +  y /p  cos ; the equation of the tangent 

A -c o s * — Y — s- sin/ Z —sin y
-------------- = ---------- —  = ----------— r the equation of the normal plane:

—sin t cos t t Mcos y

4 - X sin I — Y cos t — Z cos — x sln 1 + y  cos t + 2 cos -5 * where x, y , z are the
coordinates of that point of the curve at which the normal plane i s  drawn

^that is, x =  cos2 y ,   ̂=  ---sinf, z =  sin-“-^ .
6 . Find the equations of the tangent to the curve x =  *— sin*, y =  1—cos*, 

2 =  4 sin - -  and the cosines of the angles that it makes with the coordinate
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axes. Ans. —— — ^  =  ~ , cosa =  sin2~ ;  cos p =  sintQ; 
sin f  cos i -  cot f

t 0cos y =  cos -£■.
7. Find the equation of the normal plane to the curve z =  x2—y 2, y = x  

at the origin. Hint. Write the equations of the curve in parametric form. 
Ans. x + y  =  0 .

jc
8 . Find <x, n , b at the point * =  y  for the curve r = i  (cos t +  sin2 /) -j-

Ans. ( - / + / + * ) ;  « = . —  4j * •
42

-f- ysin f (1 —cos t )—k cos t.
„ l - 27+36

K u  '
9. Find the equations of the principal normal and the binormal to the

t 2 t 2 X Xcurve x = - j - ; « /= -«-; z =  —  at the point (x0t y0, z0). Ans. —----—=
4 6 1 *o + 2*o

y — y  o _ Z—Z0 * o  _ _ y — y 0 -z<>

i -< :  1 <;
10. Find the equation of the osculating plane to the curve y 2 — x\ x2 =  z 

at the point M (1, 1, 1). Ans. 6x —8u— 2 +  3 =  0 .
11. Find the radius of curvature for a curve represented by the equations 

x2 +  y 2 +  z2—4 =  0, x- \- y—2 =  0. Ans. R — 2.
12. Find the radius of torsion of the curve: r = i  cos I + /  sin t -f- k — ^— . 

Ans.
2 (et—e~t)

13. Find the radius of curvature and the torsion for the curve r =  tH +  ‘2t*J. 
Ans. f ? = - | / ( l + 9 f *)*'», T = o o .

14. Prove that the curve r = ( a lt * + b j + C J  i +  (a2t2-\-b2t + c 2) j
+  (fla*2 +  +  Cj) £ is plane. Ans. r" 's= 0 ; therefore the torsion is equal to zero.

15. Find the curvature and torsion of the curve x =  elt y  =  e - lt z =  t

Ans. The curvature is V  2 the torsion is — V~~2
(x +  y)*’ """ (x—y)1 '

16. Find the curvature and torsion of the curve x =  e~l slnt,  y  =  e~l cost}
V~~2 1z =  el. Ans. The curvature is the torsion is ~^el.

— x2 u217. Find the equation of the tangent plane to the hyperboloid —?— -r- —
az 0

— -~ r = 1  at the point (*„ ylt z,). Ans.
18. Find the equation of the normal to the surface x2—4# 2 +  2z2= 6  at 

the point (2 , 2 , 3). Ans. y  +  4x=10; 3x—z =  3.
19. Find the equation of the tangent plane to the surface z =  2x2 +  Ay2 at 

the point M (2 , 1, 12). Ans. 8x +  8 f/—z =  12.
20. Draw to the surface x2-f-2*/2H-z2=  1 a tangent plane parallel to the

plane x —y +  2z =  0 . Ans. x —y +  2z = ±



C H A P T E R  X

INDEFINITE INTEGRALS

SEC. 1. ANTIDERIVATIVE AND THE INDEFINITE INTEGRAL

In Chapter III we considered a problem like the following: 
Given a function F(x)t find its derivative, that is, the function 
f(x) = F' (x).

In this chapter we shall consider the reverse problem: Given 
the function f (x), it is required to find a function F (x) such that 
its derivative is equal to f (x), that is,

F' (*) =  /(*).
Definition 1. The function F (x) is called the antiderivative of 

the function f(x) on the interval [a, b] if at all points of this 
interval the equality F' (x) = f(x) is fulfilled.

Example. Find the antiderivative of the function f(x)=xi.
From the definition of an antiderivative it follows that the function

X® / x* \ f
F ( jc) =  — is an antiderivative, since f —  J  = = a

It is easy to see that if for the given function / (x) there exists 
an antiderivative, then this antiderivative is not the only one. 
In the foregoing example, we could take the following functions
as antiderivatives: F(x) =  y  +  1; F(x) =  ——7 or, generally,

X3f(jt) =  y - fC  (where C is an arbitrary constant), since

On the other hand, it may be proved that functions of the form
X s— +  C exhaust all antiderivatives of the function x2. This followsO
from the following theorem.

Theorem. If F, (x) and Ft (x) are two antiderivatives of the 
function f(x) on the interval [a, b\, then the difference between 
them is a constant.

Proof. By virtue of the definition of an antiderivative we have
F\(x) = f(x)A
Ft (x) = f(x) f (l)

for any value of x on the interval [a, b].
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Let us put
f 1( i ) - F , ( i )  =  «p(4 (2)

Then by (1) we have
F\  (x ) — F t  (X) =  f ( X ) — f ( x )  =  0

or
9' W - l f . W - f . W f s O

for any value of x on the interval [a, b\. But from <p' (jc) =  0 it 
follows that <p(jc) is a constant.

Indeed, let us apply the Lagrange theorem (see Sec. 2, Ch. IV) 
to the function <f>(.v), which, obviously, is continuous and differen
tiable on the interval [a, b].

No matter what the point x on the interval [a, b\, we have, 
by virtue of the Lagrange theorem,

<P(*)—<P(a) =  (*—«)<P' (5).
where a < .l< .x .

Since <p'(|) — 0,
<p(A£) — cp(a) =  0

or
<p(x) =  cp(a). (3)

Thus, the function <p(x) at any point x of the interval [a, b] 
retains the value 9 (a), and this means that the function 9 (x) is 
constant on [a, ft]. Denoting the constant 9 (a) by C, we get, 
from (2) and (3),

Fl ( x ) - F t (x) = C.
From the proved theorem it follows that if for a given function 

f(x) some one antiderivative F(x) is found, then any other anti- 
derivative of f(x) has the form F(*)-)-C, where C =  const.

Definition 2. If the function F(x) is an antiderivative of f(x), 
then the expression F(x) + C is the indefinite integral of the
function f(x) and is denoted by the symbol (x)dx. Thus, by 
definition

if
$/(*) dx=F(x)  + C, 

F'(x) = f(x).
Here, the function f(x) is called the integrand, f(x)dx is the element 
of integration (the expression under the integral sign), and  ̂ is 
the integral sign.

Thus, an indefinite integral is a family of functions y = F(x) -\-C.
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From the geometrical point of view, an indefinite integral is an 
assemblage, (family) of curves, each of which is obtained by trans
lating one of the curves parallel to itself upwards or downwards 
(that is, along the (/-axis).

A natural question arises: do antiderivatives (and, hence, an 
indefinite integral) exist for every function /(*)? The answer is no. 
Let us note, however, without proof, that if a function f ( x )  is 
continuous on the interval [a, b], then there is an antiderivative 
of this function (and, hence, there is also an indefinite integral).

This chapter is devoted to working out methods by means of
which we can find antiderivatives (and indefinite integrals) of
certain classes of elementary functions.

The finding of an antiderivative of a given function f(x) is
called integration of the function f(x).

Note the following: if the derivative of an elementary function 
is always an elementary function, then the antiderivative of the 
elementary function may not prove to be representable by a finite 
number of elementary functions. We shall return to this question 
at the end of the chapter.

From Definition 2 it follows that:
1. The derivative of an indefinite integral is equal to the in

tegrand, that is, if F'{x) = f(x), then also
( \ f {x )d x ) '  = (F(x) + Cy = f(x).  (4)

This equation should be understood in the sense that the deriva
tive of any antiderivative is equal to the integrand.

2. The differential of an indefinite integral is equal to the 
expression under the integral sign:

d^ f ( x )dx^ )=f {x )dx .  (5)
This results from formula (4).

3. The indefinite integral of the differential of some function is 
equal to this function plus an arbitrary constant:

J dF(x) = F(x) + C.
The truth of this equation may easily be checked by differentia
tion [the differentials of both sides are equal to dF (x)].

SEC. 2. TABLE OF INTEGRALS

Before starting on methods of integration, we give the following 
table of integrals of the simplest functions.

The table of integrals follows directly from Definition 2, Sec. 1. 
Ch. X, and from the table of derivatives (Sec. 15, Ch. III).
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(The truth of the equations can easily be checked by differentia
tion: to establish that the derivative of the right side is equal to 
the integrand).

1. j*x‘xdx = — :y + C ( a #  — 1). (Here and in the formulas that 
follow, C stands for an arbitrary constant.)

2. j £ = l n |* |+ C .

3. J sin * d* = —cosjc-hC.

4. J cosxdx = sin;t-|-C.

5. f —  =  lanA: +  C.J cos2*

6. f -^ -  =  — cot x-\-C.J sin2*
7. J tan xdx = —In ] cos*|-(-C.
8.  ̂cot x dx =  In | sin x | -f- C.

9. J e*dx = e* + C. 

io -
11. j  j ^ j  =  arctanx +  C.

11'. C - =  — arc tan — +  C.J a 2 +  x 2 a a

12. > In +  C.J a*—x ‘ 2a a —*

13 (* r!h__=  arc sinx +  C.
J V i  - x *

13' f .  =  arc sin -  +  C.
J Va*-x* «

Note. The table of derivatives (Sec. 15, Ch. Ill) does not have 
formulas corresponding, to formulas 7, 8, IT , 12, 13' and 14. 
However, differentiation will readily prove the truth of these as 
well.

In the case of formula 7 we have
(— In I cos x | )' =  — =  tanx,' 1 17 cos * ’

consequently,  ̂ tanx d x = —In | cosx\ +  C.
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In the case of formula 8
(In I sin x I )' =  =  cot x,v 1 1 1 sin x

consequently,  ̂ co tx=  In| sinx\ +  C. 
In the case of formula 12,

therefore,

CL X
a —x y = i [ in ia + * i - ,n ia—*ii,==

= ± [ _ I _ + - U = _ ^
2a \ a +  x '  a —xJ a2—x2 9

s a -\-x I 
a —x J+c.

It should be noted that the latter formula will also follow from 
the general results of Sec. 9, Ch. X.

In the case of formula 14,

(In Ix +  Yx*±a* I)' = -------- 1 (1 +  r x y  -1-—;
1 1 x + Y x * ± a *  \  Y x l ±a*J Yx*±a*

hence,

, I
dx

V x 2± a 2
\n \x+ y x2± a 2 | +  C.

This formula likewise will follow from the general resultsofSec.il.
Formulas 11 'and 13' may be verified in similar fashion. These 

formulas will later be derived from formulas 11 and 13 (see Sec.4, 
Examples 3 and 4).

SEC. 3. SOME PROPERTIES OF AN INDEFINITE INTEGRAL

Theorem 1. The indefinite integral of an algebraic sum of two 
or several functions is equal to the sum of their integrals

J [fi (x) +  /, (*)] dx =  J (x) dx +  p ,  (x)dx. (1)

For proof, let us find the derivatives of the left and right sides 
of this equation. On the basis of (4) of the preceding section we 
have

( J (*) + /* (*) 1 dx) ' = /, W + fi (x),
Q / ,  ( x ) d x + p t (x) dx)' =

=  ($/.<*) * ) '  +  ($ / , (x) dx)' =  /, (x) +  ft (x).
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Thus, the derivatives of the left and right sides of (1) are equal; 
in other words, the derivative of any antiderivative on the left- 
hand side is equal to the derivative of any function on the right- 
hand side of the equation. Therefore, by the theorem of Sec. 1, 
Ch. X, any function on the left of (1) differs from any function 
on the right of (1) by a constant term.* That is how we should 
understand (1).

Theorem 2. The constant factor may be taken outside the integral 
sign; that is, if a =  const, then

^af(x)dx = a ^ f  (x) dx. (2)

To prove (2), let us find the derivatives of the left and right 
sides:

^ a f ( x ) d x ) '  = af(x),

(x)dx)' =a ^ f ( x )  dx) ' =  af (*).

The derivatives of the right and left sides are equal, therefore, 
as in (1), the difference of any two functions on the left and 
right is a constant. That is/how we should understand equation (2).

When evaluating indefinite integrals it is useful to bear in mind 
the following rules.

I. If
^f (x)dx — F (*) + C,

then
(ax) dx = - F  (ax)+C.  (3)

Indeed, differentiating the left and right sides of (3), we get

^ f ( a x ) d x ) '  = f(ax),

(■j F (ax)') =  — (F(ax) )X = ̂ F ’ (ax) a = F' (ax) =  f(ax).

The derivatives of the right and left sides are equal, which is 
what we set out to prove.

II. If
$ f(x)dx = F (x) + C,

 ̂/  (•* +  b) dx =  F (x +  b) +  C.
then

( 4 )
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III. If 

then
$ f (x)dx = F(x) + C,

J  f (ax+ b)dx =  ̂ F  (jax-\-b)-\-C.

Equations (4) and (5) are proved by differentiation 
and left sides.

(5)

of the right

Example 1.

J (2x3—3 sin * +  5 Y *  ) d x =  J 2x* dx— J 3 s in * d * +   ̂ 5 \Hc dx=>
i

=  2^ jk3 dx— 3 J sin x dx +  5 J x dx =
i

— + ijk-a+i x 2 1 10 __
=  2 g-j—j — 3 (—cos*) +  5-j---------- H C =  -g- •** +  3 cosx +  -g-x V x  +  C.

2 + 1
Example 2.

= 3"
- T  + l

----+1 — +1
-+4- ^ — +^r— +c= t  y v + v i + T * *  y * + c .

~ 4 + 1 ■+i

Example 3.

Example 4.
J  cos 7x dx =  y  sin 7x +  C.

Example 5.
J  sin (2x— 6) d x =  — ^ cos (2* — 6 ) +  C.

SEC. 4. INTEGRATION BY SUBSTITUTION (CHANGE 
OF VARIABLE)

Let it be required to find the integral
5 fix) dx\

we cannot directly select the antiderivative of f{x) but we know 
that it exists.
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Let us change the variable in the expression under the integral 
sign, putting

* =  <P (0. (1)
where cp(̂ ) is a continuous function with continuous derivative 
having an inverse function. Then dx = q>'(t) dt\ we shall prove 
that in this case we have the following equation:

J f (*) dx =  J f [<p (0 ] <p' (0 dt. (2)

Here we assume that after integration we substitute, on the right 
side, the expression of t in terms of x on the basis of (1).

To establish that the expressions to the right and left are the 
same in the sense indicated above, it is necessary to prove 
that their derivatives with respect to x are equal. Find the deri
vative of the left side:

We differentiate the right side of (2) with respect to x as a com
posite function, where t is the intermediate argument. The de
pendence of t on x is expressed by (1); here, ^  =  <p' (t) and by 
the rule of differentiating an inverse function,

v dt 1
dx~<p'(t)  *

We thus have

( J n«p (0 ] q>' (0 dt)’x = ( J / [<P (0] <P' (0 dt)] fx =

=  n<P(0]q>' ( 0 ]  =  /  (*).

Therefore, the derivatives, with respect to x, of the right and 
left side of (2) are equal, as required.

The function * =  <p(/) should be chosen so that one can evaluate 
the indefinite integral on the right side of (2).

Note. When integrating, it is sometimes better to choose a 
change of the variable in the form of t =  T|)(*) and not x =  q)(t). 
By way of illustration, let it be required to calculate an integral 
of the form

f* i|>' (x) dx
J T w ~ -

Here it is convenient to put
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then
i|>' (x) dx = dt,

J  =  j>y  =  lnU | + C  =  ln |ll)(^)| +  C.

The following are a number of instances of integration by 
substitution.

dt

Example 1.  ̂ V^sinx cos x dx  =  ? We make the substitution *=sin*; then
i

=  cos xdx and, consequently, J  ^§in x cosx dx =  J  )f t d t  =  ^ t  dt =
0/3/a 9 ..

=  - g -  +  C = y  sin / j AT +  C.

jtdxExample 2. J x̂j^ p - =  ? We putr =  l + * 2; then dt =  2x dx and j*  ̂

=  y j , -  =  Y ln / +  C =  - l n ( l + ^ )  +  C.

=  a dt,Example 3. C f ------ 7~ t t  • We put / =  — I then dx =  a
J a*+*2 a J i + f £ \  a

P d* 1 f  adf 1 P d/ 1 . . , ^ 1 f Jt , .
\ - j - i— f  =  ~2 \ i , ;j =  — \ i ,"72~ =  —- arc tan * -f- C =  — arc tan— \-C.J a2 +  x2 a2J 1 + / 2 a J 1 + / 2 a a a

We put / =  — ; then aExample 4. T—-/--dX =  — — . .
J \Ta*—x*

f  djc I P a d /  f  dt  . , . -\ r  .. =  — \ — =  \ =  arc sin /-4-C =
J Ya*—x* a J  /2 J / l  —/*

dx =  a d t ,

=  arc sin — -fC  (it is assumed that a>0).
The formulas 11' and 13" given in the Table of Integrals (see above, Sec. 2 ) 

are derived in Examples 3 and 4.

Example 5. f ( l n *)3 — = ?  Put / =  ln*; then d/ =  — , C(lnjc)a— =
J  x j  x

=  ̂ ’ d< =  £  +  C = l ( l n * ) «  +  C.

Example 6 . J  jqp^r =  ? P u t'=**: ‘hen dt =  2x dx, j  == 1  j - ^ r  =

=  -̂ - arc tan t + C  =  y a r c  tan x2 +  C.

The method of substitution is one of the basic methods for calculat
ing indefinite integrals. Even when we integrate by some other
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method, we often resort to substitution in the intermediate stages 
of calculation. The success of integration depends largely on how 
appropriate the substitution is for simplifying the given integral. 
Essentially, the study of methods of integration reduces to finding 
out what kind of substitution has to be performed for a given ele
ment of integration. Most of this chapter is devoted to this problem.

SEC. 5. INTEGRALS OF FUNCTIONS CONTAINING 
A QUADRATIC TRINOMIAL

I. Let us consider the integral

Let us first transform the trinomial in the denominator by rep
resenting it in the form of a sum or difference of squares:

The plus or minus is taken depending on whether the expression 
on the left is positive or negative, that is, on whether the roots 
of the trinomial ax2 + bx + c are complex or real.

Thus, the integral /, will take the form

+ bx +  c = a +  -jj =

where

In the latter integral let us change the variable:
x + x- — t, dx =  dt.1 2 a *

We then get

These are tabular integrals (see formulas IT 2nd 12). 
Example 1. Calculate the integral
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Solution.

, = r ___ * L _ = ± r
J 2x2 +  8* +  20 2 J

j_ r ________dx_______
2 j  x2 +  4x +  4 +  10—4

dx _  
x2 +  4 x +  1 0 ~

1 C dx
2 J (x +  2)2 +  Z'

Let us make the substitution x-\-2 =  t, dx =  dt. Putting it into the integral 
we get the tabular integral

1
2 I

dt 
/*'+ 6

1 1
2 J/T

arc tan —~= +  C.
Vs

Substituting in place of t its expression in terms of xf we finally get 
, 1

2 V&
— arc tan +  C.

V  6
II. Let us consider an integral of a more general form:

/ _  C Ax + B 
‘ J <

■ dx.ax2-\-bx +  c

Perform an identical transformation of the integrand:

4 ( f r , + » ) + ( g - g ) ^
/. J ^  + B d x = U ±

J ax2 +  b x + c  J ax2 +  bx +  c

Represent the latter integral in the form of a sum of two inte
grals. Taking the constant factors outside the integral sign, we
get

i _  A (* 2 a x  +  6 , < f  R 4  6 \  f* ^x
l * ~ l a  J a x 2 + b x + c ^ ~ \ a ~  % i )  J a x 2 + b x + c ’

The latter integral if  the integral /,, which we are able to
evaluate. In the first integral make a substitution:

ax* + bx + c = t, (2ax + b) dx = dt.
Thus,

And we finally get

Example 2 . Evaluate the integral

f  x-f-3 .
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Applying the foregoing technique we have

, f  « + 3 ( ' 4 ' 2* - 2> +  ( 3 +  ? 2)
J * 2 — 2x - 5 “ J * 2 _ 2jc_ 5

1 P (2x — 2) dx P dx _
“  2 J x2—2x—5~^4 J ^ - 2 ^ - 5 “

=  i l n | x « - 2 x - 5 |  +  4 j (jc_ ^ 1_ 6 =a

=  l l n | * » - 2 j c - - 5 | + 4  — In 1
2 • 6 | j ^ 6  +  ( * - l )

III. Let us consider the integral
dx

dx =

+c.

I )̂  ax2+  b x + c

By means of transformations considered in Item I, this integral 
reduces (depending on the sign of a) to tabular integrals of the 
form

f r dt for a> 0 or f r - 1- for a<.0,

which have already been examined in the Table ol Integrals (see 
formulas 13' and 14).

IV. An integral of the form

I
Ax +  B

Yax*-\- b x + c
dx

is evaluated by means of the following transformations, which 
are similar to those considered in Item II:

I
Ax +  B dxV ax2 -f- bx +  c 

A C 2ax -j- b
- f 2 a (2a x +  b) +

( - i f )
V a x 2 +  bx +  c

d x + ( B - £ ) $ T ;

dx =

dx
V~ax2 +  bx +  c \  la J J V ax2 +  bx -f  c 

Applying substitution to the first of the integrals obtained,

we get

i

ax* + bx + c = t, (2ax-\-b) dx =* d t,

~ f l 9 r = i V i + C - 2 V a * ’ +l>x +  c + C .
V ax2 +  bx +  c J V t

The second integral was considered in Item III of this section.
12—3388
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Example 3 .

5 *  +  3 dxI yr*2+4* + io
_ _ 5  I* 2 jc +  4

- f

~2 ( 2 ^  +  4 )  + ( 3  — 10)

2 j  W  + 4*+10
dx

/ jc* + 4x + 10 
dx

dx-

- 7I l^(x + 2)2+ 6 '
=  5Vrx2 +  4x+ 10  —7 1n |x  +  2 +  Vr(̂  +  2)2 -i-6H -C  =  

=  5VrJC2 +  4 x + 1 0 —7 1 n |x  +  2 +  l / >  +  4* +  10 | +  C.

SEC* 6 . INTEGRATION BY PARTS

Let u and v be two differentiable functions of x. Then the 
differential of the product uv is found from the following formula:

d (uv) = u dv = v du.
Whence, by integration, we have

uv =  J u dv +  J v du
or

J u d v ^ u v  — J vdu. (1)

This formula is called the formula of integration by parts. It is 
most frequently used in the integration of expressions that may 
be represented in the form of a product of two factors u and dv 
in such a way that the finding of the function v from its differen
tial dv, and the evaluation of the integral J vdu should, taken 
together, be a simpler problem than the direct evaluation of the 
integral J udv . To become adept at breaking up a given element
of integration into the factors u and dv , one has to solve 
problems; we shall show how this is done in a number of cases.

Example 1. J x sin xdx =  ? We let
u = x ,  dv =  sinxdx;

then

Hence,
du — dx, v =  —cos x.

J x sin x dx =  — x cos x +  J cos x d x =  —x cos x +  sin x +  C.

Note. When determining the function v from the differential 
dv we can take any arbitrary constant, since it does not enter 
into the final result [this can be seen by putting the expression

*• i
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v+ C  into (1) in place of o]. It is therefore convenient to con
sider this constant equal to zero.

The rule for integration by parts is widely used. For example, 
integrals of the form

J xk sin ax dx, J xk cos ax dx,

J xkeaxdx, ^x k\nx dx,
and certain integrals containing inverse trigonometric functions 
are evaluated by means of integration by parts.

Example 2 . It is required to evaluate Jarctanxdjc. Letting a =  arctanjr,

dv = d x , we have du =  t . v = x .  Thus,

p p x dx 1
\ arc tan x dx — xarc tan* — \ y-j—p==jt arc tan *— ^ ln I 1 +  **| +  C.

Example 3. It is required to evaluate ^x*ex dx. Let us put a =  x*t 
d v = e xdx; then d a = 2*d*, v + e x,

J x*ex dx =  x*ex — 2 J xex dx.

The last integral we again integrate by parts, letting 
ul =  x, dux =  dx,
dyx= e x dx, v x= e x.

Then
J xex dx =  xex — J ex dx =  xex —ex +  C.

Finally we get
 ̂ x2ex dx =  x*ex — 2 (xe? —ex) +  C =  x*ex —2xex +  2ex -f- C «  ex (**—2x +  2 ) + C.

Example 4. It is required to evaluate J (x* +  7*—5) cos 2* d*. We let 
a = * 2 +  7*—5; do s= cos 2* dx: then

da =  (2*-{-7) d*. v .

J  (x*-\-7x—5) cos2*d* =  (*24-7* — J  (2* +  7) — dx.

Apply integration by parts to the latter integral, letting a,= 
=  sin 2x dx; then

f 2 * + 7

da, =  dx, vx - cos 2x

y
Sin 2x dx =

(2x +  7) cos 2x ski 2.x

cos 2*>

2* +  7

dx =

, du,=i

:+ T - + C .
12*
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cos 2x sin 2x ■C.

Therefore, we finally get

J  (x2 +  7x— 5) cos 2x dx =  (x2 +  7x — 5) — -f  (2x +  7)

Example 5. / =  J Va*—x2dx =  ?

Perform identical transformations. Multiply and divide the integrand by

f  f ^ T ‘ dx=  r a‘~ x‘ dx=a*  r j x. , ~  r ? . =
J J f a ’- x *  J V a * - X • J

2 . x C xdx=  a2arc s in ------\ x ..... ........  ■■.
a J Y a1—x*

Integrate the latter integral by parts, letting
du =  dx.u =  x,

. xdx  _/—------ -dv =  ——  ■ v = — y a2—x2;
V  a2 — a

Ihen
f —- =  f x - =  — x V~a2—x2+  f yra2—x2dx.
J J V a2- x 2 J

Putting the last result in the earlier obtained expression of the given integral, 
we will have

J  y~ a2—*2 d* =  a2arc sin — +  * V^a2— x2— J  V a 2—x2 dx.

Transposing the integral from right to left and performing elementary trans
formations, we finally get

yra2—x2dx =  -^- arc s i n V a 2—*2-fC .

Example 6 . Evaluate the integrals

/ , =  J eax cos bx dx and It =  J eax sin bx dx.

Applying integration by parts to the first integral, we get
u =  eax} du =  aeax,

i

dv =  cosbxdx,  v =  ~s \ f \bx ,  0
eax cos bx dx =  -r~ eax sin bx o - t I eax sin bx dx.

Again apply the method of integration by parts to the last integral; 
u =  eax. du =  aeax,
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Putting into the preceding equation the expression obtained gives us 

J  eax cos bx dx =  —eax sin bx +  — eax cos bx— eax cos bxdx. 

From this equation let us find /,:

 ̂1 +  “ 5  j  J  eax cos bx dx =  eax  ̂~  sin bx +  — cos bx ̂ ,

whence
i f  ax l. j e<lx sin bx +  a cos bx) .
/, =  j  eax cos bx dx = -----------a* +  b*---------- - +  C*

Similarly we find
» P ax . i. j  (a sin bx — b cos bx) , _/ » = J  eaxsin bxdx= — i --------- i +  C.

SEC. 7. RATIONAL FRACTIONS. PARTIAL RATIONAL 
FRACTIONS AND THEIR INTEGRATION

As we shall see below, not every elementary function by far 
has an integral expressed in elementary functions. For this reason, 
it is very important to separate out those classes of functions 
whose integrals are expressed in terms of elementary functions. 
The simplest of these classes is the class of rational functions.

Every rational function may be represented in the form of a 
rational fraction, that is to say, as a ratio of two polynomials:

<?(*) B0xn +  B,xa - t +  . . . + B m
f(x) A„xn +  Alxn~l + . . . + A n '

Without restricting the generality of our reasoning, we shall 
assume that these polynomials do not have common roots.

If the degree of the numerator is lower than that of the denomina
tor, then the fraction is called proper, otherwise the fraction is 
called improper.

If the fraction is an improper one, then by dividing the nu
merator by the denominator (by the rule of division of polyno
mials), it is possible to represent the fraction as the sum of a 
polynomial and a proper fraction:

/(*)
here M(x) is a polynomial,

f(v\ /¥l W  ^  f  (x) '

and
f ( x )

is a proper fraction.

Example 1 . Given an improper rational fraction
x4 — 3 

x2 +  2x +  L *
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Dividing the numerator by the denominator (by the rule of. division of 
polynomials), we get

xA— 3 
x 2 +  2x +  1

=  x 2— 2x +  3
Ax —  6 

j c2 +  2 jc +  1 '

Since integration of polynomials does not present any difficul
ties, the basic barrier when integrating rational fractions is the 
integration of proper rational fractions.

Definition. Proper rational fractions of the form:

A
is a positive integer ^ 2 ) ,

Ax4~ B (III. . , , ■ the roots of the denominator are complex, thatx* +  p x + q  \  p

is, <7< 0) ,

IV. +p _̂[_ j jk (k is a positive integer S* 2; the roots of the
denominator are complex) are called partial fractions of types I, 
II, III, and IV.

It will be proved below (see Sec. 8) that every rational fraction 
may be represented as a sum of partial fractions. We shall there
fore first consider integrals of partial fractions.

The integration of partial fractions of types I, II and III does 
not present any particular difficulties so we shall perform their 
integration without any remarks:

I. ^ -^-a dx= A In lx—a\ + C.

»• { ^ r w > d* ~ A \

III. f A* + B f 4  <* + <»+ ( « -
J x *  +  p x -{- q  U X  J x ‘  +  p x  +  q

=  4 ^  x*2+*x +Qd X + { B

(1 — k) (jc— a)k~
A p \

l ± d x -
dx

+  px +  Q

=  ^  I n |x2 +  px +  <71 +   ̂B ---- dx

+c:

*+ f  ) ■ + ( « - ? ) ■
= 4- In | x* +  px +  q | 2B—Ap a^  tan -^L==t+C

V~4q — P*‘ V lq—p1
(see Sec. 5).



Partial Rational Fractions and Their Integration 359

The integration of partial fractions of type IV requires more 
involved computations. Suppose we have an integral of this type:

iv. r Ax+B dx.
j  (*2+p*+<?)*

Perform the transformations:

-4 -(2 * + p ) +  ( b -
[ Ax + ?. d x = [

J ( x *  +  p x  +  q ) *  J  ( f  +  p x + q p

=  A C _ 2 x ± P _ _ d x + f B _ ^ ) C  **
2 J ( x *  +  p x + q ) k  \ 2 / J ( x 2

4s ) dx =

2+p*+?)*'
The first integral is taken by substitution, x*+.px+ q = t\

(2 x + p)dx = dt:

I
2x  +  p

( x ' + p x  +  q ) *
dx

c.1
(1— k ) ( x *  +  p x  +  ?)*-1

We write the second integral (let us denote it by l k) in the form
j  _r  dx _  r ___________ dx _______   r* dt

assuming
j< + -7r = t, dx =  dt, q— — =m '

^it is assumed that the roots of the denominator are complex, 

and hence, q—-£->»oj. ^len as f°H°ws:

/ - r dt i
* + '"‘ J (f’ +  m4)*
_  i r dt________________ — d t  rn

m,J (Z' + m1)*-1 m*J (tt + mi)k * ' '
Transform the last integral:

r  t*dt __ r t - t d t
J (P + m f J (/4 + m4)*~

_  1 f,d(r* + /n*)
" " I r ^+m*Ij,* 2 (ft

i _ r , d  \
-D J  U^+m2)*-V
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Integrating by parts we get 
__ 1

2 ) k

r  t l d t  _  1 r t  i  r  d t  n

J (f* +  m*)* 2 (fe— 1) L tf2 +  m2)*-> J U2 +  m, )*-*J’2 ( f c - l )  L (t* +  m*)k

Putting this expression into (1), we have

/ -  f dt -  1 f
* J m* )

dt
{t* +  m*)k m2J (<*+ m*)k~‘

1  1 . [____ !______f ____dJ-___ 1 =
n22(ft—1)L (/2 +  m2)*-' J ( / 2+ m 2)*->J

t
2m*(k— 1) (<2 +  m2)'2\*_1+ 2k—3

2m* (k
dt

(/* +  m2y2\k-l *

On the right side is an integral of the same type as Ik, but. the 
exponent of the denominator of the integrand is less by unity 
(k— 1); we have thus expressed I k in terms of /

Continuing in the same manner we will arrive at the familiar 
integral

l . =  [ 7,4"—5 =  — arc tan — -I-C. 1 J t ‘ -{-m* m m

Then substituting everywhere in place of t and m their values, we 
get the expression of integral IV in terms of x and the given 
numbers A, B, p, q.

Example 2 .

j(** + 2* + 3)2d* j
-2 (2* +  2) + ( —1- ■1)

" i f
2* +  2 dx

(jt2+ 2 x  +  3)2 

dx

dx-

(x2 +  2* +  3)2

1 I
2 (x2 +  2* +  3)‘

I  (x2 +  2* +  3)2~ 

dX
(x2 -f 2x -f* 3)* ’

We apply the substitution jc +  1 =  / to the last integral: 

f  dx C dx
(x2 +  2x +  3)2 J [(* +  l )2 +  2]2 

__ L  r _dt_

r ^  i n<2+2)-<2 
J (/*+ 2)2 2 J (f2 + 2)2 “ '

4 1 , ^dt =2 J / 2+ 2  2  J « 2 +  2)2

1 1  . t 1 f  t‘ dt
~  2 y^2 ta" V~2 "5" J (<2+ 2)2’
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Let us consider the last integral:
t*dt  1 Ctd  (<» +  2)(• t*dt  1 (*,

J «« + 2)*“  2 J (** + 2)»
___L—L + i  f _

2  t ‘ +  2 ^  2 }  t

T f - O - T , ) '
' dt

2 (tl +2)

+ 2
1 . / -----= a r c  tan—=2 V̂ 2 1̂ 2

(we do not yet write the arbitrary constant but will take it into account in 
the final result).

Consequently,
r dx 1 . x + i
J p + 5 + » - ! 7 ! "  ' “ 7 ? “

1 r *+i  , i  _x ~i“ i
2 |_ 2(*’ + 2 * + 3 )  +  2 / 2' arCtan y ~2 J *

Finally we get
f  * — 1 J x +  2 V ~2 , * +  l , „
J (jts +  2x +  3)2dA:_ 2 (x* +  2* +  3) 4 arctan y - ^  + c -

SEC 8 . DECOMPOSITION OF A RATIONAL FRACTION 
INTO PARTIAL FRACTIONS

We shall now show that every proper rational fraction may be 
decomposed into a sum of partial fractions.

Suppose we have a proper rational fraction
Fix)  
f i x)  '

We shall assume that the coefficients of the polynomials are real 
numbers and that the given fraction is nonreducible (this means 
that the numerator and denominator do not have common roots).

Theorem I. Let x = a be a root of the. denominator of multi
plicity k; that is f(x) = (x—a)kfl (x) where /, (a)#0 (see Sec. 6,

F (x)Ch. VII). Then the given proper fraction may be represented 
in the form of a sum of two other proper fractions as follows:

F ( x ) =  A F,(x) /jv
f (x) (x — a)k {x —a)k~lfx(x)'

where A is a constant not equal to zero, and (*) is a polyno
mial whose degree is less than the degree of the denominator 
(x— a f - ' f ,  (x).

Proof. Let us write the identity
F(x) A F (x)— Afx (x) 
f (■*) (*— a)* (*— a)k !\ (x) (2)
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(which is true for every j4) and let us define the constant A so that 
the polynomial F (x)—Aft (x) can be divided by x — a. For this, 
by the remainder theorem, it is necessary and sufficient that the 
following equality be fulfilled:

F ( a ) - A f ,((!) = 0.
Since /, (a) =£ 0, F (a) 0, A is uniquely defined by

A - L W  
h (a)‘

For such an A we shall have
F (x)— Af, (x) =  (x— a) F, (a:),

where Ft (x) is a polynomial of degree less than that of the 
polynomial (x—a)k~1f l (x). Cancelling (x—a) from the fraction in 
formula (2), we get (1).

Corollary. Similar reasoning may be applied to the proper ra
tional fraction

F, (x)
(x—a f - 1 /,.(*) ’

in equation (1). Thus, if the denominator has a root x = a of 
multiplicity k, one can write

A . A,___  I | I Ffc (x)
f (x) (x— a)* (x— a) * - 1  x — a fi(x) *

F (x)where — — is a proper nonreducible fraction. To it we can apply
the theorem that has just been proved, provided f l (x) has other 
real roots.

Let us'now consider the case of complex roots of the denomi
nator. Recall that the complex roots of a polynomial with real 
coefficients are always conjugate in pairs (see Sec. 8, Ch. VII).

When factoring a polynomial into real factors, to each pair of 
complex roots of the polynomial there corresponds an expression 
of the form x*-\-px + q. But if the complex roots are of multi
plicity p, they correspond to the expression (x2 + px-\-q)[L.

Theorem 2. //  f(x) = (xl + p x ^  q)[L̂ l (*), where the polynomial 
<p. (x) is not divisible by x*-\~px+qt then the proper rational 

Fix)fraction — - may be represented as a sum of two other proper 
fractions in the following manner:

F(x) Mx +  N o ,(* )
l(x) (*, + P* + ‘?)l‘~t'(** + P* + <7r",<Pi (*)’ '  '
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where <D, (x) is a polynomial of degree less than that of the pol.y~ 
nomial (x2-fpx +  (x).

Proof. Let us write the identity 
F(x) P(x) Mx +  N F ( x ) - ( M x  +  N)<t,(x)
fix) (j^ +  px +  p^cp, (x) (x ^ p jc  +  p)11"1" (^  +  pjc +  <7f  9 , (*) ’ ' '

which is true for all M and N, and let us define M and N so 
that the polynomial F (x)—(Mx +  A0<p, ( x )  is divisible by 
x‘-\-px + q. To do this, it is necessary and sufficient that the 
equation

F (x) — (M*-rA0<p, (jc) =  0 
have the same roots ot±*P as the polynomial x* + px + q. Thus,

F (a +  <P)— [M (a +  t'P) +  N} <p, (a +  /p) =  0
or

M (a +  tp) +  N =  •

But y *s 3 definite complex number which may be written
in the form K + iL, where K and L are certain real numbers. 
Thus,

M (a +  t'P) +  N =  K + IL\
whence

Ma + N = K, /Vfp =  L
or

Af =  - ,  N = ! ^ — .

With these values of the. coefficients M and N the polynomial 
F (x) — (Mx + N)(fx(x) has the number a -fip  for a root, and, 
hence, also the conjugate number a —/p. But then the polynomial 
can be divided, without any remainder, by the differences 
x—(a-r-ip) and x—(«—t'P), and, therefore, by their product, 
which is x* + px + q. Denoting the quotient of this division by 
®,(x). we get

F (x)— (Mx + N) <p, (x) =  (x* +  px-A- q)0 t (x).
Cancelling x* + px + q from the last fraction in (4), we get (3), 
and it is clear that the degree of <D, (x) is less than that of the 
denominator, which is what we set out to prove.

Now applying to the proper fraction the results of Theorems
1 and 2, we can obtain,. successively, all the partial fractions
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corresponding to all the roots of the denominator f(x). Thus, 
from the foregoing there follows the result that 

If
f(x) = (x— a f  (x— b f . . .(x' + px + q)*.. . (x* +  lx +  s)\

F  ( jc )then the fraction tt- t can be represented as follows:

F ( x ) _  A I 1
f ix )  (x— a f (X—a)a~l 1 • • •  

1 B 1

' x —a '
Bi , , flp -i ,

1 {x— b f  1 (x - 1*7CEL1
Mx +  N

1 (x‘ +  px +  q f (Â  +  pX +  g F - 1 * ■ * ’ * x2 -{- px +  q *

Px +  Q ■ + 1 I P^-iX +  Qv-i
1 (jt2-f-/* -f s)v 1 ( * 2 +  /jt-f s )v“ 1 1  • • • 1 * * + /*  +  S *

The coefficients A, AI . . . ,  B, Bv . . .  may be determined by 
the following reasoning. This equality is an identity; and for 
this reason, by reducing the fractions to a common denominator 
we get identical polynomials in the numerators on the right and 
left. Equating the coefficients of the same degrees of *, we get 
a system of equations to determine the unknown coefficients A, 
At, . . . .  B, B„ . . .

In addition, to determine the coefficients we can take advan
tage of the following: since the polynomials obtained on the 
right and left sides of the equality must be identically equal after 
reducing to a common denominator, their values are equal for all 
particular values of x. Assigning particular values to x, we get 
equations for determining the coefficients.

We thus see that every proper rational fraction may be repre
sented in the form of a sum of partial rational fractions.

Example. Let it be required to decompose the fraction 
partial fractions. From (5) we have

*’ + 2 
(•* + !)' C*—2) into

** +  2 A At A, B
(*+!)»(*—2) U+ D’^ x + i r  J + l ^ - 2 -

Reducing to a common denominator and equating the numerators, we 
have

* 2 +  2 =  4  (x— 2) +  4 , (* +  1) (*—2) +  i4, (x +  l)*(x— 2) +  B (x -f- 1)*, (6 )
or

x* +  2 =  {At +  B)x> +  {Al +  3B)x* +
+  (4 — 4 , —34j +  3fi)x -|-(— 2 4 — 2,4, — 2A1 +  By
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Equating the coefficients of x\  x2y xl , x° (absolute term), we get a system 
of equations for determining the coefficients:

1 =  Ax +  ?>By
0 =  A —A l —3A2 +  3B,
2 =  — 2A —2AX—2A2-\-B.

Solving this system we find
A = - 1; A, =  i - ;  At

It might also be possible to determine some of the coefficients of the 
equations that result for some particular values of x from equality (6 ), 
which is an identity in x .

Thus, setting x — — 1 we have 3 =  — 2>A or A —— 1; setting x =  2, we
have 6 =  27B; S = - | .
If to these two equations we add two equations that result from e q u a t i n g  

the coefficients of the same powers of x, we get four equations for deter
mining the four unknown coefficients. As a result, we have the decomposition

** + 2 1 1  2 2 
(*+ !)»  (x—2 ) ~  (x-i- l ) * ”1“ 3 ( j e - | -  l )2 9 ( * + l ) + 9(;t — 2) '

SEC. 9. INTEGRATION OF RATIONAL FRACTIONS

Let it be required to evaluate the integral of a rational fraction 
— that is, the integral

If the given fraction is improper, we represent it as the sum
of a polynomial M(x) and the proper rational fraction
(see Sec. 7). This latter we represent, applying formula (5), Sec. 8, 
as a sum of partial fractions. Thus, the integration of a rational 
fraction reduces to the integration of a polynomial and several 
partial fractions.

From the results of Sec. 8 it follows that the form of partial 
fractions is determined by the roots of the denominator f(x). 
Here, the following cases are possible.

Case I. The roots of the denominator are real and distinct, 
that is

f(x) = (x—a) (x—b) . . .(*—d).

Here, the fraction is decomposable into partial fractions 
of type I:

F(x) _  A B D
f(x) x — a x — * * * ' x — d *
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and then

§ r $ i d x = l ^ d x + it= ~ b dx+  • • • + j >r = d d* ==
=  A In |*—a | +  B In |x — 6| +  . . .  +  D In |jc—d| +  C.

Case II. The roots o/ the denominator are real, and some of them 
are multiple:

f(x) = (x—af ^x— b f . . .(x— df.

In this case the fraction j is decomposable into partial frac
tions of types I and II.

Example 1. (see example in Sec. 8 , Ch. X).

f *’ +  2 dr f dx 1 P dx 2 r dx •
J (x+l)) U-2) = J(*+l)*+ 3 j t a  + .l|! 9 Jx  +  1 +
9 C dx 1 1 1 2 2

+  "9 J * = 2  =  -2 (x +  •l)*“ 3 ( j t + l ) “ T  l n | j f + 1  l+ -g * n |x :—2.| +  C =
2* — 1 2 lx — 2

' 6 ( x + l ) J+  9 U + l +  C.

Case III. Among the roots of the denortiinator there are complex 
nonrepeating (that is, distinct) roots:

f (x)= (x*-\-px +  <7) (x*+ Ix + s ) . . .(x—a)*.. .(x— df.
F (x)In this case the fraction j—j is decomposable into partial frac

tions of types I, II, and III.

Example 2 . Evaluate the integral

C x dx 
J (*2- f l ) ( * - l )  ‘

Decompose the fraction under the integral sign into partial fractions [see (5), 
Sec. 8 , Ch. X]

x Ax +  B C
(*2+ l)(x — 1) “  • '

Consequently,
x =  (Ax +  B) (* — 1) +  C (* * + 1),

Setting x =  l, we get 1=  2C, C =  y ; setting x =  0, we get 0 =  — , B  +  Ct
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Equating the coefficients of **, we get 0  =  44-fC , whence.A>—— Thus,

f  x d x  _  I f *  —  ̂ rf i  ̂ f  ^  —
J (x2-f 1) (* — 1) "2 J i* + 7 ® *  + T  J ~ i ~ ~

__ 1 C xdx  1 f  dx 1 C dx _
2 J *2+ l  +  2 J * 2 +  1 +  2 J x — I ”

=  — — Inl^'H-l | +  -jj- arc tan x +  -̂ - In | x — 1 | +  C.

Case IV. Among the roots of the denominator there are complex 
multiple roots

f(x) = (x* + px + qY (x* + lx-\- s f .. .(*—a )\ . .(x— d)\

In this ease, decomposition of the fraction will also containI (•*/
partial fractions of type IV.

Example 3. It is required to evaluate the integral 
f* x* +  4x’ 1 lx* +  12x -f  8 .
J (x* +  2x +  3)* (x +  1) dX-

Solution. Decompose the fraction into partial fractions:
x« +  4*, +  llx*+ 12x  +  8 A x + B  Cx +  D E

(x* +  2x +  3)*(x-l-l) (x * + 2x +  3)* +  (x*-i-2x +  3)+ x +  l ’
whence

x‘ + 4 x , +  l lx I+12x +  8 =
=  (4x +  B)(x +  l) +  (Cx+D)(x* +  2x +  3) ( x + l )  +  £(x*-)-2x +  3)*.

Combining the above-indicated methods of' determining coefficients, we find 
4 = 1 ,  B =  — 1, C =  0, D =  0. £  =  I.

Thus, we get
f*x4 + 4 x ’ - f llx * + 1 2 x  +  8 f  x — 1  ̂ , f  dx
J <x* +  2x +  3 )* (x + l) _  J (x* +  2x +  3)*dJH‘ J x +  l ~

x -f- 2  2 ___ + _ _ x -|- 1 , , , i  , s'
~ ~  2 (x* +  2x +  3) 4 - arc tan y==- +  ln |x  +  l |+ C .

The first integral on the right was considered in Example 2, Sec. 7, Ch. X. 
The second integral is taken directly.

From the foregoing it follows that the integral of any rational 
function may be expressed in terms of elementary functions in 
final 'form, namely, in terms of:

1) logarithms in the case of partial fractions of type I;
2) rational functions in the case of partial fractions of type II;
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3) logarithms and arc tangents in the case of partial fractions 
of type III;

4) rational functions and arc tangents in the case of partial 
fractions of type IV.

SEC. 10. OSTROGRADSKY’S METHOD

In the case of multiple roots in the denominator, the integral 
of a rational function may be evaluated by a different method 
that leads to simpler computations. This method permits separat
ing out the rational part of the integral without decomposing 
the fraction, into partial fractions, and then integrating the rational 
fraction whose denominator has only simple roots. It is easy to 
integrate such a fraction since it is decomposable into partial 
fractions of types I and III. This method belongs to the noted 
Russian mathematician M. V. Ostrogradsky (1801-1862) and is 
based on the following reasoning.

Let it be required to integrate the proper rational fraction
£jf> where 
f(x) ’ w nere

f(x) = (x—a ) \ x — b f . . .  (x? + px +  q f .

Here, on the basis of (5), Sec. 8, everything is reduced to inte
grating proper rational fractions of four types (see Sec. 7). Here,£

1) the integral of a fraction of the form x̂_ ayt is a fraction of

the form

2) the integral of the fraction + qf  's a sum °f frac-

tions of the form - m — , where u * < l i— 1, and of an in-(xi + px + q)T *  r  r
tegral of the form

N**
+ px +q dx.

We will not yet integrate fractions of types I and III.
Combining the rational fractions obtained after integrating 

fractions of types II and IV, we get a proper fraction of the
form , where the polynomial Q (*) is equal to

Q (*) =  (*—a)”" 1 (x— b f ~ ' . . .(x? + px + q)^-1. . .(** +  lx +  s),“ I.
Y (x) is a polynomial of degree one less than that of the poly

nomial Q.



O s t r o g r a d s k y ' s  M e t h o d 369

Combining the integrals of all the fractions of types I and III
(* N**(including those integrals of the form \ dx which are

obtained by integration of fractions of type IV), we get an integral
X (x)of a proper fraction of the form , where the polynomial 

P (x) is
P (x) =  (x— a) (x — b) . . .  (x2 + px + q) . . .  (x2 +  lx +  s).

We thus find that

<»
Here X(x) is a polynomial of degree one less than that of the 
polynomial P(x).

Now let us determine the polynomials X (x) and Y (x) in the 
numerators. To do this, differentiate both sides of (1):

F(x) QY' — Q'Y X  
t (x)  ~  Q2 +  P

or
=  +  (2)

We shall show that the expression on the right is a polynomial. 
Noting that f(x) = PQ we can rewrite (2) in the form

F{x) = P Y ' - ^ -  + QX. (2')
PQ'YWhat remains now is to prove that the expression------— is a

polynomial or that PQ' is divisible by Q. We note that

^q- =  [In Qj' =  [(a— 1) ln(x —a) +  (P — l)ln (x—b)+ . . .

. . .  +(p,— l)ln(jc2 +  pA: +  (7)+  . . .  + (v  — l)ln(A-2 +  /x +  s)|' =
a - l  , P - l  | Q i - l ) ( 2x +  p) (v 1) (2x + l )
x — a ‘ x — b '  ’ * ' ' x2-\-px~\-q x2-\-/x +  s

The polynomial P is the common denominator of the fractions 
on the right side. In the numerator there will be a certain poly
nomial of degree less than that of P. Let us denote it by T . Then,

Q' _  T 
Q ~  P ’

Hence, the expression
p - ^ - k =  p  —y =  r v



370 Indefinite Integrals :

is a polynomial.. Equation. (2') takes, the form .
F(x) = PY'—TY +QX.  (3)

Comparing ,the coefficients of the same powers of the variable 
in (3), we get a system of equations from which we find the 
unknown coefficients of the polynomials X and Y .

Example. Evaluate

J  (* > -  \ y d*‘
Solution. In this case,

f ( x )  =  ( X— l)*(X, +  JC-f-l)\
P{x) =  (x— 1) (** +  * +
QW= = *J —I.

Equation (I) has the form
dx Ax*+Bx +  C f f x ' + F ^ + O j  

(*•— 1)*“  x’ - l  + J x > - \  dX- 
Differentiating both sides of (4) we get

l i
(4)

J =  (x2 — \)(2Ax +  B) — (Ax2 +  Bx +  C)3x2 Ex2 +  Fx +  G
U8- l ) a x2 — 1

Clearing fractions, we have
1 =  (x2 — 1) (2Ax +  B) — (Ax2 +  Bx +  C) 3x2 +  (*3— I) (Ex2 +  Fx +  G).

Equating the coefficients of identical powers of x on different sides of the 
equation, we get a system of six equations for determining the coefficients, 
A , B, C, £ , F, G.

0 =  £ ,
0= —A+F,
0 = —2B + 0,
0 =  3C — £ ,
0 = —2 A - F t
1 == — B — G.

Solving this system we find
E =  0, ,4 = 0 . C =  0. f l=  —— , F =  0, 0  =  —y .

Putting the values of the coefficients thus found into (4), we get

f *. - T ' . f - i .
J (*3- l ) 2“  x2- l  x2 — 1 ax•

The denominator of the latter integral has only simple roots, thus making it 
easy to compute the integral. We finally obtain

f dx = ~ x +fJ(x*—l)1 3(^— 1)T J
T * + ¥

i + *•+*+!_ dx =

3(*2— 1) 9— q- In | x —1 | -f̂ Q- In (x2+x-(- l) +
2 Vt arc tan 2* + l

Y  3
=- +  C.
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SEC. 11. INTEGRALS OF IRRATIONAL FUNCTIONS

It is impossible to express in terms of elementary functions the 
integral of every irrational function. In this and the following 
sections we shall consider irrational functions whose integrals are 
reduced (by means of substitution) to integrals of rational functions 
and, consequently, are integrated to the end.

m  r

1. We consider the integral ^ R  (x, x n ........ x s ) dx where R
is a rational function of its arguments.*)
Let fc be a common denominator of the fractions — ........—. Wen s
make the substitution

x =  /*, dx = kt*~'dt.
Then each fractional power of x will be expressed in terms ol 

an integral power of t and the integrand will thus be transformed 
into a rational function of t.

Example 1. It is required to compute the integral
1

x*dx
3

.7 + 1
1 3Solution. The common denominator of the fractions y , — is 4: and so we 

substitute: x =  l*t dx=-4l*dt\ then

\  S f iT V " - 4! ( ‘‘- T r n ) '
cJ x4 -f-1

_4
3

S 8
x7 — In \x7  +  1 + C.

( ^
*) The notation R \x ,  x n , ...» x s )  Indicates that only rational operations

m r

are performed on the quantities x, x n , . . . ,  x s .
This is precisely the way that the following notations are henceforward tom

be understood: R (x, . . . . V  R (x, \^ax* +  bx +  c), R{  sin*, cos*),
etc. For instance, the notation R ( sin*, cos*) indicates that rational opera
tions are to be performed on shut and cos x.
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II. Now consider an integral of the form
m  r

This integral reduces to the integral of a rational function by 
means of substitution:

ax +  b _  fk 
c x + d  ’

where k is the common denominator of the fractions . . . , y .

Example 2 . It is required to compute the integral

Solution. We make the substitution x +  4 =  t2, x =  t l —4; dx =  2tdt\  then

=  2< +  21n 1—2 
t +  2

+  C =  2 4 +  21n V x  +  4 — 2 | 
Vx + 4 + 2\ +  C.

SEC. 12. INTEGRALS OF THE FORM $ /? (* ,  Vax* +  bx +  c) dx

Let us consider the integral

J R (x , V ax* + bx + c) dx. (1)

An integral of this kind reduces to the integral of a rational 
function of a new variable by means of the following Euler sub
stitutions.

1. First Euler substitution. If a> 0, then we put

J/  ax1 -f- b x -f~c = i  ]/"ux -|-1.

For the sake of definiteness we take the plus sign in front of Va  . 
Then

ax1 + bx +  c = axt + 2 V~axt -\-t‘,

whence x is determined as a rational function ol t:
t*—cx x—2 f a t
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(thus, dx will also be expressed rationally in terms of t). Therefore,

V ax2 + bx + c = Y a x  + t = Y~a, t ~f/— + t,b—21 V a
and Y a x 2+ b x  + c is a rational function of t.

Since yrax1+ bx + c, x and dx are expressed rationally in terms 
of t, the given integral (1) is transformed into an integral of a 
rational function of t.

Example 1. It is required to compute the integral
dx

f iV x * + . C '

Solution. Since here a =  l > 0 ,  we put ]/~x*+C = —* +  /; 
then

x2 +  C = x 2—2xt +  t2,
whence

t 2—Cx =  - 21
Consequently,

dx = t2 +  C 
21* dt.

/ x !+C =  -J( +  ( = - ^ p + i  = •2/
Returning to the initial integral, we have

r< i± £ dt
- f T c - = J f = ln |f |+ c «=In |jc+ ^ + C i+ ^

J  21
(see formula 14 in the Table of Integrals).

2. Second Euler substitution. If c> 0, we put

Vax*+ bx +  c — xt±Y~c\
then

ax2+ b x  + c —x2t 2+ 2xt Y c  +  c.
(For the sake of definiteness we took the plus sign in front of 
the radical.) Then x is determined as a rational function of t:

2 V T t - b
X =  — ----73— .a — t*

Since dx and Y a x 2 +  bx +  c are also expressed rationally in terms 
of t, by substituting the values of x, Y a x ‘ + bx-X-c and dx into
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the integral  ̂R (x ,V ax2 +  bx-{- c) dx, we reduce it to an integral 
of a rational function of t.

Example 2. It is required to compute the integral 

■(i- +*+**)*
I 1 X 2 V  1 +  X +  x 2

Solution. We set j/” 1 +  x-\-x2 =  xt -f-1; then
2t — 1

dx.

1 -\-x-\-xi =  xH2 +  tlxt +  I; x = . 2t*—2t +  2 ,dx =  — ---- -^r- di\
1 — i2 1 ~~ (1— t*S*

2
V  i + x+ x*=xt + 1 = - 1 1;

1 — V i  + x  +  x*=- -2t*+t 
1 —t‘

Putting the expressions obtained into the original integral, we find 

('( I -  V \ + x  +  x*y f ( - 2t» + Q » (l-< » )« (l-< » )(2< » - 2< +  2) , _
J J (!-W(2/-l)*(/*-/ + l)(l-<V ax~

=  +  2 ^ | _ft <U +  C =  —2t +  ln | j—  ̂| +  C =

2(]/'T+I+7*-l) + ln * +  ^ 1  + x  +  x*— 1

* — V/‘l+.C+7*+l +  C--

=  —2( ^  * + •*+** 1 ̂  +  In | 2x +  2 ^ H - *  +  *‘ + l  |+ C .

3. Third Euler substitu tionLet o and p be the real roots of 
the trinomial ax1 -f bx + c. We put

Vax* 4- bx +  c — (x—a) t.

Since ax* + bx + c = a(x — a) (x— P), we have

V a (x—a) (x— P) =  (x— a) t, 
a(x—a) (*—P) =  (x—a )*/*, 

a (x—p) =  (x—a )/’.
Whence we find * as a rational function of t:

a&—ai*x — —— jr  •a— r

Since dx and Vax* -f bx +  c also rationally depend upon t, the 
given integral is transformed into an integral of a rational function 
of /.
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Note 1. The third Euler substitution is applicable’not only for 
a< 0, but also for a>0, provided the polynomial ax2-\- bx-\~c has 
two real roots.

Example 3. It is required to compute the integral
dx

f V x * +  3x — 4 

Solution. Since x2 +  3x—4 =  (*-}-4) (x— 1), we put 

|/'(* +  4 ) ( * - l )  =  (x +  4)/;
then

(* +  4)(x— l) =  (x +  4)*/*, * — 1 = (*  +  4)/*, 
1+ 4/*  . 10/d x =  ■ ;M .1 —/* ’ “* . (1 _/*)*' 

/ ( x  +  4) ( * - ! )  =  [ \ ± ^  +  4] t =

Returning to the original integral, we have 
dx

J v V + 3 * - 4  J ( i —ty s t  J i — i' | i - i | T

=  In
V —y  x+4 

V  x +  4

+  C =  In Y x  +  4 +  Y  x — 1 
Y x  +  4— Y  x — 1

+ c .

Note 2. It will be noted that to reduce integral (1) to an integral 
of a rational function, the first and third Euler substitutions are 
sufficient. Let us consider the trinomial ax* + bx +  c. If b1—4oc >  0, 
then the roots of the' trinomial are real, and, hence, the third 
Euler substitution is applicable. If b*—4 ac^ 0 , then in this case

ax1 +  bx +- c =  ̂  [(2a* +- by +- (4ac— 6*)]

and therefore the trinomial has the same sign as that of a. For 
Vax* -\-bx +  c to be real it is necessary that the trinomial be posi
tive, and we must have a>0. In this case, the first substitution 
is applicable.

SEC. 13. INTEGRATION OF BINOMIAL DIFFERENTIALS

An expression of the form
*“ (a +- bxn)r dx,

where m, n, p, a, b are constants is called a binomial differential.
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Theorem. The integral of a binomial differential
J xm (a +  bxn)p dx

if m, n, p are rational numbers, is reduced to an integral of a ra
tional function and thus is expressed in terms of elementary func
tions in the following three cases:

1. p is an integer (positive, negative or zero);
2. is an integer (positive, negative or zero);

3. —~  + P is an integer (positive, negative or zero).
Proof. Transform the given integral by substitution:

— i I— ix — za , dx = — z n dz. n
Then

J xm(a + bxn)pdx =  J  z n ^ (a+bzy  dz = — ^ zq(a + bz)pdz, (1) 

where

1. Let p be an integer. Since q is a rational number, we denote 
it by y .  Integral (1) is then of the form

^R  (zs , z) dx.

As was pointed out in Sec. 11, Ch. X, it reduces to an integral of a 
rational function by the substitution z = ts.

2. Let be an integer. Then (7 =  —1- — 1 is also an integer.
A,The number p is rational, p = — . Here the integral (1) is of the 

form
- A.
 ̂R [x9, (a + bz)v-) dx.

This integral was considered in Sec. 11, Ch. X. It reduces to an 
integral of a rational function by the substitution a+bz  = t».

3. Let —̂ — + P be an integer. But then — 1 -t p — q + p  is
an integer. We transform integral (1):

J  z9 {a + bz)pdz = J  z9+p +
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where q + p is an integer and p = is a rational number. The 
latter integral belongs to the class of integrals

This integral was considered in Sec. 11, Ch. X. It reduces to an 
integral of a rational function by the substitution =  t l.

Let us examine examples of integration in all the three cases.

Example p - j  =  J x * ( • + * ' )  dx- Here ? = “ > (ir

2

ting x 9 =  z, we make the quantity in parentheses linear in 

j x  5 ( l + x 5 )  d x = ^ z ~1 ( l + a ) - 1 y a 2 dz =  - | - ^ a  2 (1-

? = — 1 (integer).

Putting x 9 =  z, we make the quantity in parentheses linear in z :

1 +  Z ) ~ I d z .

i
Now make the substitution z z Then z =  f2, dz =  2 td t  and

- 1 2 tdt--* ( l + x * )  d x = - j  J  2 * ( l+ z ) - , cl2 =  - | - J < - , ( l +<*)-'

=  3 J  y - ~ 2= 3 arc tan / +  C =  3arc tan C =  3 arc tan y / x  +  C.

Example 2 . j* -pr—= =  dx =  j* x9 (1 — x2) 2 dx. Here, m =  3, n =  2,

i i
p = — -  =  2 (integerl). We substitute x2= z ;  then x  =  z 2 , d x  =  -^~z 2 dz 
and

j f f e ?  =  j  2 S (1 “ 2 ) " 2 T  2"7 ^  =  T  J  2 (1 “  z)"Td2-
1

In order to make the second parenthesis rational we put (1 —z) 2 = t ;  then 
1— z =  t2; z =  t2— 1; dz =  2tdt .  Hence,

j  dx =  y  J  a (1 - z ) ~ d z  =  - 1  (t*— 1) 2/d < =  j“ ( t * - l ) d t  =

=  T _ r  +C = -3 (<2- 3)+ c = J^l-a
( — 2 — 2) = C  = VT=: - ( —xJ— 2) +  C.
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Example 3. I ----- r^X - = f
J x2 / ( ! +  x2)* J

x~ z(\ +  ,v2) 2dx. Here, m = —2, n = 2, p =  -——

m 4-1and —— +  p = —2 (integer). We reduce the expression in the parentheses to 
a linear function:

x2 — z\ x — z 2\ dx — — z 2 dz\

(1 + x 2) ~ 2dx =  j  z - ‘( l + z ) ~ 2 y z ~ 2 dz:i ' "

he first factor is a rational {unction. In order to make the second factor 
rational as well, we make the substitution:

then

Thus,

i+? = t‘; z=
t2— I ’

dz =  • 21 dt
(<*-!)*•

J .-*(1+*1) \tz =

{ T h y + ‘ - - ( ^ M T T * f + ‘ -
_  V \ + X 2 X  , r

* VT+x2̂
Note. The noted Russian mathematician P. L. Chebyshev proved 

that only in the above three cases in an integral of binomial 
differentials with rational exponents expressed in terms of elemen
tary functions (provided, of course, that a^O and 0). But if
neither p, nor , n o r ^ p  +  p are integers, then the integral
cannot be expressed in terms of elementary functions.

SEC. 14. INTEGRATION OF CERTAIN CLASSES 
OF TRIGONOMETRIC FUNCTIONS

Up to now we have made a systematic study only of the integ
rals of algebraic functions (rational and irrational). In this section 
we shall consider integrals of certain classes of nonalgebraic
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functions, primarily trigonometric. Let us consider an integral of 
the form

J R (sin jc, cos x)dx. (1)

We shall show that this integral, by the substitution

ta n -  =  / (2)

always reduces to an integral of a rational function. Let us express 
sin a: and cosx in terms of tan y ,  and hence, in terms of t :

2 s in y  c o s y  
sin x = ------ ;------

2 sin y  cos y  2 tan y

sln *y  4 -cos*y 1 +  tan* 1 2 y

2/

I -H*’

cos*y  —sin*y c o s * y —sln *y 1—tan *y  1 —/*
COS X =  -------- :---------= ------------------= ------------- =  TTTa •1 i x  , * * x  , , * 2 x  14- t 2cos* y  4- Sin* y  14-tan* y

And
x =  2 arc tan*, dx = - ^ j t .

In this way, sinx, cosx and dx are expressed rationally in 
terms of t. Since a rational function of rational functions is a 
rational function, by substituting the expressions obtained into the 
integral (1) we get an integral of a rational function:

sin*, cosx)dx = J  R [ f ^ i .  \^fp\  j—75-

Example 1. Consider the integral
C dx 
J sin x *

On the basis of the foregoing formulas we have
2 dl

r dx 
J sinx'

1 4 - /*
2 i "

1 4- **
in | t \ 4-C =  ln

This substitution enables us to integrate any function of the 
form R ( cosx, sinx). For this reason it is sometimes callea 
a “universal trigonometric substitution”. However, in practice it 
frequently leads to extremely complex rational functions. It is
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therefore convenient to know some other substitutions (in addi
tion to the “universal” one) that sometimes lead more quickly to 
the desired end.

1) If an integral is of the form  ̂R (sin*) cos* dx the substitu
tion sinjc =  /, cosx dx =  dt reduces this integral to the form 
\R( t )d t .

2) If the integral has the form  ̂ (cos*)sin*d*, it is reduced
to an integral of a rational function by the substitution c o s* = /, 
sin*d* = —dt.

3) If the integrand is dependent only on tan x, then the 
substitution tan x — t, * =  arc tan t, dx =  l reduces this inte
gral to an integral of a rational function:

J .R (tan x)dx = ^ R  (t) — 3.

4) If the integrand has the form R (sinx, cos*), but sin* and 
cos* are involved only in even powers, then the same substitu
tion is applied:

tan* =  (2')
because sin2* and cos** are expressed rationally in terms of tan*:

cos2 * =  r-r-jJ—3-  =  r  ,1-ftan** l +  <
. , tan** t*sir) x — . . .  m - . . . • 1 

1 + ta n 2* 1 +  f
, M

d x - \ + t Z-

After the substitution we obtain an integral of a rational 
function.

J sin8*
2 -j- cos~x dx'

Solution. This integral is readily reduced to the form  ̂R (cos x) sin x dx. 
Indeed,

i
sin8* sin2* sin * dx_  f  1 —cos2*

2 -f-cos* * J 2 +  cos* J 2 +  cos* sin * dx.

We make the substitution! cos* =  2 . Then sin *d* =  — dzi

“  -  j J T ,
f1 sin8 

J 2 + ĉos *

=  -q- — 22 +  3 In (2 +  2) +  C = cos2* ■ 2 cos* +  3 In (cos* +  2) +  C.2
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Example 3. Compute ^ 2 — sia2x 
Make the substitution tanx=<:

5) Now let us consider one more integral of the form
J R (sin x, cos x) dx, namely an integral under the sign of which
is the product sin" x cos" x dx (where m and n are integers). Here 
we shall have to consider three cases.

a) J sin"*cos,,;edA;, where m and n are such that at least one
of them is odd. For definiteness let us assume that n is odd. Put 
n — 2p-\-\ and transform the integral:

J sin";tcos8/'+1 xdx =  J sin"*cosv xcosxdx =

=  J sin" * (1 — sin* x)pcos x dx.
Change the variable

sin* =  t, cos xdx = dt.
Putting the new variable into the given integral, we get 

J sin" * cos” x d x = ^  tm (1 — t*)p dt, 
which is an integral of a rational function of t.

Example 4.

Jcos8 x ^x _ P cos8x cos x dx P (1 — sin8*) cos x dx 
sin* x J sin4 x j  sin4 *

Denoting s in x = t ,  cosxdx  =  dt, we get
rco s’ x .  n \  — t*)dt r  dt r dt 1 , 1 
] ^ 7 dx =  ) T* = J T - )  —  =  - 3 ^  +  T + c  =

_____ 1 I 1 ic
3 sin* x ' sin x ~

b) J sin"xcosn*cf*, where m and n are nonnegative and even 
numbers.

Put m — 2p, n = 2q. Write the familiar trigonometric formulas: 

sin*;c =  y — - c o s 2 jc ,  cos* x  —  - j  -J- y  cos 2x. (3)
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Putting them into the integral we get

J  s\n*pxcos*qxdx = ^ Y —^  cos cos 2*)* d*.
Powering and opening brackets, we get terms containing cos 2x 

in odd and even powers. The terms with odd powers are integra
ted as indicated in Case (a). We again reduce the even exponents 
by formulas (3). Continuing in this manner we arrive at terms of
the form J coskxdx,  which can easily be integrated.

Example 5.

^ sin4 x dx =  ~  J  (1 — cos 2x)*dx =  ̂  J  (1 — 2 cos 2x +  cos* 2x) dx=a 

*=-J- jx — Sin2* +  y  J  (1 +  cos4x)dxj =  J  j ^ x —sin2x +  ̂ - ^ j  +  C.

c) If both exponents are even, and at least one of them is 
negative, then the preceding technique does not give the desired 
result. Here, one should make the substitution tanx = t '  (or 
cot* =  i).

Example 6 .
C sin2 x dx __ C 
J cos* x J

sin2 x (sin2 x +  cos2 x)2
cos* x s

d x =  \ tan2* (1 -ft'an *x)2dx.

dtPut tanx =  f; then x =  arc tan*, dx =  ^  and we get

tan5* , tan5* f n
!T + T + t ’

6) In conclusion let us consider integrals of the form 
J cos mx cos nx dx, J sin mx cos nx dxt J sin mx sin nx dx-.

They are taken by means of the following*) formulas (m=£n): 
cos mx cos nx =  — [cos (m +  n) x -f cos (m — n) x\t

*) These formulas are easily derived as follows:
cos (m +  n) x =  cos mx cos nx — sin mx sin nx; 
cos (m —n) x =• cos mx cos nx +  sin mx sin nx.

Combining these equations termwise and dividing them in half, we get the 
first of the three formulas. Subtracting termwise and dividing in half, we get 
the third formula. The second formula is similarly derived if we write analo
gous equations for sin(m +  n)* and sin (m — n).x and then combine them 
termwise.
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sin mx cos nx = ̂ ~ [sin (m + n)x+  sin (m—tx) x], 

sin mx sin nx =  ~  [ — cos (m +  /2) x +  cos (m—ri) x]. 

Substituting and integrating, we get 

J cos /tia; cos /zjc dx: =  J [cos (m +  n) * +  cos (m—n) at] rfjc =
_sin (m -f- n) x . sin (m — n) x .
~  2(m +  /i) ' 2 (m — n)

The other two integrals are evaluated similarly.
Example 7.

J sin 5jc sin 3x dx = --- J [ — cos 8* - f  cos 2jc] dx =  — +  C.

SEC. 15. INTEGRATION OF CERTAIN IRRATIONAL FUNCTIONS 
BY MEANS OF TRIGONOMETRIC SUBSTITUTIONS

Let us return to the integral considered in Sec. 12, Ch. X: 

j* R (jc, Y ax 1 +  bx +  c) dx.

-C.

( 1)

Here we shall give a method of transforming this integral into 
one of the form __

(sine, cosz)dz, (2)
which was considered in the preceding section.

Transform the trinomial under the radical sign:

a** +  fc* +  c =  a(.v +  4 ) V ( c - - ) .
Change the variable, putting

■« +  2£ =  dx = dt.
Then

V  ax* + bx + c— 1f  at*+ {c—

Let us consider all possible cases.
1. Let a > 0 ,  c—^ > 0 . We introduce the designations: a =  m \

c— =••«’. In this case we have

V ax* +  bx +  c =  V m*t2 -f n
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2. Let a > 0 ,  c— 0. Then
2 b2 2

a  =  m ,  c — i r = —  n \4a
Thus,

V̂ ojc* +  bx +  c =  V m2t2 — n \

3. Let a <  0, c—^ > 0 .  Then
* b2 ta = —m , c— -r — n .4 a

Hence,
j/ax* •+• &jc + c  =  V n2—m2t2.

fj2 .--------------- -
4. Let a <  0, c—^ < 0 .  In this case v ax2 +  bx 4- c is a com

plex number for every val'ue of x.
In this way, integral (1) is reduced to one ol the following 

types of integrals:
I. \^R{t, 1/ m 2t2 + n2)dt. (3.1)

II. (/, V m 2t2 — n2)dt. (3.2)

III. j /? ( f ,  V n 2- m 2t2)dt. (3.3)

Obviously, integral (3.1) is reduced to an integral of the form 
(2) by the substitution

/ =  — tan z. m
Integral (3.2) is reduced to the form (2) by the substitution

, nt = — sec z.. m
Integral (3.3) is reduced to (2) by the substitution

t = —  sin t. tn

Example. Compute the integral

I
dx

Y{a2— ’
Solution. This is an integral of type 111. Make the substitution * =  asinz, 

then
d x —a cos z dzt
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I
dx

Y (a2—*2)3 i
a cos  zd z  

Y ( a 2 — a2 s i n 2 z)3
f  a cos  z d z   1 f  dz

J  a3 cos8 2 a2 ) c o s 2 z

P _ 1 sin Z \ r > _ 1 sine , ^ ____  1 x
"g2” cosz ' ~a?~ j/T — sin2z +  ~ ~ ~a2~

52 tan z +  

+ C.

SEC. 16. FUNCTIONS WHOSE INTEGRALS CANNOT 
BE EXPRESSED IN TERMS OF ELEMENTARY FUNCTIONS

In Sec. 1, Ch. X, we pointed out (without proof) that any 
function f (x) continuous on the interval (a, b) has an antideriva
tive on this interval; in other words, there exists a function F(x) 
such that F' (x) = f(x). However, not every antiderivative, even 
when it exists, is expressible, in final form, in terms of elemen
tary functions.

For instance, we have already pointed out that the antideriva
tives of binomial differentials that do not belong to the three 
examined types cannot be expressed in terms of elementary func
tions in final form (Chebyshev’s theorem). Such are the antideriva
tives expressed by the integrals J e~x*dx, J —-  dx, J  dx,

J  V 1 —k2 sin2 x dx, J  and many others.
In all such cases, the antiderivative is obviously some new 

function which does not reduce to a combination of a finite 
number of elementary functions.

For example, that one of the antiderivatives
J e~x2dx +  C,

which vanishes for * =  0 is called the Gauss function and is deno
ted by <D-(jt). Thus,

O (x) =  J e~x* dx + Clt
if

<D(0) =  0. -
This function has been studied in detail. Tables of its values 

for various values of x have been compiled. We shall see how 
this is done in Sec. 21, Ch. XVI. Figs. 204 and 205 show the 
graph of the integrand y = e~x‘ and the graph of the Gauss func
tion y = <b{x). That one of the antiderivatives

 ̂ V 1—k2 s\n2 x d x C  (£ < 1 ), 
which vanishes for x =  0 is called an “elliptic integral” and is

13— 3388
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denoted by E {x), 

if
— k2 sin2 x dx + Ct,

E (  0) =  0.

J

y,
Vn

iy t

!i—p—x*
— y-d>m

y ^ f e - ^ d x ^ / 0 ^  
Vjt

0 X ~ T
Fig. 204. Fig. 205.

Tables of the values of this function have also 
for various values of x.

Exercises on Chapter X

been compiled

1. Compute the integrals: 1. f  xs dx. Ans. -̂ - +  C. 2. C (* +  Yx) dx.

A x‘ , 2* V  X  , „  0 U  3 * Y  X \  J  
A ,..  2 +  3 +C . 3. 4 y , . Ans. 6 J/"* —

— -  x‘ V~ x +  C. 4. i4ns. +  5. ( Y 1  +  —^ + 2 ^  dx.
10 J Y x  5 T  J U *  •* Y x  )

*"■ - t - t t +2*+c; 6- S y r -  * “■ i y ? + c -
7. j £ x *  +  j ± = y d x .  Arts. y  +  y x ‘ f /T *  +  3 y ~ x + C .

Integration by substitution: 8. J  e?x dx. Ans. j - e iX +  C. 9. Jcos5xdjt.

i4ns. +  10. Jsinaxtf*. Ans. —^ ^  +  C. II. ^ dx.

+  C. 12. f ^ U .  Ans. - C- ^ + C .  13. f -J sin2 3* 3 J (Ans. j  In2*

Ans

cos2 7* *

• !iT : + c ' »• J  S i '  A"‘- -yi-13— n + o . is. J — .
Ans. — In | 1 —* | +  C. 16. J  ^L^x  ' ^nSm---- 5" 1° I ®— 2* | +  C. 17. J  tan 2* d*.

ytns. — ^ In | cos 2x | +  C. 18. J  cot (5*—7) dx. Ans. In | sin(5*— 7)|+C,



Exercises on Chapter X 387

19. J  —̂  -. Ans. — ^ In | cos 3y | +  C. 20. J  cot ~  dx. Ans. 3 In | sin y  | +  C.

21. J  tan (p-sec2q> d <p. Ans. -^tan2(p +  C. 22. ^ (cot ex) ex dx.

Ans. ln |s in e * | +  C. 23. j^ tan  45—cot-|- j  dS. Ans. — ̂  In | cos 45 | —

1 5 I P sin2 x Psin-^- + C . 24. \ sin2x cos x dx. Ans. — -̂--- |-C. 25. \ cos2 x sin x dx.

""'"-YC.  26. J  V x ^ + T  x dx. Ans. i -  V  (* * + l)s+  C.Ans. — -

27. f  / dX ■ Ans. - f 2x‘ +  3 +  C. 28. f  f dx . Ans. - V V  +  1+C.
J /2 * *  +  3 2 J V *  +  \ 3

C £2i£^. _ J _  + C. 30. f ! !£ £ ^ . ^ns. — L ^  + c.J sin2 x sin x J cos2 x 0  /' r tc2 *■
C tanx . . tan2x , ~ 00 f  cotx . .

• ) T ^ T dx- Ans■ - 2 ~ + C- 32‘ i4ns-

29

31

33.

2 cos2 x 
cot2x 

2~
1 In (x +  1)

+  C.

36.

f -----------dx ■ ■ . j4ns. 2 ]/"tan x — 1 + C . 34. f 1n(* +  l; dx
J cos2x V tanx — 1 J x +  1

\ ? l * + } ) + C . 35. f  t C0SXdx ,4ns. V  2 ^ 7 + 1  + C .
2 J V̂ 2 sin a: +  1

j*_i in2x_dx_ AjU' --------- 1-------- + c  37- f
1 (l +  cos2x)2 2(l +  cos2x) J2 (1 +  cos 2x)

sin 2x dx
V 1 +  sin2 x

Ans. 2 \ + s in 2x +  C. 38. f  t a n x + .l ^  4 ^ .  2 y(\^x\ x +  1)2 +  C.
J  COS X o

39. 

Ans. 

Ans. 

Ans. 

46

f  cos 2x dx J (2 +  3 sin 2x)2 *
Ans.

12(2 +  3 sin 2x)2 
‘ ln2x dx

+C .

y/cos 
arc sin2 x

 ̂ sin 3x d̂J J /c o s4 ;

—  +  C. 41. r i n l f i f .  ln l i  +  C.42. f l r̂
os 3a: J at 3 J ^ 1 -

. f  arc tan x dx . arc tan2 x t n AA fare cos2 x ,
+ c - 43- j ^ s- — 2— +C- 44-J  V Y ^ dx-

dx
y /  cos4 3x 

x dx 
x*~

2
arc cos0 x3 *■ , n f  arc cotx „ arccot2x , -

+  C. 45. j  1 +  x2~~d*' AnS‘ -------- o---- +  C‘

Ans. ~2 In (x2 + 1) +  C.
 ̂ x dx

J ^ + T
A ,.. l l M - ' + &  +  3) +  C. 48. j 2 s ln i +  3

A n s .  ) n \ n x - Y C .  50. J  2a: (a:*+1)'

47. I
2

x +  1
x2 +  2x +  3 -dx.

49.

51

zosxdx  ]n (2 sinAt +  3) +  C.

td x .  .4 ns. =o
dx. [isn^xdx. Ans. *an0 x—tanAr+jc +  C. 52. C tt-t—*------------1-.J 3 1 ^  J (1 +a:*) arc tan x

Ans. In | arc tan a: | +  C. 53. f  cogl,  ^  ,  + ,)" Ans. i - ln (3 t a n * + l )  +  0.

13*
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54. I
tan3 * dx. Ans. tan4*
cos* *

Ans. In | arc sin* | +  C. 56. J

+  C. 55. J
dx

x2 arc sin *

s f s N r a * 1- '4“ - i ' n | 2 + 3 , ln^ |  +C .

57. ^ c o s ( l n * ) ^ .  Ans. s in (ln * )+ C . 58. ^ c o s (a  +  6*) dx.

Ans. —  sin (a -j- bx) +  C. 59. ^e2X dx. Ans. y e w +  C. 60. J  e 3 dx.

X

Ans. 3e 3 +  C. 61.  ̂ esln x cos x dx. Ans. esln* + C . 62.  ̂ax% x dx.

ax2 C — — C 1
Ans. 2 ]^ a +  C- 63. \ e a dx. Ans. ae a -j-C. 64. \ (e2*)2^*. Ans. —  e*x -j-C.

65. j -xex dx. Ans. 3xex
I n  3 + 1

+c. 66 . ^ sx dx. Ans. ~ e~>*+c.

67. J  (esx +  a5*) dx. Ans. -g- +  +   ̂ • 6 8 . ^ exi+tx+3 (x +  2) dx.

Ans. — eA;a+4Af+3+  C. 69. J  ^ a xb * dx' ^ ns' ~ — — irrr^----- 2* +  C.

70.

72.

C j X d ^ .  Ans. 1  In (3 +  4e*) +  C. 71. ? ^  dxj 3  + 4 ? ‘^ T ln^ 4g)+L j2  + e

In a — In b 
12x . Ans. y  In (2 +  e2*) +  C.

dx
Il+ 2 x * ' V ‘2

Ans. — arc tan ( 2x) +  C. 73. C dx
J '

i4ns. —Lr arc sin ( V~3x) +  C. 74. f  .. .ffe — . Ans. — arc sin —  +  C. 
V 3  J ] ^ 1 6 -9 a *  3 4

75. r *
J 9 —x

Ans. arc sin— |-C. 76■ I ——— . Ans. — arc ta n — +  C. 
4 +  x* 2 2

f '
dx

Ans. In | * +  J^V +  9 1 + C . 80.

nn ? dx A 1 4 3X t ^ no C dx A 1 . 1 2  +  3*
77’ J 9 ^ + 4  ' Ans■ 6"arc tan 2 + C - 78’ j  4 = 9 ^  • Ans‘ 12 ln | 2= 3^

dx

+ C .

F F T l '  .....................* T r  -  j  y = =  •

Ans. —  ln | &* +  V~b*x2—a2| + C . 81. f  - —  . Ans. — ln |a *  +
b j  V b2 +  a*x2 a

+  r p + w i + c . « | j - ^ | + c - » $ - £ § - •

/Ins.
6  V  5

— ln '+ K 1
' — V" 5

== + C . 84. f —J n
x ^x =z. Ans. — arcsln* 2 +  C. 

x* 2

85. f X . Ans. —  arc tan — -|-C. 86 . f - dx-  . Ans. arc sin e* -f C. 
J j ^ + a '  2a2 a2 J ^ l - e 2*



Exercises on Chapter X 389

c-7 C d x  A 1 • i / " 5  , ^ otl f  cos x d x87. I ■ - Ans. — r= . arc sin ] /  — a: 4-C. 8 8 .    ,
J  J ^ 3 - 5 * 2 V  5 ' 3  J  ua +  sin**

/4ns. — arc tan / sin^ \  ̂ 8 9  f —  *** ,4 /is. arc sin (In a:; 4 -C,
a \  a /  J  Xy  1 — In2*

rajxcosx _ x _ ^ x — — (arc cosjc)2+  1^1 — jt2 +  C.
J V l - x 2 2

* J “—\ ^ x ^ Xdx' ^ns* IT ln Y^arc tan +

90.

91

l- ^ - d x .  Ans. — J /'(1+  In x)*+C. 93
3

dxAns. - j  V ( l +  V x ) '  +  C. 94.
4

V \ + r .
d x *

V  X
=  . Ans. 4 |^1 -f* ^  x 4-C

95

97

■ h
e* dx . Ans. arc tan

1  ] f  X V \  +  V  X

e* +  C. 96. Ans. 3 J /il5T 7+ C .
J y  sin** v

f  Y 1 +  3 cos2* sin 2x dx. Ans. — -  V ' 4 -3 cos2*)3 4-C. 98. f  . i *n 4L . t 
J 9 J 1 +  cos2*

Ans. — 2 1^1 +  cos2* +  C. 99. f  —s *____  J sin 4a:
f  ? /* ta n 2 a: 3 „ _____

100 . \ —— =— dx. Ans. ? /ta n 5 * 4 -C.J cos2* 5 y  1

101. f  o” :~~J~To-----T  • Ans. *̂7 =  arc tan ^ l / " ~ t a n  * )-J-C.J 2 sin2 *4-3  cos2* K 6 \  r 3 /  ‘

sin * 3 sin3 * -bC.

Integrals of the form f  — — dx:J a*24 - 6* 4-c

102. C dx 
J *2 4" 2* - Ans.4-2* 4-5*

/4ns. - 4 =  arc tan -*__- 4-C. 104. f
11 1̂ 11 J

1 . * 4" 1- a r c  tan — d*

d*

,0S- ^  x*— 6x + 5 ~ ^  T ' n | ! ~ 4 l + C .  .0 6 ,

* 2 4- 3* 4-1
1 I*—5X In ----r4  *  — 1

+ C '03.

A „  ' , „ l 2' + 3- ^ 5
f/" 5 I 2jc-4-.3+ |/*5

J 22* -

2 * + 4  *

4-C.

2 2 4- I -
n  1 3  x  _ _  1

Ans. arctan(2z — 1)4*C. 107. \ — o— Arts. —r =  arc tari 4 - C.J 3*2— 2* 4 -2  |A 5 5

1TO- 1 ̂ l ~ ; 7, lf n • in i3*1 7jc+ 11 i+ c. W

/i™.

. 3 2 , 1 , 1  . 2 * -- 1 . ^>1 M e   1 f] ( x    v  _L_ 1 » _i--------------- n r n  t o n ---------------- 1 H

t — 2 ) d x  
- d x  +  2  *

11 ’ , 10x— 3 , _ C Ax— 1 ^=  arc tan— -C. 110. \ -------—  d*.
1̂ 31 J at*— x +  l

I 1 1 7*4-1
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112.Ans. In (3* — 1) +  ~  In (2 * + l)  + C .

Ans. ~  In (5*2—* +  2) H----- % =  arc tan —* _ *
5 5 / 3 9  Y  39

Ans. x* — -pr- —r- In | 2*2—* -f* 1 | -J /  : arc tan —-r  :—|- C.
2 * 4  1 2 |^ 7  Y  7

i 1^  ^

(* 2*— 1 
J 5*2— *4-2  

6jc4—5*s -|-4*2
*+l dx.

114. I
d*

2 cos2 * +  sin x cos * +  sin2*

Ax +  B

Ans. 2 2 tan * +  1 rarc tan--------------- [- C.Y 7 Y 7

Integrals of the form 

115. \ . A ns.

Ans

J  Y a x 2 4- bx +  C
dx:

f  dx
J / 2 —3*—4*2

*• arc sin^ 7= =  +  C. 116. J - dx
V *l  ’r " ‘ J / l + j e + * * ’

ln |j; +  4 +  V** +  x + l  | +  C. 117. J  yr2aS +  & ' ,n Is  + a +

- f  Y2aS  +  S2 | +  C. 118. (  .- dx  . Ans. —1= arc sin +  C.
J / 5 - 7 * - 3 x *  V  3 V^109

119.

120.

J dx—-------------- . Ans. '_In I 6* +  5 +  1^12* (3* +  5)
}^x (3x +  5) v  3 I

+  C.

Ans. arc sin 2* +3r dx
J y 2— 3 x — x‘ ' """ V V i

^  + C. 121. f  dx 
J V 3 x \ - x -

Ans. ' \ n ( l 0 x - l + y 2 0 ( 5 x * - x - l )  +  C. 122. [ - y = ^V 5 J V ax*
2ax +  b

Ans. 2 y a x 2+  O jc +  c  +  C. 123. f ^  Ans. y 4 x ‘+ 4 x + 3 +J / 4 * * + 4 * + 3  4

- f - - I n  | 2 ^ + 1 +  V " 4 jtr + 4 F + 3 |  +  C. 124.
I '

+  bx +  C 

r4x‘+4j 

(x— 3 )dx

1
dx.

/ 3  +  66x— 11jc*

Ans. - ~ y 3 +  66x— 1U* +  C. 125. f  - ^ M M = . A n s .  — \ - y 3  +  4x—4xt+  
U J y 3  +  4x—4x* 4

7 9 ¥_ 1
4 - — arc sin— -̂--- hC. 126. I -3* +  5 -  dx. Ans. l y 2 x ‘ —x +  —^ = Xy X( 2x - i )  2 t 4 y  2
X In (4*— 1 +  1^8 (2**—x) ) +  C.

II. Integration by parts:

127. J xex dx. Ans. ex (x— \) +  C. 128. J * In xdx.  Ans. i - * 2 x

X ^ ln* —- ^ 4 - C .  129. J  * sin* dx. Ans. sin*—*cos*4-C . 130. J in  xdx.  

Ans. x (In*— 1)4- C. 131. ^arcsin*rf*. Ans. * a r c s m * 4 - / l —*24: C.
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132. J in  (I—x)dx.  Ans. —x — (1—* ) ln ( l—jc)+C. 133. J xn In x dx.

Ans. ~ jT [  (  ln;c'“ ^ r f )  +  C* 134* J * afctanx dx. Ans. ~[(a:2 +  1)X 

Xarc tan *—*] +  C. 135. J x arc sin x dx. Ans. [(2*2— l)arcsin*-{-

+  * V 1—*2] +  C. 136. J in  (x2+ l ) d x .  Ans. * ln (* -{ - l)— 2 * +  2 arc tan jc+C.

137. J arc tan Y~x dx. Ans. (.x +  1) arc tan Y  x — Y  x +  C.

138. J arc^ j C * dx. Ans. 2|^jcarcsin Y x  + % Y  1— x +  C.139. Jarc sin j / ^  ̂ dx*

Ans. x arc sin — Y  x +  arc tan Y x  +  C. 140. J x cos2a: dx%
c + 1

>4ns. ^r +  4-^  sin 2*-{--|- cos 2*-fC . 141. arc s”| i[ dx. Ans. x — Y 1—x2 X 
4 4 o J y  I —x2

, „ C x arc t a n *  . . x , 1  .
X a r c s i n j c  +  C. 142. j  (**4 - 1)2 ' d x ' ” ns' '■ ' + ~ r  arc t a n  x •

1 arc t a n  x
4 ( 1 + * 2) r 4

}I—  +  C. 143. J x arc tan Y x 2 — 1 dx. Ans. y * 2arctan Y x 2 — 1 —
1— Y l — A — — arc sin x + C .  x

- -  Y #  — \ + C .  144. J arc?l2 i  dx. Ans. In

i. ^ \ n { x + Y l + x 2)dx. Ans. x In | x +  Y l  -\-x2| — Y l  + x 2 + C ,145.

146. f  . x dx A arc s i n *  , 1 . I 1 — x\ arc sin x — . Ans. —? =  4--?r In r——
J v \ —x* 2 U + *

Use trigonometric substitutions in the following examples:

147. J ^ a--2- — dx. Ans. — — “— arc sin ^- +  C. 148. J *2 Y *  —x2 dx*

Ans. 2arcsin4-— \r x Y^ — x2+  x* Y ^ — x2^ C .  149. f ------ ~ X
1 * 4 J x2 V 1 -\-x*

Ans. — -j. C. 150.  ̂ ---- — dx. Ans. Y  x2—a2— a arc cos — +C ,
X J  x X

151. f  dx
J V (a*+ •**)*'

Ans. i+ c-a* f a * + x ‘

Integration of rational fractions:

152. C 7— HT77” — T^dx.Ans.  In 1 -* ~  ^ 1 + C . 153. C,—n ~w .ox/  i c i «J (* — 1)(* — 2) I X — 1 J (*+ l)(*+ 3)(*+ 5)
x dx
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A 1 , (* +  3)6
AtlS' 8 n (jc+ 5 ) 5(jc +  1 )‘

154. r jc5 + jc4—8 .
• j  ~ i? = 4 r dx-

JT4 dx4- In I **(.* — 2)5
(Jt+2)* +  C. 155.

• D ( x  +  2) '

a:0 a *
Ans. *3" ~2"

A n s .  ^ — 2* +  -|rlnx

(a — 1 ) , 16 
( x +  1)

X+ In 

158.

Ans.

161.

162.

163.

164. 

A n s .

x  — 8
i + ^ i n n + 2 1 + c .  ise. 5 HM*— 2)- ^  7= l +

* -5 ? + C . 157.

I

4 x 2 -f 4a A n s . * + l a m = p + c .
x  —  2 x 2

3a +  2 4a +  3 x 2 r  P-- - - . r f l  A n s .  s-7---—rr^+ln 7--—rr̂  +  C. 1*9- \*U-f-l) 3 2(a+1)2^  (a: + 1) 2 J
5a +12 /a  +  4 \ 2

x 2 d x

: + In
x 2 -j- 6 a -j- 8

2—3a—3

\ x  +  2 J
+  C. 160 p dx

*

(a +  2)2 (a - f  4) 2 * 
a. 1X • A n s .  In r _ .

+ 1) Vx* + \
+ c .

r 2 x ‘ — 3 x  

J (x-!)(* » -
. . . (x*— 2x+5)! , 1 , x  —  1 „Ans. In '---- _ T J _  + yarc tan -2 - + C.

x *  —  6 A* -4- 4 3 A
4 i C « 1 0  dx• i4ns- In v -  :+~n arc tan — x‘ + 6x' + 8 2 2

f* d x

J *’ +

1 ^ +? hR x+ 4 - *ns ,n(IT17+ T aretanT + c - ,65- J f +T-  

7 ? ln,^ - x  { ? - |+ r+]A7arctanC T + c - ,66- I

i4/zs. 1 I n - ^ -
6  x 2—  x + l  n 3

— arc t a n - ^ =  +  C.
2  K 2  1 ^ 2

1 + 2a — 1 ~— arc tan -f C.
^ 3

4dA

2 _Ans. j  |sr* +  In (x‘ — I)J +  C. 167. J  2|V 4*. 4ns. 4 (s»+ 2) + ln <**+ 2>

4ns. , y - , 1. . , +---- arc tan
4 / T  /  2T%+c' •  J g“ !)*(*•+0* • (x - l ) ( x * + l )

+ lni7 H T + arctanJC + c - ,69- f u . - x )(x»X-
i + c .

*+ 1)*
i4ns. ln A — 1

10 . 2a — 1
■==z arc tan —r==r- 2a — 1

170.

3 / 3  V  3 3(x*—x+1)

Integration of irrational functions:

Af _ £J + 1
dx. Ans. * [ y x* - \ n ( y  *3+ l ) ]  +  C.

1,1 A” ■» ^ * ,- r 3 ,̂ ” + c m -5 V J ~ + ¥ l dx-y z + w >

A n s . 12
»fi / — 1 12/ - + 21nx—241n(^/* + l)  + C
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173.
liT T T F T rW "

- 6  y  x‘ +  6 l / x  - 9  1 n ( £ / 7  +  l)  +  T ln ( /  *’ + 1 ) +3arc tan \ / x  +  C.

174.
J V i + *  **

Ans. In V \ - X + V \ + X V l  —  X* ,

V l - x -  f  l + x X
-c.

V \  + x — J^ l— * +c.175. f  l /"  j— . 4ns. 2arc tan l /  j-j-^ +  ln  r ------
J r 1 + *  * r 1 + * ^

176. [  dx. Ans. 14 [ y ^  x —-i- Y  x + - i  Y  x8 — Y Y  *2 +•
J / X3+ I 7 ^   ̂ j  4

+ t ' ^ I + c J / H
X In ^ x — -̂ +  j / ^  *2 — — x — 2 ^ + C .

Integrals of the form J R (x, Y a x 2+bx-\-c)  dx:

2 dx. Ans. Y ^ x2— lx — ̂  +  2 y~§ *

178.
J *

179.
I *  V

180. J . ,
Ans. Y

Ans.
x —

V2x-

dx

dx

Ans.

Ans.

Y 3
— In Y x 2—x +  3 -  /~ 3  | 1

— In

* ’ 2 ^ 3
.j^2 + * -**+  /"2 i

dx
x Y x 2+ 4x —4

Ans. ~ arc sin * /-j: +  C. 181. f
2 * /  2 T  J

2 ^ 2  
j / x 2 +  2 x

182.
1

x

dx

+  C.

= + c .

dx.

V ( 2x —*’)»

: +  C. 183. J  ^ 2 x - x ‘ dx. Ans. ^ [ ( x  — 1) }r 2 x — x‘ -h

f9 dx X̂  ¥
+  arc sin (*— 1)) +  C. 184- J —— ^ = = = .  /Ins. Y  +  1  V x* — \ —

- i - l n l j f + ^ J ^ l l + C .  185. j

x + f l + x + x *  \ +  c  |g6_

2 

Ans. In

dx
(1 +x)Y 1 +  x +  x2

r (•y+ 1) .
J ( 2 j c + j c 8 ) V 2x +  xl X’

1 I . . . ,  f i -  K f + 7 + ? , .
2 -f-x + V r l + x  +  x2

.187. f  ________
J x K 1 +  *-f-*2V 2x + x :

y~x‘+4x.dx. Ans.
x +  Y  x2 +  4x

+  ln |x  +  2 +  Y x 2 -\-Ax \-\-C.
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Integration of binomial differentials:

f l / 1  +  y  x _L'2_ ,  i_  _L_L
I. — 3^ = --- dx. Am. 2 ( l + * ‘ ) j + c .  190.  ̂x * ( 2 + x * ) * d x .

<4ns. 10a;5 —jg——(2 +  a; 5) 4 + C . 191. J - dx A x . nAns. —f = + C .

0 + *V
V l + x *

m . f
jc2 (1  4 - jc2)

-Ans. -(1 + * 2) 8 ^ 2 a :+ -^ + C . 193. I  V { ^ dx,

Ans. - ( 7  Vr i _ 4 ) ( l +  f x ) '  + C . 194.

i4ns. 

/4 ns.

2(4 +  3 V x ) V ~ y  x) 1 195. P  £/(T+ *8)2d*.

s »F-, <'+->T -
Integration of trigonometric functions?

196. J  sin8 x dx. Ans. 1
T cos>8 x — cos * 4* C. 197. ^ sin5*rf*. Ans.~— cos*+

+ 4
. cos5. cos8 x ------=—0 - + C . 198. J  cos4 x sin8 x. Ans. - cos5* +  y  cos7* +  C.

199. C cos8 x .
J sin5 x dx- Ans. CSC * — “  C S C 8 X +  C. 200. J  cos2xdx.

Ans. x . 1 .
2 + 1  Sin 2x +  C. 201,. J  sin4 * dx. Ans. 3 sin 2x . sin 4x ,

8 X 4 +  32 + C -

202. J  cos9 xdx. Ans. —  ̂ 5* -f- 4 sin 2* - sin8 2x 3 . A \  ^ 3 +  4 sin 4a; J + C .

203. J  sin4 * cos4xdx. Ans. 1 ( 0 . A . sin 8* 
1281 3* Sin4jt+ 8  ̂+  C. 204. J  tan5 * dx.

/4 ns. tan2* , , . 
2 +1" 1cos x | +  C. 205. J  cot5 x dx. Ans. ~  j cot1* +  -^ cot5A: +

+  In I sin* | +  C. 206. J  cot8 x dx. Ans. cot5* i > > , , „ ------2------In | sin* | +  C.

207. Jsec 8 x dx. A tan7 x , 3 tan5 x , . , , . , Ans. — -— 1------ -̂-----(- tan8 x +  tan x +  C.
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208. J  tan4 ac sec4[x d x . Ans. tan7
7

ac • tan5 
1 5 -+ C . 209. P d x

J COS4 AC *

Ans. tan ac +  -- tan8 a c  +  C. 2,°- j
‘ COS AC ^
sin2 ac

Ans. C—esc x.

211. f  sin* ac d * . 3 i4ns. -=-
s

cos * AC +  3 cos
i

" T + c . 212. f  sin a c  sin 3a c  d x .
J j /  COS4 AC 5 J

Ans. sin4Ac sin2Ac , ^ 
8 +  4 + C - 213. J  cos 4 a c  cos 7a c  dAC. Ans. sin 1 1 ac 

22 1
sin3;c n

- 6 + o .

f  n * * j a cos 6ac cos2ac , „ C . 1 3 .214. \ cos 2* sin 4* d*. A n s .------ - —  ,+ C. 215. \ sin — x cos — xdx.

A cos a c  , 1 , ^  P dxAns. ------r + c o s - . x +  C. 216. j 4 _ -5 sifl^ Ans. ~  In
u

tan 4 - 2

2tan ~  — 1
l  X.

+C.

217

Ans.

■ i
dx

5 — 3 cos x ’ 
2

i4ns. arc tan I 2 tan y  | -f  C. 218. P si
J H

sin a: dA5
+  sin x *

l+ t a n - J
+^ + C. 219. I

cos x dx A . x _
r — --------------.4ns. ac— tan -p r  +  C.1 +  C O S  AC . 2 r

220. C—  sin 2ac ^  j4/is. arc tan (2 sin2 x — 1) +  C. 221. f  
J cos4 ac +  sin4 AC J

dx
cos4 ac +  sin4 

Ans. l t a n |  +  i t a n * | - + C .  222. j dx
sin2 ac +  tan2 ac *

T Y -2
/tan jc\  . ~

x ( 7 ? ) - ' + c -

(1 +  cos x ) *  ' 

Ans. — — ĵ cot ac - f «

dx. Ans. V^Tarctanx



C H A P T E R  JCI

THE DEFINITE INTEGRAL
\

SEC. I. STATEMENT OF THE PROBLEM. THE LOWER 
AND UPPER INTEGRAL SUMS

The definite integral is one of the basic concepts of mathemat
ical analysis and is a powerful research tool in mathematics, 
physics, mechanics, and other disciplines. Calculation of areas 
bounded by curves, of arc lengths, volumes, work, velocity, path 
length, moments of inertia, and so forth reduce to the evaluation 
of a definite integral.

Let a continuous function y = f(x) be given on the interval 
[a, b] (Figs. 206 and 207). Denote by m and M its smallest and 
largest values on this interval. Divide the interval (a, b] into n 
subintervals by points of division:

Q — X(,> xiy xt, . . . ,  j> xn—b,
so that

Xq <C. x t <C x2 <C • •. ̂  xn,
and put

x ,— x„ = Ax,‘, xt— xt =  A*,, . . . .  xn— xn_, = Ax„.
Then denote the smallest and greatest values of the function f(x)

on the interval [jc0, xt] by m, and Mt 
on the interval [jc,, jc2] by m, and Mt

on the interval *„] by tn„ and Mn
Form the sums

n

sn = m Ax +  mtAxt + . . . - ) -  mnAxn =  2  mtAxit
—  L =  1

( 1)
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s„ =  Af, A*, H- Af,Axt +  . . .  -f MnAxn =  2  M. Aa:,-. (2)
( = 1

The sum s„ is called the lower ( integral) sum, and the sum s„ 
is called the upper ( integral) sum.

If f(x )^s  O', then the lower sum is numerically equal to the area 
of an “inscribed step-like figure” ACnNlCiNt . .. C„_lN„BA bound
ed by an “inscribed” broken line, the upper sum is equal numer
ically to the area of an “circumscribed step-like figure” 
AKtCtK t . . . C „ _ , C „ S / 4  bounded by an “circumscribed” bro
ken line.

The following are some properties of upper and lower sums.
a) Since mt Af,- for any t(t =  1, 2..........  n), by formulas (1)

and (2) we have
£n ^  s n ■

(The equal sign occurs only when / (*) =  const.) 
b) Since

m, S3m, m, Ssm, . . . .  m„3s/n, 
where m is the smallest value of / (x) on [a, b], we have 
£„ =  /«, A * , . . .  -f mnAxn^  mAxt 4-mAjc, 4- . . .  i  mAxn —

=  m (Ax, -f Axt 4 - . . .  4- Axn) = m(b —a).
Thus,

c) Since s ^ ^ m (b  — a).
M, Af, Af, < A f, . . . ,  Af„ssAf, 

where Af is the greatest value of f(x) on [a, b], we have
s„ — M,Ax, 4- Af,A*,4- . . .  -f Af„A*„ <  Af Ajc, 4- MAx2+ ■..

. . .  4- MAxn — M (A*, 4- Axt -(-... +  Axn) = M (b — a).
Thus,

Tn sS,’M (b—an).
Combining the inequalities 

obtained,' we have
m (b—a) ^ s i < s „ < A f  (b—a).

If /(xJSsO, then the latter in
equality has a simple geometric 
meaning (Fig. 208), because the 
products m (b—a) and Af (b—a) 
are, respectively, numerically 
eq ual to the areasof the “inscribed” 
rectangle A LtL2B and the “cir
cumscribed” rectangle AL2LtB. Fig. 208.
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SEC. 2. THE DEFINITE INTEGRAL

Let us continue examining the question of the preceding sec
tion. In each of the intervals [x0, x,], [x„ xs].......... [x„_,, xn]
take a point and denote them by g,, g2, . . . ,  g„ (Fig. 209):

X Q <C g, <C  X , , X , <  g2 <C X iy . . • ,  X n — ] Xrt.

At each of these points find the value of the function /(£,), 
f ( l 2), . . . ,  /(!„). Form a sum:

s„ =  / (U  Ax, +  / (g2) Axs +  . . .  +  /(£„) Ax„ =  2 /  ( | (.) Ax,-. (1)
i  = . i

This sum is called the integral sum of the function f(x) on the 
interval [a, b]. Since for an arbitrary g,- belonging to the -interval
[*<-,• *<] we wil* have

and all Ax,. >0 , it follows that
m, Ax,. (%) Ax,- <  Mi Ax,-,

and consequently

or
(2)

The geometric meaning of the latter inequality for / ( x ) > 0 con
sists in the fact that the figure whose area is equal to s„ is

bounded by a broken line 
lying between the “inscribed* 
broken line and the “circum
scribed" broken line.

The sum s„ depends upon 
the way in which the interval 
[a, b] is divided into the sub
intervals x,] and also
upon the choice of points g, 
inside the resulting subinter
vals.

Let us now denote by max [x,_,, x,] the largest of the lengths 
of subintervals [x0, x,], [x,, x,], . . . ,  [x„_,, x„]. Let us consider 
different partitions of the interval [a, b] into subintervals 
[x,._„ x,] such that max [x,-_ , x,J —*-0. Obviously, the number 
of subintervals n approaches infinity here. Choosing the appro-
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priate values of it is possible, for each 
integral sum

partition, to form the

We can thus speak of a sequence of partitions and a correspond
ing sequence of integral sums. Let this sum #) approach the 
limit I for some chosen sequence of partitions when max 
Ax{ —>-0.

If for any partitions of the interval [a, b] such that max
n

Axi —► () and for any choice of points ^  the sum ^ f ( l i)Axl
approaches the same limit /, we say that the function f (x) is 
integrable on the interval [<a, &]; the limit /  is called the defi
nite integral of' the function f (x) on the interval [a, b]. It is

b

denoted by j* f(x)dx  and we write
a

b

lim 2  f  (£.•) ̂ xi =  (*/(•*) dx.
m a x  A X[ -> -o  T= \  U

The number a is called the lower limit of the integral, b is the 
upper limit. The interval [a, b] is called the interval of inte
gration, the letter x is the variable of integration.

Let it be stated without proof that if a function y = f(x) 
is continuous on the interval [a, b], then it is integrable on this 
interval.

It is obvious that if for some sequence of partitions such that 
maxAJC;—>-0 we consider the sequence of lower integral sums sn
and of upper integral sums sn for a continuous function f(x), 
then these sums will' tend towards the same limit I —the defi
nite integral of the function f(x):

n b
lim V mi Ax( =  \ f(x) dx,

m a x  A * ;-►  o f i r i  J1 a
n b

lim 2  MiAx;=  \ f(x)dx.
A x i  -*» o < =  imax Axi

Among discontinuous functions there are both integrable func
tions and nonintegrable ones.

*) In this case the sum is an ordered variable quantity.
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If we construct the graph of the integrand y = }(x), then in 
the case of /(x)SsO the integral

will be numerically equal to the area of a so-called curvilinear 
trapezoid bounded by the given curve, the straight lines x = a and 
x = b, and the x-axis (Fig. 210).

For this reason, if it is required to compute the area of a cur
vilinear trapezoid bounded by the curve y = f(x), the straight

and not on the variable of integration, which may be denoted by 
any letter. Thus, without changing the magnitude of a definite 
integral it is possible to replace the latter x by any other letter:

When introducing the concept of the definite integral \f(x )d x

we assumed that a < b .  In the case where b <, a we will, by 
definition, have

b

a

lines x = a and x= b , and the x-axis, this 
area Q is computed by means of the inte
gral

b

a

' * ° x  Note I. It will be noted that the definite
Fig. 210. integral depends only on the form of the

function f(x) and the limits of integration,

b b b

a a a

b

a

b a

a b
Thus, for instance,

0 6

Finally, in the case of a = b we assume, by definition, that for
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any function f(x) we have
a

§f (x)dx = 0. (5)
a

This is natural also from the geometric standpoint. Indeed, 
the base of a curvilinear trapezoid has a length equal to zero; 
consequently, its area is zero too.

b

Example I. Compute the integral  ̂kx dx (b >a).
a

Solution. Geometrically, the problem is equiva
lent to computing the area Q of a trapezoid 
bounded by the lines y — kx, x =  a, x =  b, y = 0  
(Fig. 211).

The function y — kx under the integral sign is 
continuous. Therefore, in order to compute the 
definite integral we have the right, as was stated 
above, to divide the interval [a, b] in any way 
and choose arbitrary intermediate points £*. The 
result of computing a definite integral is independ
ent of the way in which the integral sum is formed, provided that the 
subinterval approaches zero.

Divide the interval [a, b] into n equal subintervals.
The length Ax of each subinterval is Ax = ----- this number is the

subinterval (partition unit). The division points have coordinates:
a =  x 0, xx =  a +  A*, 

jfj =  a-f-2a*. . . .» xn =  a +  nA.x.

For the points take the left end points of each subinterva!:

| , = a ,  l 2 =  a +  Ax, g3 =  a +  2Ax, . . . ,  £„ =  a +  (n— 1) A*.

Form the integral sum (1). Since f(£,) =  £̂i> we have
sn =  kh&x +  ££2A* +  . . .  +  kln&x =

=  ka Ax -j- [& (a 4" Ax)] Ax -]-••• -f" [fl 4“ — 1) Ax]} Ax =
=  k {a +  (a-f-A x)-f-(a+ 2 a x )+  . . .  +  [a-f-(n — 1) Ax]} Ax =

=  k {mz +  [Ax +  2 A x + . . .  +(rt— l) Ax]} Ax =
=  k {mz-f-[l + 2  +  . . .  + (n  — 1)] Ax} Ax,

where Ax =  — . Taking into account that n

'  1 + 2 + .. .+ ( ._ ! ,

(as the sum of an arithmetic progression),

f n(rt — I) b -  a l  b — a I , n— 1 b — a]  ,
sn =  k [na +  - 4 --------— J —  =  * |_u +  — ------g - J t i - f l ) .
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n_i
Since lim ------=  1, we have

n  ->  oo n

Thus,

lim sn =
oo

:„ =  Q =  ft  ̂a +  -̂— (6 — a) =  A 

b
J  kx dx =

b2-

b2— a2

The area of ABba  (Fig. 211) is readily computed by the methods of ele
mentary geometry. The result will be the same.

b
[ ^ ymX2 Example 2. Evaluate  ̂x2 dx.

0
Solution. The given integral Is equal to the area Q of a 

curvilinear trapezoid bounded by a parabola y =  x2, the 
ordinate x = b ,  and the straight line y =  0 (Fig. 212).

Divide the interval [a, b] into n equal parts by the 
points

*o =  0, *, =  A*, *2=  2a*, . . . ,  xn =  b — nAx, A* =  — •n

For the £/ points take the right extremities of each subin
terval.

Form the integral sum

XfXz h V +  A x +  A* =  [(A*)8A*+
Fig. 212. +  (2Aat)s A* +  • • • +  (nAx)* Ax] =  (A*)’ [ 1* +  2* + . . .  +  «*].

As we know,
i»+2» + y + . . .+ ^ = n(n+1)fi(2n+1)o

therefore

b
r . b*

lim sn= Q = \ x 2d x = - «-• n-> oo  ̂ °

Example 3. Evaluate  ̂ m dx (m =  const). 
a

Solution.
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n
Here, 2  Axi is the sum of the lengths of the subintervals into which

1=1
the interval [a, b] was divided. No matter what the method of partition, 
the sum is equal to the length of the segment b — a. 

b
Example 4. Evaluate J exdx.

a
Solution. Again divide the interval [a, b] into n equal parts!

b — ax0 =  at xx =  a-\- A*. . . xn =  a-{-nAx; Ax =  — — .

Take the left extremities as the points £/. Then form the sum 

sn= e aAx +  ea+AxAx +  . . .  +  ea+< " - A* =  

=  e° (1 +eA* + *,Ajt + . . .+ e (',- ,,A*)A*.
The expression in the brackets is a geometric progression with common 

ratio eAx and first term 1; therefore

enAx- \
eAx- l

Ax =  ea (enAx— \) Ax 
eAx — 1 ’

Then we have
f .. Ax .

nA x=  b —a\ lim —rz— r  =  1*
AJe->o e* — 1

(By L'-HospitaVs rule lim 2 == lim -L  =  l.) Thus,
o e —  1 z -> o r

lim sn =  Q = e a (eb~a — 1)*1 = e b—eat
n —► co

that is,
b
J ex dx =  eb—ea. 
a

Note 2. The foregoing examples show that the direct evalua« 
tion of definite integrals as the limits of integral sums involves 
great difficulties. Even when the integrands are very simple (kx, 
x‘, ex), this method involves cumbersome computations. The find
ing of definite integrals of more complicated functions leads to 
still greater difficulties. The natural problem that arises is to 
find some practically convenient way of evaluating definite inte
grals. This method, which was discovered by Newton and Leibniz, 
utilises the profound relationship that exists between integration 
and differentiation. The following sections of this chapter are 
devoted to the exposition and substantiation of this method.
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SEC. 3. BASIC PROPERTIES OF THE DEFINITE INTEGRAL

Property 1. The constant factor may be taken outside the 
sign of the definite integral: if A = const, then

b b

J Af (x) dx = A ̂  f(x)dx.  (1)
a a

Proof.
b

[ Af (x)dx = lim 2 A f ( h )  Ax,=
q maxA-t-+o / = 1

b

— A lim 2  / (li) Ax,- ~  A (*)dx.
m a x  A *  o i = i  a

Property 2. The definite integral of an algebraic sum of several 
functions is equal to the algebraic sum of the integrals of the sum- 
mands. Thus, in the case of two terms

b b b

$ [/, (*) +  f t (X)] dx *= $ /, (x) dx +• 5 f, {x) dx. (2)
a a a

Proof.
b

S I/. (*> + L (*)] dx =  lim 2  I/. (E/) +  ft (E/)] Axi =
u maxAx-*-o i = i

=  lim l i ] / ,  (s,) Ax,+ 2/,(& ,) Ax,l =
maxAx-*-o i - 1 /=i

=  Urn 2 M W  Ax, +  lim 2 / t (£,-) Ax,-=
max Ax-►o i = \ max Ax-^o i —\
b b

=  $ /, (X)  dx +  $ /, (x) dx.
a a

The proof is similar for any number of terms.
Properties 1 and 2, though proved only for the case a ■< b, hold 

also for a^s b.
However, the following property holds only for a <  b:
Property 3. If on the interval [a, b] (a <  b), the functions f (x) 

and (p (x) satisfy the condition f (x) *£ <p (x), then
b b

J f (x) dx J 9 (x) dx.
a a

(3)
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Proof. Let us consider the difference ;
b b b

5 tp (x) dx—  ̂/ (x) dx =  J [<p (x)—/ (jc)1 dx =
a a a

=  lim i ;  (cp ( y -/(£,■)) A*f.
max A*-*o t = 1

Here, each difference cp(|,)—/(£,);>  0, H x ^ O .  Thus, each term 
of the sum is nonnegative, the entire sum is nonnegative, and its 
limit is nonnegative; that is,

b

$ W(x)— f(x)] d x ^ O

or
b b

 ̂<p (x) dx—  ̂f  (*) dx s* 0,
a a

whence follows inequality (3).
If / ( * ) >  0 and <p(jt)>0, then this property is nicely illustrated 

geometrically (Fig. 213). Since <p(x)Ss/(jt), the area of the curvi
linear trapezoid aA^Bj) does not exceed the area of the curvilinear 
trapezoid aAtBtb.

Property 4. If m and M are the smallest and greatest values 
of the function f(x) on the interval [a, b] and a ^ b ,  then

b

m( b — f (x) M(b — a). (4)
a

Proof. It is given that
m ^ f  ( x ) ^ M .

On the basis of property (3) we have
b b b

 ̂r n d x ^ ^ f  (x)dx<t ĵ M dx. (4')
a a a

But
b b
^m d x  — m(b—a), J M d x = M ( b  — a)
a a

(see Example 3, Sec. 2, Ch. XI). Putting these expressions into 
inequality (4'), we get inequality (4).

Fig. 213.
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If f(x)^* 0, this property is clearly 
illustrated geometrically (Fig. 214). The 
area of the curvilinear trapezoid aABb 
lies between the areas of the rectangles 
aAxBxb and aA2B2b.

Property 5. (Mean-value theorem). 
If a function f(x) is continuous on the 
interval [a, 6], then there is a point g 
on this interval such that the following 
equality holds:

b

\ f ( x)dx  = (b-a) f ( t ) .  (5)
a

Proof. For definiteness let a < b .  If m 
the smallest and greatest values of f(x) 

on [a, b], then by virtue of (4)
b

m ^  —  ^ f ( x ) d x ^ M .
a

Whence
b

^f (x)dx = \i, where m C  p. ^  M.
a

Since f(x) is continuous, it takes on all intermediate values 
between m and M. Therefore, for some value b) we will
have p =  /(£), or

b

\ f ( x)dx  = f ( t ) ( b—a).
a

Property 6, For any three numbers a, bt c the equality
b c b

\ f ( x ) dx  = l f ( x ) d x + \ Ux ) d x ,  (6)
a 6 c

is true, provided all these three integrals exist.
Proof. First suppose that a < c < 6 ,  and form the integral sum 

of the function f(x) on the interval [a, b].
Since the limit of the integral sum is independent of the way 

in which the interval [a, b] is divided into subintervals, we shall 
divide [a, b] into subintervals such that the point e is the division

b
point. Then we partition the sum which corresponds to the

and M are, respectively,
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interval [a, b], into two sums: 2> which corresponds to [a, c], and
a

b
2 ,  which corresponds to [c, b]. Then

C

2  f (£,) A*,= 2  / (I,) a jc(+ 2  / (W A*,.
a a c

Now, passing to the limit as max A*,-—>-0, we get relation (6). 
If a < 6 < c ,  then on the basis of what has been proved we can 

write
c b c b c c

 ̂f ( x)dx=^ f ( x ) dx+^  I (x) dx or ^ f ( x ) d x = <\j f {x) dx—  ̂/ (x) dx;
a a b a a b

but by formula (4), Sec. 2, we have
c b

^ f{x)dx = — ^ f (x)dx.
b c

Therefore,
b c b

^ f ( x ) d x = ^ f ( x ) d x + <\ f  (x) dx.
a a c

This property is similarly proved for 
any other arrangement of points a, b, 
and c.

Fig. 215 illustrates, geometrically,
Property 6 fpr the case when f ( x ) >0  
and a < c < 6 :  the area of the trapezoid aABb is equal to the 
sum of the areas of the trapezoids aACc and cCBb.

SEC. 4. EVALUATING A DEFINITE INTEGRAL. 
NEWT0N-LEIBN1Z FORMULA

In a definite integral
b

\ f ( x)dx
a

let the lower limit a be fixed, and let the upper limit b vary. 
Then the value of the integral will vary as well! that is, the 
integral is a function of the upper limit.

So as to retain customary notations, we shall denote the upper 
limit by x, and to avoid confusion we shall denote the variable



408 The Definite Integral

of integration by t. (This change in notation does not change the
X

value of the integral.) We get the integral ^ f ( t )dt . For constants
a

this integral will be a function of the upper limit x. We denote 
this function by ®(jc):

X

<t>(X) = l n t ) d t .  CD
a

If /(/) is a nonnegative function, the quantity <D(a:) is numeri
cally equal to the area of the curvilinear trapezoid aAXx  (Fig. 216). 
It is obvious that this area varies with x.

Let us find the derivative of ®(jc) with respect to x, or the 
derivative of the definite integral (1) with respect to the upper

limit.
Theorem 1. If f(x) is a continuous

X

function and CD (x) =  $ f  (t) dt, then we
a

have the equality
a>'(*)=/(*).

In other words, the derivative of a 
definite integral with respect to the 
upper limit is equal to the integrand, 

in which the value of the upper limit replaces the variable of 
integration (provided that the integrand is continuous).

Proof. Let us give the argument x a positive or negative incre
ment Ajc; then (taking into account Property 6 of a definite integral) 
we get

x + A* x x + Ax

® (*+A*) =  J f{t)dt = l f ( t ) d t +  $ f (t )dt .
a a x

The increment of the function (D(at) is equal to
x x+A* x

A<D =  <D(* +  A*)—0>(J<) = l f ( t ) d t +  5 f (t )dt  — \ f ( t )dt ;
a x u

x + A*

A<D= J f(t)dt .
X

that is,
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Apply to the latter integral the mean-value theorem (Property 5 
of a definite integral):

AO =  f  (£) (x -f Ax—x) =  f  (£) Ax,
where £ lies between x and a:-HA*.

Find the ratio of the increment of the function to the increment 
of the argument:

AO* _ f (̂ ) AX_f /£ \
" A * -  A x  ~

Hence,
<D'(*)= lim lim f(%).

A * -» -0  A x -+ o

But since £—-x as Ax—► (), we have
lim /(£ )=  lim /(£),

and due to the continuity of the function /(x),
lim /(£) =  /(x).

Thus, O' (x) = f(x), and the theorem is proved.
The geometric illustration of this theorem (Fig. 216) is simple; 

the increment AO =  /(£)Ax is equal to the area of a curvilinear 
trapezoid with base Ax, and the derivative O' (x) =  f  (x) is equal 
to the length of the interval xX.

Note. One consequence of the theorem that has been proved is 
that every continuous function has an antiderivative. Indeed, if 
the function f (() is continuous on the interval [a, x], then as was 
pointed out in Sec. 2, Ch. XI, in this case the definite integral
a

$ f(t)dt  exists, which is to say that the following function exists:
a

x

a> (*) =  $/(/) dt.
a

But from what has already been proved, it is the antiderivative 
of f(x). .

Theorem 2 If F (x) is some antiderivative of the continuous 
function f  (x), then the formula

b
J f (x)dx = F(b)— F (a)

holds.

(2)
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This formula is known as the Newton-Leibniz formula. *)
Proof. Let F (x) be some antiderivative of the function f(x). By

X

Theorem 1, the function J f (t )dt  is also an antiderivative of f(x).
a

But any two antiderivatives of a given function differ by the con
stant C*. And so we can write

X

l f ( t )dt  = F(x) + C*. (3)
a

Within an appropriate choice of C* this equality holds for all 
values of x , that is, it is an identity. To determine the constant C* 
put x = a in the identity; then

a

§ f (t) dt = F (a) +  C*,
a

or
0 = F(a) + C*,

whence
C*-.---- F (a).

Hence,
X

\ f ( t )  dt = F(x)—F(a).
a

Putting x — b, we obtain the Newton-Leibniz formula:
b

f / ( 0  dt = F(b)—F (a),
a

or, replacing the notation of the variable of integration by x,
b

$ f {x)dx = F(b)— F(a).
a

It will be noted that the difference F (b)—F (a) is independent 
of the choice of antiderivative F, since all antiderivatives differ by 
a constant quantity, which disappears upon subtraction anyway.

*) It is necessary to point out that the name of formula (2) is not exact, 
since neither Newton nor Leibniz had any such formula. The important thing, 
however, is that namely Leibniz and Newton were the first to establish a re
lationship between integration and differentiation, thus making possible the 
rule for evaluating definite, integrals.
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If we introduce the notation *)
F( b) -F(a)  = F(x) \ba,

then formula (2) may be rewritten as follows:
b

J f (x)dx = F (*) |a =--= F (b)—F (a).
a

The Newton-Leibniz formula yields a practical and convenient 
method for computing definite integrals in cases where the antide
rivative of the integrand is known. Only when this formula was 
discovered did the definite integral acquire its present significance 
in mathematics. Although the ancients (Archimedes) were familiar 
with a process similar to the computation of a definite integral as 
the limit of an integral sum, the applications of this method were 
confined to the very simple cases when the limit of the sum could 
be computed directly. The Newton-Leibniz formula greatly expanded 
the field of application of the definite integral, because mathemat cs 
obtained a general method for solving various problems of a par
ticular type and so could considerably extend the range of appli
cations of the definite integral to technology, mechanics, astronomy, 
and so on.

Example 1.
b

a

Example 2.
b

a

Example 3.
b

a

*) The expression is called the sign of double substitution. In the lite
rature we find two notations:

or
F(b)—F( a) =F( x)  |£.

We shall use both notations.
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Example 4.

Example 5.

Example 6.

b
<\) ex dx =  ex |J = e ° - e a- 
a

2JI

J sin x d x =  — cos x\20n =  — (cos 2jt — cos 0) =  0.
o

i

0

SEC. 5. CHANGING THE VARIABLE IN THE DEFINITE 
INTEGRAL

Theorem. Let there be an integral
b
\ f {x)dx,
a

where the function f(x) is continuous on the interval [a, b\. 
Introduce a new variable t using the formula

x = q> (t).
I f
1) <p(a) =  a, <p(P) =  6,
2) (f(t) and <p'(f) are continuous on [a, 0],
3) f [<p (/)] is defined and is continuous on [a, P], then

b P
$/(j0djc =  $/[<p(O]<p' V)dt.  (1)
a a

Proof. If F (x) is an antiderivative of the function f(x), we can 
write the following equations:

\ f ( x)dx  = F(x)+C,  (2)

^ f W  (01 (0 dt = F[(f> (/)]•+ C. (3)

The truth of the latter equation is checked by differentiation of 
both sides with respect to t. [It likewise follows from formula (2), 
Sec. 4,_Ch. X.] From (2) we have

b
$ f (x) dx = F {x) |* = F  (b)—F (a).
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From (3) we have

J f 1<P (0] <P' (0 dt =F[ i p (/)] \l =

[ < P ( P ) 1  — ( o ) l  = >

= F(b) - F( a) .
The right sides of the latter expressions 
are equal, and so the left sides are equal 
as well, thus proving the theorem.

Note. It will be noted that when com
puting the definite integral from formula (1) 217-
we do not return to the old variable. If we
compute the second of the definite integrals of (1), we get a cer
tain number; the first integral is also equal to this number.

Example. Compute the integral
r
 ̂ V r ‘—x! dx.

0
Solution. Change the variable:

x =  rs lnt ,  dx =  r c o s t d t .
Determine the new limits:

x — 0 for f =  0,

x =  r for t =  ~2 '

Consequently,
n n

r 2 2

J Y r %—x2d x =   ̂ } f  r2— r* sin21 r cos t dt = r 2  ̂ 1 — sin2 / cos t dt =

= r ’ j  cos* +  i  cos 21)  dt = r*  [ ±  +  S- ^ ]  ’ = ^ .

Geometrically, the computed integral is the area of - - of the circle bounded 
by the circle x*-\-yz =  r2 (Fig. 217).

SEC. 6. INTEGRATION BY PARTS

Let u and v be differentiable functions of x. Then
(uv)' = u'v +  uu'.
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Integrating both sides of the identity from a to b, we have
b b b
 ̂(uv)' dx = J u'v dx -f J uv' dx. (1)

a a

b
Since J (uv)' dx = uv.+C, we have J (uv)' dx = uv |*; for this reason,

a
the equation can be written in the form

b b

uv |a =  J v du+  J u^v*
a a

or, finally,
b b
 ̂u dv =  uv |a — J v du.

a a

£t
2

Example. Evaluate the integral l n= ^ s m n xdx.
0

JL *L IL
2 2 2

In =  J sinn x dx =  J sin" x sin x dx =  — J sin" ”* x d cos x =
0 0 0

n
T  T

=  — sin"”1 x cos * J ̂  + ( n — 1) J sln"“ 2x cos x cos xdx =
0

ji
2

=  (/t — 1) J sin"” 2* cos2xdx =  
o
£l_
2

=  (/t — 1)  ̂ sin"” 2* (1 — sin2*) dx =

=  {n — 1) J sin"“2*d*—(n— 1)  ̂ sin" x dx.
0 o

In the notation chosen we can write the latter equation as

In — (n 1) 1 n- 2 (rt f )  n̂*
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whence we find

lu = ~ - ! n - V (2}
Using the same technique we find

and so
r n— 1 n —3
n~~~rT n=2 n-*m

Continuing in the same way, we arrive at 70 or / ,  depending on whether 
the number n is even or odd.

Let us consider two cases:
1) n is even, m =  2m:

2m — 1 2m—3 3 1
ilm~ 2m *2m —2

2) n is odd,

but since

n =  2m + 1:
2m 2m— 2 4 2

W i - 2m +  l ’ 2m— 1 ’ * * 5" ' “3

n ji_
2 2

sin0 x dx =  ̂  dx =  ~ ,
0 0

we have

sin*OT x dx 2m —1 
2m

2m—3
2m—2 6

3_ 1 jr
4 * 2 * 2 *

hm+i
2

- f
sin2OT+I xdx  — 2m 

2m +  l
2m—2 6
2m—1 ‘ * *T

4 2 
5 * 3 ’

From these formulas there follows the Wallis formula, which expresses the
number ~  in the form of an infinite product.

Indeed, from the latter two equations we find, by means of termwise dl* 
vision,

«  /  2-4.6 . . .  2m y  1 / , .
2 V3-5 . . .  ( 2 m - l ) J  2m +  l (3)
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We shall now prove that

lim =  1.
m -* 12m + \

For all x of the interval ĵ O, — the inequalities 

sin2'7*"1 x >  sin2'71 x >  sin2W+1 x
hold.

jtIntegrating from 0 to , we get

^2m- 1 ^  Iim ^  ^2/n +  i»
whence

2̂m — \ iI f ^  A*'2W + 1 /2m + i
From (2) it follows that

U m - \ __ 2m + 1  

W i  2m
Hence,

lim £ •= «  =  lim
m -► oo / 2ot + i m -+ cc 2m

(4)

From inequality (4) we have

lim —V”. = 1 .
«-♦» 2m +1

Passing to the limit in formula (3), we get Wallis* formula (Wallis’ product) for

— — lim 17 2-4*6 . . .  2m \ 2 1 1
2 “ m-> ob L\3-5 . . .  (2m— 1)y 2m + 1 J

This formula may be written in the form

* lim ( 1 . 1 . 1 . 1 . 1  . . . 2 " L z E . _ 2 « ______2m _ \
2 \  1 3 3 5 5 2m — 1 2m— 1 2m + 1  /

SEC. 7. IMPROPER INTEGRALS

1. Integrals with infinite limits. Let the function f(x) be defined
and continuous for all values of x such that a^ jcC -f-o o . 
Consider the integral

b

I (b)= 5 f(x)dx.
a

This integral is meaningful for any b > a . The integral varies with 
b and is a continuous function of b (see Sec. 4, Ch. XI). Let us 
consider the behaviour of this integral when b —»--(-oo (Fig. 218).
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Definition. If there exists a finite limit
b

lim [ f (x) dx,
+ OD i

then this limit is called the improper integral of the function f(x ) 
in the interval [a, +  oo] and is denoted by the symbol

+ 00
$ f(x)dx.

Thus, by definition, we have
+  oo b

J f{x)dx = lim \ f (x)dx.
a b  ->  +  oo a

+ 00
In this case it is said that the improper integral J f (x)dx exists

a
b

or converges. If J f (x)dx  as b —+-f-oo does not have a finite limit,
a+ oo

one says that § f (x)dx does not exist
a

or diverges.
It is easy to see the geometric 

meaning of an improper integral 
for the case when f (x) 0: if the

b

integral (x) dx expresses the area Fig. 218.
a

of a region bounded by the curve </ =  / (x), the ,v-axis and 
the ordinates x =  a, x ~ b ,  it is natural to consider that the im-+ oo
proper integral $ f (x)dx expresses the area of an unbounded (in-

a
finite) region lying between the lines y==((x), x = a, and the axis 
of abscissas.

We similarly define the Improper integrals of other infinite in
tervals: a a

$ f  (x)dx =  lim f f (x)dx,
— oo ' G — co u

+  00 c  + 0 0

S / (x) dx =  5 f ( x)dx+  J / (JC) dx.
— CO — 00 C

1 4 - 3 3 8 8
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The latter equation should be understood as follows: if each of 
the improper integrals on the right exists, then, by definition, 
the integral on the left also exists (converges).

+ OO
r  d x

Example 1 . Evaluate the integral j  y y ^  (see Figs. 219 and 220). 
* o

Solution. By the definition of an improper integral we find
+ oo b

o
lim \

b -*• + oo J

d x
i+*» lim arc tan x

b +oo

b

o 11m arc tan
b +  oo I

This integral expresses the area of an infinite curvilinear trapezoid cross- 
hatched in Fig. 220.

Example 2 . Find out at which values of a (Fig. 221) the integral
+  00

i .
converges and at which it diverges.

Solution. Since (when a ^  1)
b

C d x  l 
J 1 - a  x

J  X & -► + oo 1 — CL

we have 
+ 00

d x _____ 1 _
x 9 a — 1 » and the

Fig .  221. integral converges;
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+ 00 
f  dx

if a <  1, then \ -^- =  00, and the integral diverges.
1

+ 00
J

dx 1 + 00
—  =  ln;c = 00, the integral diverges.

1 + 00
Example 3. Evaluate

— 00
Solution.

C dx
J l +- «a '

+  00 0 + 0 0
dx 

1 + x ‘ '

JIThe second integral is equal to y  (see Example 1). Compute the first integral:

Therefore,

0
= lim I — — -  =  lim arc tan x

a - > - o o J  1 a - +  - 0 0
a

lim (arc tan 0 — arc tan a) = -^  .

+ 00
(* dx _  j i  , j i _ _ _ _
J 1+** ~ ~ 2 + ~ 2 ~ a'

0
a

In many cases it is sufficient to determine whether the given 
integral converges or diverges, and to estimate its value. The fol
lowing theorems, which we give without proof, may be useful in 
this respect. We shall illustrate their application in a few cases. 

Theorem 1. If for all x ( x ^ a )  the inequality
0 < /(* )  <q>(A:)

+ 00 +  CO

is fulfilled and if ^y ( x ) dx  converges, then J f (x)dx also
a a

converges, and
+  00 + 0 0

 ̂ f (x)dx ^  J (p (x)dx.
a a

Example 4. Investigate the integral
+ 00

1
dx.

ir+ ^y
for convergence. 

14*
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Solution, It will be noted that when 1 <  a: .

And

Consequently,

+ 00

1

+ 00
=  1.

+ oo
dx

**(!+«*)
converges, and its value is less than I.

Theorem 2. If for all x { x ^ a )  the inequality 0 (x)
+ 00 +00

is fulfilled, and J 9 (x) dx diverges, then the integral  ̂ / (j<\dx
a a

also diverges7"
Example 5. Find out whether the following integral converges:

We notice that

But

+ 0D
r *+ i

J  j /T *  'i

*±1 _*_____1_
V  X* v x l V x '

„ + 0 0

J - ^ L  =  Urn 2 x
y  X b  -► +  oo

=  + 00.

Consequently, the given integral also converges.

In the last two theorems we considered improper integrals of 
nonnegative functions. For the case of a function f(x) which changes 
its sign in an infinite interval we have the following theorem.

+ oo
Theorem 3. If the integral  ̂ \ f(x)\dx converges, then the in-

a
+ 00

tegral J f (x) dx also converges.
a

In this case, the latter integral is called an absolutely conver
gent integral.
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Example 6 . Investigate the convergence of the integral
+ 00

sin x . —z-dx.Y*

Solution. Here, the integrand is an alternating function. We note that

I sin x
| V But r dx_ i |+°°_i

J x5 ~~2

+ CO
Therefore, the integral 

given integral also converges.

dx converges. Whence it follows that the

2. The integral of a discontinuous function. Let the function 
f(x) be defined and continuous when as^x< .c , and for x — c let 
the function be either not defined or let it be discontinuous. In

C

this case, one cannot speak of the integral § f (x)dx as of the li-
a

mit of integral sums, because f(x) is not continuous on the inter
val [a, c], and for this reason the limit may not exist.

C

The integral §f(x)dx  of the function f(x) discontinuous at the
a .

point c is defined as follows:
c b

 ̂f (x) dx =  lim \ f  (x) dx.

If the limit on the right exists, the integral is called an impro
per convergent integral, otherwise it is divergent.

If the function f (x) is discontinuous at the left .extremity ot the 
interval [a, c] (that is, for x — a), then by definition

C C

J f (x) dx =  lira J f (x) dx.
a b -+ a  + <tg

If the function f(x) is discontinuous at some point x — x0 inside 
the interval [a, c], we put

0 x9 c

5 f (*) dx = ]f (x)  dx + [ f  (x) dx,
a u x0

if both improper integrals on the right side of the equation exist.
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Example 7. Evaluate

Solution.

i

i b
lim [  

b i -  o J  o
lim 2 y  1 —x |* =  
-> 1 -  0

— lim 2 [ V l  — b — 1] =  2 . 
6 -*• i -  o

Example 8 . Evaluate, the integral

Solution. Since inside the interval of integration there exists a point * =  0 
where the integrand is discontinuous, the integral must be represented as the 
sum of two terms:

i

Calculate each limit separately:

j-i

i
lim-> + o

e a

e.

- 1
lim

Bl -
00.

Thus, the integral diverges on the interval [— 1, 0]:

lim 
e , +  o

lim ( 1 — M  =  oo. 
e 2 —*» +  o \  e 2 /

And this means that the integral also diverges on the interval [0, 1],
Hence, the given integral diverges on the entire interval [— 1, 1].
It should be noted that if we had begun to evaluate the given integral 

without paying attention to the discontinuity of the integrand at the point 
,, * =  0 , the result would have been wrong.

u!J Indeed,

which is impossible (Fig. 222).

Note. If the function f(x), defined 
on the interval [a, b]{ has, within this 
interval, a finite number of points of 
discontinuity al9 a„ . . . , an, then the 
integral of the function f (x) on the
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interval [a, b] is defined as follows:
b ax at b

<\) f ( x ) d x = <\ f ( x ) dx- \ - <\) f(x)dx + . . .  + <ji f (x) dx,
a a at an

if each of the improper integrals on the right side of the equation 
converges. But if even one of these integrals diverges, then
b

J f (x)dx is called divergent as well.
a

For determining the convergence of improper integrals of dis
continuous functions and for estimating their values, one can 
frequently make use of theorems similar to those used to estimate 
integrals with infinite limits.

Theorem 1'; If on the interval [a, c] the functions f(x) and cp(x) 
are discontinuous at the point c, and at all points of this interval

' c

the inequalities cp (x) ^  f (x) ^  0 are fulfilled and J cp (x) dx converges,
a

c

then  ̂ / (x) dx also converges.
a

Theorem 2'. If on the interval [a, c] the functions f (x) and 
(x) 'are discontinuous at the point c, and at' all points of this

c

interval the inequalities f ( x) ^ (p(x ) ^ 0  are fulfilled and Jcp(x)dx
a

c

diverges, then J f(x) dx also diverges.
a

Theorem 3'. If f(x) is an alternating function on the interval 
[a, c] and discontinuous only at the point c, and the improper

C

integral  ̂ \ f(x)\dx of the absolute value of this function converges,
a

c

then the integral J f (x)dx of the function itself also converges.
a

Use is frequently made of as functions with which it is
convenient to compare the functions under the sign of the improper

C

integral. It is easy to verify that dx converges for a <  1,
a

and diverges for a ^ l .
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c

The same applies also to the integrals J  (x—a)* ^x*
ai

Example 9. Does the integral J  y — ^  s dx converge?
0

Solution. The integrand is discontinuous at the left extremity of the in
terval [0 , 1]. Comparing it with the function — , we have

V  x

1
< 4 =.' Y  x +  4** Y  x

C dx
The improper integral \ exists. Consequently, the improper integral

o i
of a lesser function, that is, \ - 7= ------- - dx, also exists.

J Y x  +  4*3

SEC. 8 . APPROXIMATING DEFINITE INTEGRALS

At the end of Chapter X it was pointed out that not for every 
continuous function is its antiderivative expressible in terms of 
elementary functions. In these cases, computation of definite in
tegrals by the Newton-Leibniz formula is involved, and various 
methods of approximation are used to evaluate the definite inte
grals. The following are several methods of approximate integration 
based on the concept of a definite integral as the limit of a sum.

1. Rectangular formula. Let a continuous function y = f(x) be 
given on an interval Ia, b\. It is required to evaluate the definite 
integral

b
 ̂f (,x) dx.

a

Divide the interval la, b] by the points a = x<t, x-t, x t.........xn — b
into n equal parts of length Ax:

a b — aAx = ------ .n

Then denote by £/0, ylt yt , . . . , ...........yn the values of the func
tion f (x) at the points x0, x t.........xn\ that is,

#»=/(*,); «/i= /(* ,); •••;  «/„=/(*„)•
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Form the sums:
y0b x + y 1Ax +  . . Ax,
y lAx + ylAx + . . .+ y aAx.

Each of these sums is an integral sum for f(x) on the interval 
fa, b\ and for this reason approximately expresses the integral

b

§ f  (*) dx ■ n (y0 + y, +{/2 +  • • • (1)
a

b

J  f (x) dx n (yx + y 2 + .. • +*/„)• (1')
a

This is the rectangular formula. From Fig. 223 it is evident 
that if / (x) is a positive and increasing function, then formula (1) 
expresses the area of the step-like figure composed of “inside” 
rectangles, while formula (1') yields the area of the step-like figure 
composed of “outside” rectangles

The error made when calculating integrals by the rectangular 
formula diminishes with increasing n ^that is, the smaller the

divisions * /
II. The trapezoidal rule. It is natural to expect that we will 

obtain a more exact value of the definite integral if we replace 
the curve y — f(x) not by a stepped line, as in the rectangular 
formula, but by an inscribed broken line (Fig. 224). Then the 
area of the curvilinear trapezoid aABb will be replaced by the sum 
of the areas of the rectilinear trapezoids bounded from above by 
the chords AAit AlAt, . . . ,  An_lB. Since the area of the first of
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these trapezoids is Ax, the area of the second is y■■ Ax,
and so forth, so

J/(x ) dx =a (j ‘ 1 Ax +  -  Ax + . • • "■ Ax j
a

or
b

j 7 ( x )  rfx ^  ( ^ 4 iL" +  (/1 +  ( / , +  . . .  +  (2)
a

This is the trapezoidal formula (trapezoidal rule).
The choice of n is arbitrary. The greater this number, the smaller

will be the division (subinterval) Ax =  ^ ^  and the greater will
be the accuracy with which the sum, written on the right side of 
the approximate equality (2), yields the value of the integral.

III. Parabolic formula (Simpson’s rule). Divide the interval 
[a, b\ into an even number of pafts n — 2m. Replace the area of 
the curvilinear trapezoid, corresponding to the first two subinter
vals [x0, x,] and [x,, x j  and bounded by the given curve y = f(x), 
by the area of a curvilinear trapezoid such that is bounded by a 
quadratic parabola passing through three points:

M(x0, y„y, AM*,> */,); AM**. y2).
and with an axis parallel to the #-axis (Fig. 225). We shall call 
this kind of curvilinear trapezoid a parabolic trapezoid.

The equation of a parabola with an axis parallel to the y-axis 
is of the form

y = Ax2 +  Bx + C.

The coefficients A, B and C are uniquely determined from the 
condition that the parabola passes through three specified points. 
Analogous parabolas are constructed for other pairs of intervals as 
well. The sum of the areas of the parabolic trapezoids will yield 
the approximate value of the integral.

Let us first compute the areas of one parabolic trapezoid. 
Lemma. If a curvilinear trapezoid is bounded by the parabola

y — Ax* +  Bx + C,
the x-axis and two ordinates separated by a distance 2h, then its 
area is

S = y (y* + + y2), (3)
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where y0 and yt are the extreme ordinates and y, is the ordinate 
of the curve at the midpoint of the interval.

Proof. Arrange an auxiliary coordinate system as shown in 
Fig. 226.

y=Ax2+Bx+C

The coefficients in the equation of the parabola y =  Ax* Bx +  
+  C are determined from the following equations:

if *„ =  — h, then y ^ ^ A ^ — Bh + C; '
if xt =  0, then yt = C; • (4)
if xt = h, then yt = Ah* + Bh + C.

Considering the coefficients A, B, C known, we determine the
area of the parabolic trapezoid with the aid of a definite integral:

ft
5 =  j ( A * l +  fljt +  C ) d x =  r ^ !  +  ^ !  +  C x l h_ ft =  | ( 2 A / i *  +  6C).

—A L J ~
But from equalities (4) it follows that

y, + 4yt + yt =* 2A/is + 6 c.
Hence,

•S =  -g (i/0 +  4yt + yt),

which is what had to be proved.
Let us come back to our basic problem (see Fig. 225). Using 

formula (3) we can write the following approximate equalities 
(h = bx):
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*4
j  / (*) dx »  ^  (t/4 +  4i/, +  y j ,
X2

Xitn — b
J  / (jc) rfjc « ^ ( < / sm- s +  4t/4)n_ I + i / S(B).

*aw—2
Adding the left and right sides, we get (on the left) the sought- 

for integral and (on the right) its approximate value:
b

^ f ( x ) d x & ^ - { y l) + 4yl + 2yt + 4y,+  . . .
a

. . . +2  yzrn- 2  +  4f/2m- , +  */,«,)> (5)
b

^ f ( x ) d x ^  —  [y, + yim-)-2 (yl + y t . +  */,„_,)+-
a

+  4 (i/i +  */,+ ••• +  */,„,-,)!•
This is Simpson’s formula (rule). 
Here, the number of division 
points 2m is arbitrary; but the 
more of them there are, the 
more accurately the sum on the 
right side of (5) yields the value 
of the integral. *)

Example. Evaluate approximately
2

Solution. Divide the interval [1,2] into 10 equal parts (Fig. 227). Assuming

o.i.

*) To find out how many division points are needed to compute an inte
gral to the desired number of decimal places, one can make use of formulas 
for estimating the error resulting from approximating the integral. We do not 
give these estimates here. The reader will find them in more advanced courses 
of analysis; see, for example, Fikhtengolts, “Course of Differential and 
Integral Calculus”, 1959, Vol. 11, Ch. IX, Sec. 5. (Russian edition).
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we make a table of .the values of the integrand:

X
1

y==T X
i

V = T

*0=  1-0 yQ= \  00000 * 6 =  1.6 y9 =  0.62500
* ,  =  i . i y x =  0.90909 A'7 =  1.7 y, =  0.58824
* , =  1.2 y 9 =  0.83333 * , =  1 . 8 ys =  0.55556
*3=  1.3 y] —  0.76923 x 9 =  1.9 y 9 =0.52632
*4 =  1.4 i/4 =  0.71429 *,o =  2.0 y 1Q =  0.50000
*5=1.5 =  0.66667

1 By the first rectangular formula (1). we get 
2

^  =s0.1 +  +  • • • +</«) = 0 .1  -7.18773 =  0.71877.
1

By the second rectangular formula (1') we get 
2

n  d x
\ —  =  0.1 (y, +  (/2+ . . . + r , 10) = 0 .1 .6.68773 =  0.66877.
1

It follows directly from Fig. 227 that in this case the first formula yields 
the value of the integral with an excess, the second, with a defect.

II. By the trapezoidal rule (2), we have

J ^ = 0 . 1  ( — ^  +  6.18773 )  =0.69377.
1

III. By Simpson’s rule (5), we have 
2

’ ^ » + ^ o  +  2 ^=+i'->+*,« + y « ) + 4 (i,i+ 4 '» + i '5 + ^ + y » ) ] = 1
l

=  *^-(1 + 0 .5  +  2-2.72818 +  4-3.45955) =0.69315.

2

Actually, In 2 =  J —  =  0.6931472 (to seven places of decimals).

Thus, when dividing the interval [0, 1] into 10 parts by Simpson’s rule, we 
get five significant decimals; by the trapezoidal rule, 1 only three; and by the 
rectangular formula, we are sure only of the first decimal.
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SEC. 9. CHEBYSHEV’S FORMULA

In engineering computations, use is frequently made of Cheby- 
shev’s formula of approximate integration.

b
Once again, let it be required to compute  ̂f (x)dx .

a
Replace the integrand by the Lagrange interpolation polynomial 

P (x) (Sec. 9, Ch. VII) and take certain n values of the function 
on the interval [a, b]:f(xt), f (xt), . . . .  f(xn) where xv xt , xn 
are any points of the interval [a, b]:

p  /„■>_ <•* — x t ) (X—  x„).

ix—x,) (x—x3). 
(*i~*i) (xt —x,)

(x—xn)
(*1 xn)
(* Xn)
•(xt—x„)

/(*,) +  

i ixt) +

, (x—xi ){x—xi ) . . . ( x —xn_.l) f . .
" r  ( X n —  X ,) ( X n  —  X , ) . . . ( X „ — . '  »’ (1)

We get the following approximate formula of integration:
b b
 ̂ f (x)dxtx  ̂P (x) dx; (2)

a a

after some computation it takes the form
bS / (*) d x & c j  (X,) +  CJ ( x 2) + . . . + C n f(xn), (3)

a

where the coefficients Ct are calculated by the formulas
b

p C (*~*l)- . (X—Xt+i). . .(,x—x„) . ...
‘ J U< —x1) . . . ( x i—xi_ 1) (x ,—x, + , ) . . . ( x ,— x„) ' {

a

Formula (3) is cumbersome and inconvenient for computation 
because the coefficients C{ are expressed by complex fractions.

Chebyshev posed the inverse problem: specify not the abscissas 
x,, xt, xn but the coefficients C,, C„ . . . .  Cn and determine 
the abscissas xt, x„.
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The coefficients Ct are specified so that formula (3) should be 
as simple as possible for computation. This will obviously occur 
when all the coefficients C, are equal:

c , = c s= . . . = c „ .

If we denote the total value of the coefficients Cv Ct Cn 
by Cn, formula (3) will take the form

b
\ f ( x ) d x ( v Cn[f (xJ) + f ( x t) + . .. + f(x„)]. (5)
a

Formula (5) is, generally speaking, an approximate equality, but 
if f(x) is a polynomial of degree not higher than n—1, then the 
equality will be exact. This circumstance is what permits determin
ing the quantities C„, x,, xt, . . . ,  xn.

To obtain a formula that is convenient for any interval of in
tegration, let us transform the interval of integration [a, b] into 
the interval [—I, 1J. To do this, put

a4-b . b — a ,X = —̂ ~A----K -t\

then for t =  — 1 we will have x — a, for t = 1, x = b.
Hence,

a —l —i

where cp(S) denotes the function of t under the integral sign. 
Thus, the problem of integrating the given function f(x) on the 
interval [a, b\ can always be reduced to integrating some other 
function <p(*) on the interval [ — 1, 1].

To summarise, then, the problem has reduced to choosing, in 
the formula

^f (x)dx = Cnlf  (x,) + /  (xt) +  . . .  + f  (x„M, (6)
— I

the numbers C„, xt, xt, . . . .  xn so that this formula will be exact 
for any function f (x) of the form

f(x) = at + alx-i-atx , + . . . (7)
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it will be noted that 
1 1
$ f (x)dx =  J (a0 +  avx +  atx*. . .  + a n_lxn~')dx =

—  1 — 1

I 2 ^a0 -J- -j- -J- -jr- +  y  -F . . .  H— n is odd;

{ 2 (a 0 +  | ? + . . . +  —f f ) ,  if n is even. (8)

On the other hand, the sum on the right side of (6) will, on the 
basis of (7), be equal to

C n  l n a o +  a i  ( • * ,  +  X t  +  • • • +  X n )  +  a i  (x ] +  x \ + ■  ■ • • +  x *n ) +  • • •

. . .  +  a„_, (*?“ ’ +  x?~' +  . . .  +  xn~')\: (9)

Equating expressions (8) and (9), we get an equation that should 
hold for all a0, a,, a„ . . . .  an_,:

2 ( ‘I. + f  +  f  +  T + " - ) -
=  Cn | net, +  a, (x, + x, +  . . .  +  xn) 4- 

+  a, (x] +  x l +  . . .  +  x*n) +  . . . a„ _,  ( x ? ' +  x?~’ + ' • • • +  Ml-

Equate the coefficients of a0, at, a,, a,......... a„_, on the left
and right sides of the equation:

2 = C„n or C = ^ - \

+ x, H- • • • +  xn —

X t x * +  • * * +  X n  ~  3 =  '3  ’ 

x \ +  x j  +  . . .  +  x* =  0;
. . . .  , .  2  txJCl + ^ + . - . + J C j - g g - — T ;

( 10)

From the latter n equations we find the abscissas x,v xt, . . . .  x„. 
These solutions were found by Chebyshev for various values of n.
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The following solutions are those that he found for cases when the 
number of intermediate points n is equal to 3, 4, 5, 6, 7, 9:

' Number of Coefficient Values of abscissas
o rd inates n c* *1. *2’ • . •» *n

Q 2 * . =  —  *3 =  0 .707107
3 * u II O

1 x ,  =  —  =  0 .7946544
2 * , =  — * , =  0 .1 8 7 5 9 2

2 *! =  — * 5 =  0 .832498
5 T *2 =  — *4 =  0 .3 7 4 5 4 1  

* 3 = 0

1 ^  =  — *3 =  0 .866247
6 *2 =  — * s =  0 .422519

3 *s =  —  *4 =  0 .266635

* , = — * 7 =  0 .8 83862
7 2 *2 =  — *e =  0 .529657

7 *3 =  —  * s =  0 .3 2 3 9 1 2
- *4 =  0

=  — * 9 =  0 .9 1 1589
2 *2 =  —  *8 =  0 .601019

9 *3 =  — *7 =  0 .528762
T *4 =  - * 9 =  0 .16 7 9 0 6

* , =  0

Thus, on the interval [ — 1, 1], an integral can be approximated 
by the following Chebyshev formula:

§ f (X) dx = j [ f  (x j + f (xt) +  . . .  +/(•*„)!,

where n is one of the numbers3, 4, 5, 6, 7 or 9, and xt, . . . ,  xn 
are the numbers given in the table. Here, n cannot be 8 or any 
number exceeding 9, for then the system of equations (10), yields 
imaginary roots. - >
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When the given integral has limits of integration a and b, the 
Chebyshev formula takes on the form

b
$ / (*) d* =  [f (X,) + /(* ,)  +  . . .  + /(* „ )],
a

where X t — +  -~^a-*,• (<‘= 1 .2 ........ n) and x, have the values
given in the table.

The following example illustrates the use of Chebyshev’s approx
imation formula for calculating an integral.

Example. Evaluate =  ln 2).

Solution. First, by changing variables, transform this integral into a new 
one with limits of integration — 1 and 1:

x 1 + 2  , 2 - 1  3 , t _ 3  +  t
2 ^  2 2 ‘ 2 2 ’

Then

dt 
3 +  * -

Compute the latter integral, taking n =  3, by Chebyshev's formula:
i
J  f(t) df = - |l /  (0.707107) + / ( 0 ) + / ( —0.707107)].

— 1
Since

/  (0.707107) =  3 +  0 7Q7lo7 =  3.707107 =  0'269752,

^ °)= 3 ^ 0 = °-333333>

/ ( —0.707107)= 3 _  0  707107 =  2.292893 =  0-436130*

we have

s— i
dt

3 +  /
. y  (0.269752 +  0.333333 +  0.436130) =» 

1-1.039215 =  0.692810 0.693.
u
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Comparing this result with the results of computation using the rectan
gular formulas, the trapezoidal rule, and Simpson’s rule (see the example 
in the preceding section), we note that the result given by Chebyshev’s 
formula (with three intermediate points) is in better agreement with the 
true value of the integral than the result obtained by the trapezoidal rule 
(with nine intermediate points).

The theory of approximating integrals was further developed in 
the works of Academician A. N. Krylov (1863-1945).

SEC. 10. INTEGRALS DEPENDENT ON A PARAMETER

Differentiating integrals dependent on a parameter. Let there be 
an integral

b
I (a)=^f (x ,a)dx,  (1)

a

in which the integrand is dependent upon some parameter a. If 
the parameter a varies, then the value of the definite integral will 
also vary. And the definite integral is a function of a; we can 
therefore denote it by / (a).

1. Suppose that f (x, a) and fa(xt a) are continuous functions 
when

c ^ a ^ d  and a ^ x ^ b .  (2)
Find the derivative of the integral with respect to the parame

ter a:
]jm / M - A « ) - / W . = / c ( a ) |

Aa-*o A a

In finding this derivative we note that

and, consequently,
b b

7 (a +  Aa)— / (a) =  J / (x, a+Aa)  dx— J / (x, a)

b
=  J [/(*. a +  Aa)— f(x, a)] dx\

b
I (a +  A«)— / (a) _  f  '/(*, a + A a ) —f (x, a) .

A a  =  J  Aa a x '
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Applying the Lagrange theorem to the integrand we have

; » + 9A«),
where 0 <  0 <  1.

Since fa (x, a) is continuous in the closed domain (2), we have
fa (X, a  +  0 Aa) =  fa (AT, a) +  e,

where the quantity e, which depends on x, a, Aa, approaches 
zero as Aa—>-0.

Thus,
I (a +AoO I (<* *) =  J  ^  ^  a ) _|_ gj dx =  J  i’a ^  a)dx + ^ e fa,

a a a

Passing to the limit as Aa—>-0, we have*)

Hm '■f t + W r LW _  =  f /a , , ,  0) dx
Aa-bO &a J

a

or
b b

[$ f(x,  a) dx ] a =  5 fa (x, a) dx.
a a

This formula is called the Leibniz formula.
2. Now suppose that in the integral (1) the limits of integration 

a and b are functions of a:
b{ a )

/ (a) =  O [a, a (a), b (a)J =  \ f (x,a)dx.  (T)
a (a)

0 |a, a(a), 6 (a)] is a composite function of a, and a and b are 
intermediate arguments. To find the derivative of. 1(a), apply the 
rule for differentiating a composite function of several variables 
(see Sec. 10, Ch. VIII):

r, / v dQ> , d<S>da d<S> db /QX
1 W  = l to+ l h d i  + l>Fcta- <3>

b
*) The integrand in the integral J e d a  approaches zero as Aa,—►O.-From

a
the fact that the integrand approaches zero it does not always follow that

b
the integral also approaches zero. However, in the given case,  ̂ e dx 

approaches zero as A a —►,(). We accept this fact without proof.
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By the theorem for the differentiation of a definite integral 
with respect to the variable upper limit [see formula (1), Sec. 5] 
we get

b

a ) d x  =  f [ b ( a ) ,  a],
a

b a

— gjf f f ( x ’ a ) d x  =  —  aJ J /(* . a ) d x  =  —  f [ Q ( a ) ,  a].
b b

Finally, to evaluate — use the above-derived Leibniz formula:
b

^  — J f a  (X , a) d x .
a

Substituting into (3) the expressions obtained for the derivatives, 
we have

b ( a )

/a (a )=  j  f'a(x, a) dx +  f[t> (a), u ] ^ —f [a (a), aJ-£. (4)
o ( a )

Using the Leibniz formula it is possible to compute some defi
nite integrals.

Example. Evaluate the integral

j e-* sJ± E .dx.
0

Solution. First note that it is impossible to compute the integral directly,
because the antiderivative of the function e~x s}l\®x js not expressible in
terms of elementary functions. To compute this integral we shall consider it 
as a function of the parameter a:

00

• . . f  _* sin ax ,/ (a)= \ e~* - x  dx.
0

Then its derivative with respect to a is found from the above-derived Leibniz 
formula *):

l f (a) =  J  e~* dx =  J  e~* cos cue dx.
0 0

*) Leibniz’ formula was derived on the assumption that the limits of inte
gration a and b are finite. However, in this case Leibniz’ formula also holds, 
even though one of the limits of integration is equal to infinity.
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But the latter integral is readily evaluated by means of elementary functions;
it is equal to . }  9 . Therefore, ̂ 1 -fa2

/' (a) = : 1
1 -fa2 "

Integrating the identity obtained, we find 1(a):
I (a) =  arc tan a - f  C.

We have C to determine now. To do this, we note that

1 ( 0) =  J  e~x -ln̂ ' X dx =  j  0 dx =  0.
0 0

What is more, arc tan 0 =  0.
Substituting into (5)a =  0, we get

/  (0) =  arc tan 0 -f C,
whence C =  0. Hence, for any value of a we have the equality

I (a) =  arc tan a;
that is,

00
f  * sin cue
k dx =  arc tan a.

(5)

Exercises on Chapter XI

1. Forming the integral sum sn and passing to the limit, compute the 
definite integrals ^

o
Hint. Divide the interval [a, b] into n parts by the points xi = a q i ( i^O,  I,

n . u  ti / ” b j. b%—al2...........n), where q =  1/ — . Ans. — ^— .

b
2 . C —  where 0 <  a <  b. Ans, In — .J x a

a
Hint. Divide the interval [a, b] in the same way as in the preceding 

example.
b

3. ^ x dx. Ans. —a *̂)>
a

it. See Exai 
b
^ sin x dx.

Hint. See Example 2, 
b

Ans. cos a —cos 6 .
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Hint. First establish the following identity:

sin a +  sin (a +h)  +  sin (a +  2h) +  . . .  -f sin [a (/i — 1) h\

( a + 4 ) - c°s |a +  nA—cos

2 sin 4

hTo do this, multiply and divide all the terms of the left side by sin and 
replace the product of sines by the difference of cosines. 

b
5. ^ cos x dx. Ans. sin b —sin a. 

a

Using the Newton-Leibniz formula, compute the definite integrals:
ji

1 1 2
6 .  ̂ x4 dx. Ans. 7. J  ex dx. Ans. e — 1. 8. J  sin x dx. Ans. I.

0 0 0 

VT
1 2 3

9. H  ̂ • /w- • tO. J  T~ • Ans- . It* J  tan xdx.  Ans. In 2.
0 0 0 

e x x x
12. J  ^  . Ans. 1. 13. J  . Ans.\nx.  14. Jsin  x dx. Ans. 2 sin2 ~ .  15. J  x2dx>

1 1 * ° y «
n
2

Ans. 16‘ §  2x — 1 ' i4ns‘ l n (22 — l )' 17. J  cos2xdx.  Ans. ,

18,I. J  sin2xdx.  Ans. .
0
Evaluate the following integrals a p p ly in g  the indicated substitutions!

dx19. J  sin x cos* x dx, cos x =  f. 4/is. y  . 20. J-0- m , tan — =  /. 4/is, n
7 T '

x dx „ . . . . .  3 |^2.---- , 24-4* =  r .  /4ns. ——— .
24-4* ^  2

3 +  2 cos * ’ 2

” I  (1  +  a: 8) 1 1 ■* =  t a n ^
22.
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a n  , 1Am. T  +  T . 23.
/------

J — y — —dx, x — \ — t2. Ans. 2 (2 — arc tan 2).

f  dz 1 . . 324. \ — t=— 2 =  — . Ans. ln-H-.
J z ^ + l  * 2

Ans In y  .

0_ P coscpdcp .25. \ =— r -  T ,T . . , sinq> =  *.J 6 —5 sin <p -f  sin2<p T

Prove that 26. J  xm (1 — x)n dx =  J  xn (1 — x)m dx {m >  0, n > 0 ).
0 0 

b b a a

27. ^ f (x)dx =  ^ f {a +  b —x)dx.  28. J  f (x2) dx =  — J  f (x2) dx.
a a o —a

i
f* x dxEvaluate the following improper integrals: 29. J ~ - Ans. l *

0
00 OD 1

• S '- * dx- Ans• *• 31 t f *-  Ans- 5 (a>0)- 32- § Y T = i -  Ans- T0 o
1 ao

I. ^ • Ans. ~ .  34. J in  xdx.  Ans. — 1. 35. J  x sin x dx. Ans. The inte-
1 0 0

GO +00

gral diverges. 36. J  y . X Ans. The integral diverges. 37. J

30,

33.

*2 + 2jc +  2 . Ans. n.

38. J  T 7=  • Ans. • 39. j  J  . Ans. The integral diverges. 40. J  ~~y ^2  .
w V  o r

I 00
Ans. - y  . 41. J  ~ r  • The integral diverges. 42. J  sin bxdx (a >  0 ).

—1 o
00

Ans. 43. \ e -OJr cos bx dx (a >  0). Ans.
0

8
P dxEvaluate the following integrals approximately: 44. i n 5 = \  —  by the
i

trapezoidal rule and by Simpson’s rule (n =  12). Ans. 1.6182 (by the trapezoidalii
rule); 1.6098 (by Simpson’s rule). 45. J jc* dx by the trapezoidal rule and by
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i
Simpson’s rule ( n = 10). Ans. 3690; 3660. 46. J  V 1 — x3 dx by the trapezoidal

03P dx
rule (n =  6 ). Ans. 0.8109. 47. \ ^ — j- by Simpson’s rule (n =  4). Ans. 0.8111,

010
48. J lo g 10*d* by the trapezoidal rule and by Simpson’s rule (n =  10).

i

Ans. 6.0656; 6.0896. 49. Evaluate jx from the relation ~  =  J y —̂  applying
0

ji
2

Simpson’s ru le(n =10). Ans. 3.14159. 50. J  dx by Simpson’s rule {n =  10).
o

00

Ans. 1.371. 51. EvaluateJ e~x xn dx for integral n >  0 by proceeding from the 
0

OD

equality | r BJfdv =  - -  where a >  0. Ans. n\ 52. Proceeding from the equality 
o -

evaluatethe integral
00n i _^

— dx. Ans. In (1 + a )  (a >  — 1).54. Utilising

1
the equality J  xn" x dx =  — , compute the integral J  xn~* 1 (In xfdx.

00n 1_*-a*
53. Evaluate the integral \ •

k\



C H A P T E R  XII

GEOMETRIC AND MECHANICAL APPLICATIONS 
OF THE DEFINITE INTEGRAL

SEC. 1. COMPUTING AREAS IN RECTANGULAR COORDINATES

If on the interval [a, 6] the function f ( x ) ^  0, then, as we 
know from Sec. 2, Ch. XI, the area of a curvilinear trapezoid 
bounded by the curve y = f(x), the Jt-axis, and the straight lines 
x = a and x — b (Fig. 210) is

b
Q=§f ( x) dx .  (1)

o
If /(*) <  0 on [a, 61, then the definite integral ( f(x) dx is also ^ 0 :

a
It is equal, in absolute value, to the area Q corresponding to the 
curvilinear trapezoid:

b

—Q =  J f (x) dx‘
a

If f(x) changes sign on the interval [a, 6] a finite number of 
times, then we break up the integral throughout [a, 6) into the

sum of integrals of the subintervals. 
The integral will be positive on those 
subintervals where /(* )2s 0, and nega
tive where /(*)sS0. The integral over 
the entire interval will yield the differ
ence of the areas above and below the 
x-axis (Fig. 228). To find the sum of the 
areas in the ordinary sense, one has 
to find the sum of the absolute values 

of the integrals over the above-indicated subintervals or compute 
the integral

b

Q =  $ | t(x)\dx.

Example 1. Compute the area Q bounded by the sine curve # =  sin* and 
the x-axis, for 0 ^ jc ^ 2 jx  (Fig. 229).
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Solution. Since sinjc^O  when and sin x < 0  when jt <  x ^  2jt,
we have

n  271 271

Q =   ̂ sin x dx + 1 J sin x dx | =  J | sin x | dx,
0 71 o

71

J sin x d x =  — cos =  —(cos Jt —cos 0) =  —( — 1 — 1) =  2,
0

271

S I 271sin* dx — —cos * I =  —(cos 2jt —cos jt) =  —2.
71

Consequently, Q =  2 +  | — 2[ =  4.

‘ ̂  y-sinx

Fig. 22>. Fig. 230.

If one needs to compute the area bounded by the curves y = f, (x), 
1 y — ft(x) and the ordinates x =  a, x = b, then provided /, (x) Ss/, (a:) 

we will obviously have (Fig. 230)
b b b

Q = l f ,  w ^ - j  /, (x) dx= l  [fi (x) —ft M]  dx. (2)
a a a

Example 2. Compute the area bounded by the curves (Fig. 231)

y = \ r x and y =  x2.

Solution> Find the points of intersection of the curves:
Y~x—x2, * =  *4, whence * , = 0 , *2= 1.
Therefore,

i i i
Q =  ^ Y x  dx—^ x*dx = ^  ( Y x —x*)dx =  ̂ x ‘ . 3 |o 3 3 ~ T

Now let us compute the area of the curvilinear trapezoid bounded 
by a curve represented by equations in parametric form (Fig. 232):

* =  <p(0 y = $((). (3)

a sg t <  fi
where
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and
cp (a) =  a, <p (P) =  b.

Let equations (3) define some function y = f(x) on the interval 
[a, b\ and, consequently, the area of the curvilinear trapezoid

may be computed from the for
mula

Q =  J /  (x) dx — J y dx.

Change the variable in this integral:
* =  <p(/); dx = y' ( t )dt .

From (3) we have 

Consequently,
y = f(x) = f[<p(t)] = q(t).

Q =  j  \p(Ocp' (t )dt .
a

(4)

This is the formula for computing the area of a curvilinear 
trapezoid bounded by a curve represented parametrically.

Example 3. Compute the area of a region bounded by the ellipse 
x. — a cos t, y — b sin/.

Solution. Compute the area of the upper half of the ellipse and double it. 
Here, x varies from —a to + a , and so t varies between it and 0 .

0
Q =  2 J(&sinO (—asln tdt)

0
—2ab  ̂ sin2 tdt

71

sin2 t d t »
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Example 4. Compute the area bounded by the x-axis and an arc of the 
cycloid

x =  a ( t —sin t), y — a(  1 — cos t)

Solution. The variation of x from 0 to 2jta corresponds to the variation 
ol t from 0 to 2ji.

From (4) we have
2JI 271

Q =  J a (1 — cos t) a (1 —cos t) d t — a ‘   ̂ (1 — cos t)*dt =
0 0

"2JI 271 2JI

=  a2 j  d t - 2 i cos / dt  +  J cos2 1 dt
0 0 0

I dt  — 2ji;
2JI
J  cos t d t  — 0 ; 
0

Z'l ZJI
jj cos2 t d t  =  ^ 1 -f  cos 2 1 dt =  k .

We finally get
Q =  a 2 (2ji +  j i ) =  3 Jta2.

SEC. 2 . THE AREA OF A CURVILINEAR SECTOR 
IN POLAR COORDINATES

Suppose in a polar coordinate system we have a curve given 
by the equation

e = / (  0),
where /(O) is a continuous function when a 9*^(5.

Let us determine the area of the sector CMS bounded by the 
curve p =  / (0) an(l by the radius vectors 9 =  a and 0 =  |J.

Divide the given area by radius vectors 0# =  a, 0 =  0,, . . .  , 9rt =  p
into n parts. Denote by AO,, AO........ ..  A0rt the angles between
the radius vectors that we have drawn (Fig. 233).

Denote by y, the length of a radius vector corresponding to some 
angle 0, between 0f_, and 0f.

Let us consider the circular sector with radius q, and central angle 
AO,. Its area will be

AQ(. =  - ^ A 0f.
The sum

n   n

■Q-“ T S e ? M - T S ^ ( 5r)l, A»i■ 1=I <=1
will yield the area of the “step-like” sector.
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Since this sum is an integral sum of the function q2 =  [/(0)]2 
on the interval a ^ 0 ^ ( 5 ,  its limit, as max AO,—►O, is the defi
nite integral

a

It is not dependent on which radius vector q . we take inside the

angle A0;. It is natural to consider this limit the sought-for area 
of the figure*).

Thus, the area of the sector OAB is

or

( 1)

d ')

Example. Compute the area bounded by the lemniscate

q =  a  J ^ c o s  2 0  .
(Fig. 234).

Solution. The radius vector will describe a fourth of the sought-for area
if 6 varies^between 0 and —r : 4

ji ji 1
1 „ 1 f  1 a p o a a* sin 20 (T a*

de“ 2 fl j cos20<,e= T - T - | ( =T«0 0
Hence

___________________  Q =a2.
*) It might be shown that this determination of the area does not contradict 

that given earlier. In other words, if one computes the area of a curvilinear 
sector by means of curvilinear trapezoids, the result will be the same.
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SEC. 3. THE ARC LENGTH OF A CURVE

1. The arc length of a curve in rectangular coordinates.
Let a curve be given by the equation y = f(x) in rectangular 
coordinates in a plane.

Let us find the length of the arc AB of this curve between 
the vertical straight lines x = a and x = b (Fig. 235).

The definition of the length of an arc was given in Chapter VI, 
Sec. 1. Let us recall that definition. On an arc AB take points A, Mt,
Mt.........Mi . . .  , B with abscissas xt =  a, xt, xt , . . . ,  xs, . . . ,  b =  xn
and draw the chords AMlt Af,M2, ,
M„_t B whose lengths we shall denote by 
AS,, ASt, . . .  , AS,,, respectively. This 
gives the broken line AMtM, . . .  Mn_tB 
inscribed in the arc AB. The length of 
the broken line is

n
sn= Z As/«t= 1

The length, s, of the arc AB is the 
limit which the length of the inscribed 
broken line approaches when the length of its greatest segment 
approaches zero:

n
s =  lim ^ A s ,.  (1)

m a x  A S i o | a _ ,

We shall now prove that if on the interval a <  x <.6  the func
tion f(x) and its derivative f'(x) are continuous, then this limit 
exists. At the same time we shall specify a technique for computing 
the length of the arc.

Let us introduce the notation
A «// =  /(*,•)—/(*,_,)•

Then
As,. =  l/(A*,.)‘ +  (Ay,)J =  Y  1 +  ( ^ ) t 

By Lagrange’s theorem we have
Ayj 
A Xi x i — x t - \

=  /' (I,).
where

< * /.



448 Geometric and Mechanical Applications of the Definite Integral

Hence,
As,-= ( t WAx , .

Thus, the length of an inscribed .broken line is
n

« . = i y i  +  i r u ,)]*  ajc,.

It is given that / ' (x) is continuous; hence, the function ]/1 +  
is also continuous. Therefore, this integral sum has a limit that 
is equal to a definite integral:

n b
s=  lim X 1 /T T F 7 I J P  A*,. =  J V T + W W  dx.

m a x  A X f  - > o  Q
We thus have a formula for computing the arc length:

b b r __________
S = $ V 1 + [/' (x)Y dx =  $ y  1 +  (J?x)\dx. (2)

a a

Note. Using this formula, it is possible to obtain the derivative 
of the arc length with respect to the abscissa. If we consider the 
upper limit of integration as variable and denote it by x (we 
shall not change the variable of integration), then the arc length 
s will be a function of x:

a

Differentiating this integral with respect to the upper limit, we 
obtain

U -  Y  '+(&)'• 0 )
This formula was derived in Sec. 1, Ch. VI, on certain other 
assumptions.

Example 1. Determine the circumference of ihe circle
x2 +  y =  r2.

Solution. First compute the length of a fourth part of the circumference 
lying in the first quadrant. Then the equation of the arc AB will be

y =
whence

_  *  

d x  Y r 2— x*  *
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Consequently,

Y ' + t t * - i y w = ? ix - r arc sin  -

0 0 
The length of the circumference is s =  2jtr.

r
= ro

JT
Y  ’

Let us now find the arc length of a curve when the equation 
of the curve is represented in parametric form:

* =  y = xMO (4)
where <p(f) and i|j(/) are continuous functions with continuous de
rivatives, and tp(/) does not vanish in the given interval. In this 
case, equations (4) define a function y = f(x) which is continuous 
and has a continuous derivative:

dy  _ V ( t )  
dx <p' (() ‘

Let a =  cp(a), 6 =  <p(P). Then substituting in the integral (2)

*  =  <P (0 .

d x  —  (p' (t ) d t ,
we have

s = ^ 1 + [ w ! ] 2 < f , ' ( / )  d t >
a

or, finally,
P ___________

+  (5)
a

Note 2. It may be proved that formula (5) holds also for curves 
that are crossed by vertical lines in more than one point (in 
particular, for closed curves), provided that both derivatives cp' (t) 
and (t) are continuous at all points of the curve.

Example 2. Compute the length of the hypocycloid (astroid):
x =  acos8 /, y =  asm*t.

Solution. Since the curve is symmetric about both coordinate axes, we shall 
first compute the length of a fourth part of.it located in the first quadrant. 
We find
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The parameter t will vary from 0 to ~  . Hence

4

n_ n_
2 2

s ~ J  Y 9a2 cos41 sin21 +  9a2 sin4 t cos2 t dt =  3a 
o

J  Y cos21 sin* t d t  =  
o

n, sin21 [ 2 q
=  3a \ sin / cos t d t  =  3a — | o s =  6a.

0

Note 3. If a space curve is represented by the parametric equations

. *=<p(0, y=H>(0. z =  x(0  ' (6)
where (see Sec. 1, Ch. IX), then the length of its arc
is defined (in the same way as for a plane arc) as the limit which 
the length of an inscribed broken line approaches when the length 
of the greatest segment approaches zero. If the functions <p(f), 
ij>(/), and t( t)  are continuous and have continuous derivatives on 
the interval K  P], then the curve has a definite length (that is, 
it has the above-mentioned limit) which is computed from the 
formula

s= S v [<p'(0 ] j + [ ^ ( 0 ] ‘+ [ x, (0]8^ .  (7)
a

This result we accept without proof.

Example 3. Compute the arc length of the helix

x =  a co s /, y =  a s \ n t t z =  amt

as i varies from 0 to 2jt.
Solution. From the given equations we have

=  — a sin / dt,  dy =  a cos t d t t dz =  amdt.

Substituting into formula (7), we have
in in

s =  J }^a2sin2 f + a 2 cos2 / + a 2m2 d /=  a J Y l  +  dt = 2na J ^ l+ m 2.
0 o

2. The arc length of a curve in polar coordinates. Given (in 
polar coordinates) the equation of the curve

e=/(0) (8)
where g is the radius vector and 0 is the vectorial (polar) angle.
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Let us write the formulas for passing 
from polar coordinates to Cartesian 
coordinates:

* =  qcos0, y = Q sin0.

If in place of q  we put its expression 
(8) in terms of 0, we get the equations

* =  / (0) cos 0, y = f (0) sin 0.

These equations may be regarded as 
the parametric equations of the curve 
and we can apply formula (5) for com
puting the arc length. To do this, find the derivatives of x and y 
with respect to the parameter 0:

% = f' (0) COS 0 —/ (0) sin 0;

- | = / '  (0) sin 0 +  /  (0) cos 0.

Then

(35)*+ (5?)’= w (W +  (0)]*=e'1 +«*•
Hence,

s = $ / e>« + eM0.

Example 4. Find the length of the cardioid

q =  a (1 +COS0)
(Fig. 236).

Varying the vectorial angle 0 from 0 to jt, we get half the sought-for 
length. Here, q# =  — asin0. Hence,

ji
s =  2 J J^a2( l+ c o s  0)2+ a 2 sin20 d0==

0
n

=  2a  ̂ ^ 2  +  2 cos 0 d0 =
0
r 0 0 I 71

=  4a V cos y  d0 =  8asin y l  = 8 a.

15*
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Example 5. Compute the length of the ellipse 
x  =  a  cos t ,  | 
y  =  b  sm t ,  )

assuming that a >  b .

Solution. We take advantage of formula (5), first computing ~  the arc 
length; that is, the length of the arc that corresponds to a variation of the

Ttparameter from / =  0 to t  =  -— :

H  m
sin2 t - \-  b 2 cos21 d t  —

& . 2 
=  1  )^a2( l — cos2 /) b2 cos21 dt =  J  V a 2—(a2— b2) cos2 t d U

=  a ^ l / ^  1 —t —" , cos2 1 dt = a  J  V i —k2 cos2t dt,

where k  =
__V a 2— b2<  1. Hence,

n
2

s =  4 a  J V i —k 2 c o s 2 i d t .  
o

The only thing that remains is to compute the last integral. But we know 
that it is not expressible by elementary functions (see Sec. 16, Ch. X). This 
integral can be computed only by approximation methods (by Simpson’s rule, 
for example).

For instance, if the semi-major axis of an ellipse is equal to 5 and the 
semi-minor axis is 4, then k  =  i p  and the circumference of the ellipse is

n

s =  4 -5 j  cos* t d t .

0

Computing this integral by Simpson’s rule (by dividing the interval £o, 
into four parts) we get an approximate value of the integral;

JL
2 _________

J  V l ~  4  cos* M/=sr 1.298.
0

and so the length of the arc of the entire ellipse, is -approximately equal to 
a =5= 25.96 units of length.
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SEC. 4. COMPUTING THE VOLUME OF A SOLID FROM THE AREAS 
OF PARALLEL SECTIONS (VOLUMES BY SLICING)

Suppose we have some solid T. Let us assume that we know 
the area of any section of this solid made by a plane perpendic
ular to the x-axis (Fig. 237). This area will depend on the posi
tion of the cutting plane; that is, it 
will be a function of x:

Q =  Q (x ). .1EE
Fig. 237.

We assume that Q (x) is a continuous 
function of x and calculate the volume 
of the body.

Draw the planes x = a, x =  x,, x = x2,
. . . ,  x = xn= b.

These- planes will cut the solid up 
into layers (slices).

In each subinterval x .-.jS ^xC x, we choose an arbitrary point
and for each value i =  l, 2, . . . ,  n we construct a cylindrical 

body, the generatrix of which is parallel to the x-axis, while the 
directrix is the boundary of the slice of the solid T made by the 
plane x =  £,-.

The volume of such an elementary cylinder, the area of the 
base of which is

Q(S/)(*/-i
and the altitude Ax„ is

Q(i,)Ax,.
The volume of all the cylinders will be

A*/-
The limit of this sum as max Ax,.- 

volume of the given solid:
-0 (if it exists) is the

v =  lim £  Q (£,) Ax,..
m a x  A x i  - v  o ^ ,

Since vn is obviously the integral sum of the continuous function 
Q (x) on the interval a s ^ x ^ b ,  the indicated limit exists and is 
expressed by the definite integral

b
v =   ̂Q (x) dx. ( 1)
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Example. Compute the volume of the triaxial ellipsoid (Fig. 238).

jE i+ ic + iU ia! + 61 + c!

Solution. In a section of the ellipsoid made by a plane parallel to the 
^z-plane and at a distance x from it, we have the ellipse

j / i ,
b* c2 1 a2

or

r * = l

with semi-axes

But the area of such an ellipse is jtblcl (see Example 3, Sec. 1). 
Therefore,

Q(*) = « 6 c ( l - - r )  •

The volume of the ellipsoid will be

v = n b c  |  ( 1- ^ r ) ^ = n 6 c( j;- ^ r ) | a_ a = 4 na&c- 
- a

In the particular case, a =  &=c, the ellipsoid turns into a sphere, and we 
have
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SEC. 5. THE VOLUME OF A SOLID OF REVOLUTION
Let us consider a solid generated by the revolution, about the 

x-axis, of a curvilinear trapezoid aABb bounded by the curve 
y = f{x:), the x-axis, and the 
lines x — ay x = b.

In this case, an arbitrary 
section of the solid made by a 
plane perpendicular to the*-axis 
is a circle of area

Q = nyt =n[f (*)]’.
Applying the general formula 

for computing volume [(1), Sec.
4], we get a formula for calcu
lating the volume of a solid of 
revolution:

b b

v = n J y1 dx =  n  ̂[/ (*)]* dx.
a a

Example. Find the volume of a solid generated by the revolution of the 
catenary

about the x-axis on the interval from jc =  0 to x =  b (Fig. 239).
Solution.

o = n - - ^ e a + e ' a ^  dx =  ̂ -  j  ( e a + 2  +  e ~ a ^dx=> 
0 0

zx zx zb zb

- T , [ f * T + 2« - T ' ' T ] : - T ( ‘T - ' T ) + 1? -

SEC. 6. THE SURFACE OF A SOLID OF REVOLUTION

Suppose we have a surface generated by the revolution of a 
curve y — f(x) about the jc-axis. Let us determine the area of this 
surface on the interval a ^ x ^ b .  We take the function f(x) to 
be continuous and to have a continuous derivative at all points 
of the interval [a, b\.

As in Sec. 3, draw the chords AMV MxMt, . . whose 
lengths are denoted by As,, As..........As„ (Fig. 240).
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Each chord of length As, ( i— 1, 2......... n) describes (in the
process of revolution) a truncated cone whose surface AP, is

AP; =  2nw- 1/ yi As,.
But

A s , - / A x ’ +  Ar/’ =  / 1  +  (ff-)* Ax,.

Applying Lagrange's theorem, we get

A *//__f  {Xj) f  {Xj—\ ) . .. ft / 1 \
A*/ Xi—Xi-i — ^

where

hence,

A s ,= K i + r ( i , )  ajc„

AP, — 2n Ax,.

The surface described by the broken line will be equal to the sum

P n =  2 n 2 / T + T y l T )  A x ,

1 = 1
or the sum

P „ = n 2  [/(x,_,) +
1 =  1

+  /(*/)] + / /2 (£/) A*,, (1)
extended to all segments of the broken, line. The limit of this 
sum, when the largest segment As, approaches zero is called the 
area of the surface of revolution under consideration. The sum (1) 
is not the integral sum of the function

2n [ ( x ) ) / \+ r  (x)2, (2)

because the term corresponding to the interval [x,_,, x,] involves 
several points of this interval x(_,, xt, But it is possible to 
prove that the limit of the sum (1) is equal to the limit of the
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integral sum of function (2); that is,

P = limn 2  [/(*!-.) +  /<*/)] V l + f ’ <W Ax, =
max A*/ -► o £=1

=  lim n  2 2^ 5 i » ' 1 + / ' ^ ) 1‘ A*,
m a x  A x / -*■ o

or b
P =  2n J / (a:) K l + r W  d*. (3)

a

Example. Determine the surface of a paraboloid generated by revolution 
about the jt-axis of an arc of the parabola y 2 =  2px , which corresponds to the 
variation of x from x = 0  to x =  a:

y = vw *.

Solution. By (3) we have
a   a

P ~  J* V~%PX j / "  dx = 2jtKrp ^}^2x p d x ̂
0 0

=  2n y(2 .y  +  p)3/a 1 | °  =  —  ̂ .p -[(2a+p)V* —p‘/>].

SEC. 7. COMPUTING WORK BY THE DEFINITE INTEGRAL

Suppose a material point M is moving in a straight line Os 
under a force F, and the direction of the force coincides with 
the direction of motion. It is required to find the work performed 
by the force F as the point M is moved from s = a to s =  b.

1) If the force F is constant, then the work A is expressed 
by the product of the force F by the path length:

A = F(b—a).
2) Let us assume that the force F is constantly varying, depend* 

ing on the position of the material point; that is to say, it is 
a function F(s) continuous on the interval a ^ . s ^ b .

Divide the interval [a, b\ into n arbitrary parts of length
As,, As,, . . . ,  As„,

then in each sub interval ls,_,, s,] choose an arbitrary point gf 
and replace the work of the force F(s) along the path
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As, (t'= l, 2.........n) by the product
/=■(£,■) As,..

This means that within the limits of each subinterval we take 
the force F to be constant: we assume F = F{h). Here, the ex
pression F(li)Asi will yield an approximate value of the work 
done by the force F over the path As,, (for a sufficiently small 
As,), and the sum

A .=  2^a,-)A s,.1 = 1
will be the approximate expression of the work of the force F 
over the interval [a, b].

Obviously, A„ is an integral sum of the function F = F(s) on 
the interval [a, 6]. The limit of this sum as max (As,)—>-0 exists

and expresses the work of the force F (s) 
over the path from s = a to s =  b:

b
A = ^F(s)ds. (1)

a

Example 1. The compression S of a helical 
spring is proportional to the applied force F. 
Compute the work of the force F when the spring 
is compressed 5 cm, if a force of one kilogram 
is required to compress it 1 cm (Fig. 241).

Solution. It is given that the force F and the 
distance covered S are connected by the relation 
F =  kS , where k is a constant.

Let us express S in metres and F in kilograms. When S =  0.01, F = l ,  
that is, 1 =  /g-0.01, whence £= 100, F==100S.

By (1) we have
0.05
C S* 0.05

i4 =  J 100S dS =  100“2" o =0.125 kilogram-metre.
0

Example 2. The force F with which an electric charge ex repulses another 
charge e 2 (of the same sign) at a distance of r is expressed by the formula

where k is a constant.
Determine the work done by a force F in moving the charge ez from the 

point Ax (at a distance of r, from ex) to At (at a distance of r2 from ex) 
assuming that ex is located at the point A0 as the origin.

Solution. From formula (1) we have

A =  §  k y r  dr =  ~  kelel j
ri



Coordinates of the Centre of Gravity >459

When r2= oo , we have

A = \  kj p dr = ̂ l .
J r  r \r i

When et = l ,  A =  k ^ - . This quantity is called the potential of the field. 
generated by the charge e,.

SEC. 8. COORDINATES OF THE CENTRE OF GRAVITY

Suppose on an xy-plane we have a system of material points

^  \ (**i» t/i)' *̂2 (*̂*» • • •» (*̂n» f/n)
with masses mx, m„ . . . ,  mn.

The products ximi and yimi are called the static moments of 
the mass m(- relative to the y- and jc-axes.

We denote by xc and yc the coordinates of the centre of gravity 
of the given system. Then, as we know from mechanics, the 
coordinates of the centre of gravity of this material system will be 
defined by the formulas

x,ml +  ximi +  . . .  + x nmn 
m, + mi + ... +m„

2  ximi
( 1)

Z  y:m;_  y,mt+yimt + ...+ y nmn^i=,
yc

mi
(2)

We shall use these formulas in finding the centres of gravity of 
various figures and solids.

1. The centre of gravity of a plane line. Let there be a curve 
AB given by the equation y = f(x ), a ^ x ^ b ,  and let this curve 
be a material line.

Let the linear density *) of such a material curve be y. Divide 
the line into n parts of length Aslt As2, Asn. The masses of
these parts will be equal to the product of their lengths by the 
(constant) density: Am— yAs,-. On each part of the arc As( take

*) Linear density is the mass of unit length of a given line. We assume 
that the linear density is the same in all portions of the curve.
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an arbitrary point with abscissa g,-. Now representing each part 
of the arc As,- by the material point p,-[g,-, /(g,-)] with mass yAs(- 
and substituting into (1) and (2) g,- in place of xit f ( g,-) in place 
of yh and the value of yAs,- (the mass of the parts As,) in place 
of m,-, we obtain approximate formulas for determining the centre 
of gravity of the arc:

„  2^-YAs/ _. 2  / (6i) YAs/
xe w V .--- ’ yc *** v  I2  YAS,- 2 yAS/

If the function y = f(x) is continuous and has a continuous deri
vative, the sums in the numerator and denominator of each frac
tion have, as max As,-—>-0, limits equal to the limits of the cor
responding integral sums. Thus, the coordinates of the centre of 
gravity of the arc are expressed by definite integrals:

J xds  J x V  l + t ' ‘ (x)dx

j  ds  ̂V l + f ’l (x)dx
a a

b b
^ f (x)ds  ^  /  (x) y  \ +  / ' *  ( a t )  dx

(10

Vc-
Jds J VI +  /'»(*)

(20
dx

Example 1. Find the coordinates of the centre of gravity of the semi-circle 
x2 +  y 2—a2 situated above the *-axis.

Solution. Determine the abscissa of the centre of gravity:

y — Y  a2—x2, — = ----------------- , d s =  l / "  1 +  (  d x = - d x ,
y dx Y  a2- x 2 y \ d x )  V a 2- x 2

a

J  V a ‘— xz _ a y ai _ x 2 ja a
* c — a 

a 
— a

a
■f dx a
J V ~ a ^ *

. X  aarc sin —a -a
na=  0.
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Find the ordinate of the centre of gravity:
a

2. The centre of gravity of a plane figure. Given a figure 
bounded by the lines y — f I (x), y = f t (x), x = a, x = b, which is a 
material plane figure. We con
sider constant the surface 
density, which is the mass 
of unit area of the surface.
It is equal to 8 for all parts 
of the figure.

Divide the given figure by. 
straight lines x = a ,x —xl, . . . ,  
x —xn= b  into strips of width
Ax,, Axs........ Ax„. The mass
of each strip will be equal to 
the product of its area by 
the density 8. If each strip 
is replaced by a rectangle 
(Fig. 242) with base Ax;
and altitude /,(£,•)—fy (£,•), where =  , then the mass of a
strip will be approximately equal to

Am,- =  6 [ft (£,)—/, (£,•)] Ax; (i =  1, 2..........n).
The centre of gravity of this strip will be situated approxi

mately in the centre of the appropriate rectangle:

Now replacing each strip by a material point, whose mass is 
equal to the mass of the corresponding strip and is concentrated 
at the centre of gravity of this strip, we find the approximate 
value of the coordinates of the centre of gravity of the entire 
figure [by formulas (1) and (2)]:

x rj  Z fra  [ /« & )-/, m  ax,

Y  £  u*{li) +  f ' (5i)16 1̂« &> -  ̂  (E/)l Ax,

— fi (6<)1 Ax,.

a I dx 
- a  __ 2a2_ 2a 
ji a ji a ji

<Jc *>
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Passing to the limit as Ajc,-—► (), we obtain the exact coordinates 
ol the centre of gravity of the given figure:

b b

j  x [ f t (*) — /, (jr)] dx - j J  IM *)+  /,(*)] IM *)— f i(x)]dx
a . a

Xc b * lJc b .

|  l /» M — ft (x)]dx
a

These formulas hold for any homo
geneous (that is, having constant 
density at all points) plane figure. 
We see that the coordinates of the 
centre of gravity are independent of 
the density 6 of the figure (6 was 
cancelled out in the process of com
putation).

Example 2. Determine the coordinates of 
the centre of gravity of a segment of the 
parabola y 2*=ax cut off by the straight line
x =  a (Fig. 243). _

Solution. In this case f2(x) =  Y<*x, /,(* ) =  — Yax\  therefore
a

o
yc =  0 (since the segment is symmetric about the x-axis).

j  l/»(*) — /, (*)l dx 
a

Exercises on Chapter XII 
Computing Areas

1. Find the area of a figure bounded by the lines y 2 =  9x, y =  3x. Ans. ---.
2. Find the area of a figure bounded by the equilateral hyperbola xy =  a2,

the Jt-axis, and the lines x =  a, 6 =  2a. Ans. a2 In 2.
3. Find the area of a figure lying between the curve y — 4 —x2 and the

2
x-axis. Ans. 10-g- .

A A A
4. Find the area of a figure bounded by the hypocycloid x 3 + y  3 = a  3 . 

Ans. -g- Jia2.
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JL
5. Find the area of a figure bounded by the catenary y =  ~ y e a -\~e

a*the jt-axis, the y-axis, and the straight line x — a. Ans. — 1).
6. Find the area of a figure bounded by the curve y =  x*, the line y —-S, 

and the p-axis. Ans. 12.
7. Find the area of a region bounded by one loop of a sine wave and the 

jt-axis. Ans. 2.
8. Find the area, of a region lying between the parabolas y*=2px t x*—2py. 

Ans. — p2.
9. Find the total area of a figure bounded by the lines y =  x*, y =  2x, y =x .

10. Find the area of a region bounded by one arc of the cycloid x =  a (t — sin t), 
y =  a( \  —cost) and the *-axis. Ans. 3na2.

11. Find the area of a figure bounded by the hypocycloid x =  a cos31, y=*
3=  asin4 * * * 8/. Ans. - -̂Jta2.o

12. Find the area of the entire region bounded by the lemniscate Q2 =  a2 cos 2<p. 
Ans. a2.

13. Compute the area of a region bounded by one loop of the curve q =  a sin 2<p. 
Ans. ,-z-. Jta2.o

14. Compute the total area of a region bounded by the cardioid q =  a (1 — cos <p). 
Ans. jta2,

15. Find the area of the region bounded by the curve. Q =  acos<p. Ans. m
16. Find the area of the region bounded by the curve Q =  a cos 2<p.

jt17. Find the area of the region bounded by the curve Q =  cos3qp. Ans. —  .
jtfl218. Find the area of the region bounded by the curve Q =  a cos 4<p. Ans. -g- •

Computing Volumes

X2
19. The ellipse — + p = l  revolves about the Jt-axis. Find the volume of

4
the solid of revolution. Ans. - j-nab2.

20. The segment of a line connecting the origin with the point (a, b) re
volves about the y-axis. Find the volume of the resulting cone. Ans. na*b .

21. Find the volume of a torus generated by the revolution of the circle 
x*-\-(y — b)*=a* about the *-axis (it is assumed that b ^ a ) .  Ans. 2rt2a26.

22. The area bounded by the lines y* =  2px and x — a revolves about the 
*-axis. Find the volume of the solid of revolution. Ans. npa*.
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23. A figure bounded by the hypocycloid x 3 +  ( /3 =  a 3 is revolved about
32jia3
TOITthe x-axis. Find the volume of the solid of revolution. Ans.

24. A figure bounded by one arc of the sine wave y =  sinx and the jr-axis 
is revolved about the jr-axis, Find the volume of the solid of revolution.

n2
Ans- j  •

25. A figure bounded by the parabola y 2 =  4x and the straight line jc =  4 is 
revolved about the *-axis. Find the volume of the solid of revolution. Ans. 32jx.

26. A figure bounded by the curve y =  xex and the straight lines y = 0 , x — 1, 
is revolved about the je-axis. Find the volume of the solid of revolution.
Ans. -^ (e 2— 1).

27. A figure bounded by one arc of a cycloid x — a (t — sin t), y — a (1 — cos /) 
and the ,v-axis is revolved about the jt-axis. Find the volume of the solid of 
revolution. Ans. 5ji 2a*.

28. The same figure as in Problem 27 is revolved about the (/--axis. Find 
the volume of the solid of revolution. Ans. 6ji3a8.

29. The same figure as in Problem 27 is revolved about a straight line that 
is parallel to the y-axis and passes through the vertex of a cycloid. Find the

' JXfl3volume of the solid of revolution. Ans. -g- (9ji2— 16).
30. The same figure as in Problem 27 is revolved about a straight line pa

rallel to thejr-’axis and passing through the vertex of a cycloid. Find the vo
lume of the solid of revolution. Ans. 7n2a*.

31. A cylinder of radius R is cut by a plane that passes through the dia
meter of the base at an angle a to the plane of the base. Find the volume of

2
the cut-off part. Ans. -g- R3 tan a.

32. Find a volume that is common to the two cylinders: x2-{-y2 =  R2,
+  z ‘ =R*. A n s . ^ R ’.

33. The point of intersection of the diagonals of a square is in motion along 
the diameter of a circle of radius a\ the plane in which the square lies remains 
perpendicular to the plane of the circle, while the two opposite vertices of the 
square move along the circle (as a result of this motion, the size of the 
square obviously varies). Find the volume of the solid generated by this moving

A 8  3square. Ans. -g-a3.
34. Compute the volume of a segment cut off the elliptical paraboloid
+  — — x by the plane x =  a. Ans. na2 V̂ pq.2p 2q J r
35. Compute the volume of a solid bounded by the planes z — 0, y =  0, the

i• Y  2a
7 V ~P  

(in first octant).
36. A straight line is in motion parallel to the yz-plane, and cuts two el-

X 2 tl2 X 2 z2
lipses —S+ T 5 = l ,  “i  +  ~ = l  lyin£ in the xy- and*z-planes. Compute the vo-

cylindrical surfaces x2 =  2py and z2 =  2px and the plane x =  a. Ans.

lume of the solid thus obtained. Ans.
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Computing Arc Lengths
_2_ _2_ _2_

37. Find the entire length of the hypocycloid x 3 -f-//3 = n 3 . A/w. 6a.
38. Compute the arc length of the semicubical parabola ay1—x3 from the

335origin to a point with abscissa x — 5a. Ans. -^-a.
X X

39. Find the arc length of the catenary r/ =  y ( e a + e  a ) from the origin
X X

to the point (x, y). Ans. -—(ea —e a ) =  Yy 2—a1.
40. Find the length of one arc of the cycloid x —a (t — sin t ) ,  y =  a (1 — cos i). 

Ans. 8a.
41. Find the length of an arc of the curve y =  \nx  within the limits from 

x — \^ ^ io  x—Y 8. Ans. 1 + y  "f" •
42. Find the arc length of the curve y =  1— IncoS* between * =  0 and

x — ̂ r .  Ans. In tan 
4 o

43. Find the length of the spiral of Archimedes q =  aq> from the pole to the
end of the first loop. Ans. Jta Y l  + 4 j i2+  y  In (2ji -f- Y l  +  4ji2j.

44. F ind the length of the spiral Q =  ea? from the pole to the point (Q,<p).

Ans. =  ~  Y  \ +  a 2,a a
ĉp 345. Find the entire length of the curve q =  a sin - -  . Ans. — na.
o Z.

C2
46. Find the length of the evolute of the ellipse x =  — cos*/, y  =  -rs\n*t.a b

ab
47. Find the length of the cardioid q — a (1 +  cos (p). Ans. 8a.
48. Find the arc length of the involute of the circle x = a  (cos <p +  (p sin <p)r

y —a (sinq>— <p cos <p) from cp =  0 to<p=(p1.. Ans. -

Computing Areas of Surfaces of Solids of Revolution
49. Find the area of a surface obtained by revolving the parabola y 2 =  4ax

56about the Jt-axis, from the origin 0 to a point with abscissa x — 3a. Ans. —Jta2.O
50. Find the area of the surface of a cone generated by the revolution of 

a line segment y — 2x from x — 0 to x =  2: a) About the *-axis. Ansr'8 j x  Y 5 ^  
b) About the (/-axis. Ans. 4k Y 5.

51. Find the area of the surface of a torus obtained by revolving the circle 
x 2-\-(y — b)2 — a2 about the Jt-axis. Ans. 4n2ab.

52. Find the area of the surface of a solid generated by revolving a car
dioid about the *-axis. The cardioid is represented by the parametric equations

128* =  a(2cos<p — cos 2<p), # =  a(2sin<p — sin 2q>). Ans. - y  jia2.
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53. Find the area of the surface of a solid obtained by revolving one arc
64jta2 • •of a cycloid x =  a(t  — sin/), y =  a( l  — cost) about the jt-axis. Ans. —-— .

54. The arc of a cycloid (see Problem 53) is revolved about the y-axis. 
Find the surface of the solid of revolution. Ans. 16n*a2.

55. The arc of a cycloid (see Problem 53) is revolved about a tangent line 
parallel to the Jt-axis and passing through the vertex. Find the surface of the
solid of revolution, Ans. — .

56. The astroid ji^asin* /, y =  acos*t  is revolved about the *-axis. Find
the surface of the solid of revolution. Ans. .o

57. An arc of the sine wave  ̂=  sin* fromx — 0 to x =  2n is revolved about 
the x-axis  ̂ Find the surface of the solid of revolution. Ans. 4n [ }^  2-f- 
+  l n ( / 2  +  l)l.

JT2 U*58. The e l l ip s e - ^ + — =  1 (a >  b) revolves about the *-axis. Find the sur

face of the solid of revolution. Ans. 2nb2-\-2nab arc sin e where e = y a * — b*

Various Applications of the Definite Integral

59. Find the centre, of gravity of the area of one-fourth of the ellipse.

£  + A n , . * .  g .
60. Find the centre of gravity of the area of a figure bounded by the pa

rabola x*-\-Ay— 16 =  0 and the Jt-axis. Ans. ^0, .
61. Find the centre of gravity of the volume ot a hemisphere. Ans. On the

3
axis of symmetry at a distance — /? from the base.o

62. Find the centre of gravity of the surface of a hemisphere. Ans. On the 
axis of symmetry at a distance from the base.

63. Find the centre of gravity of the surface of a circular right cone, the 
radius of the base of which is R and the altitude h. Ans. On the axis of sym
metry at a distance -g- from the base.

64. The figure is bounded by the lines y =  sin x (0*^**^ j i ), y =  0. Find the 
centre of gravity of the area of this figure. Ans.

65. Find the centre of gravity of the area of a figure bounded by the pa
rabolas y*=20x,  ** =  20y. A/is. (9, 9). *

66. Find the centre of gravity of the area of a circular sector with central
angle 2a and radius R . Ans. On the axis of symmetry at a distance — Ro a
from the vertex of the sector.

67. Find the pressure of water on a rectangle vertically submerged in wa
ter at a depth of 5m if it is known that the base is 8 metres, the altitude, 12 
metres, and the upper base is parallel to the free surface of the water. Ans. 
1,056 m.
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: 68. The upper edge of a canal lock has the shape of a square with a side 
of 8 m lying on the surface of the water. Determine the pressure on each part 
of the lock formed by dividing the square by one of its diagonals. 
Ans. 85,333.33 kg, 170,666.67 kg.

69. Compute the work needed to pump the water out of a hemispherical 
vessel of diameter 20 metres. Ans. 2 .5xlO fln kg-m.

70. A body is in rectilinear motion according to the law x =  cts, where x 
is the path length traversed in time t, c =  const. The resistance of the medium 
is proportional to the square of the velocity, and k is the constant of pro
portionality. Find the work done by the resistance when the body moves from2 y , ___
the point * =  0 to the point x =  a. Ans. -y k £ / c2a7.

71. Compute the work that has to be done in order to pump a liquid of 
density v from a reservoir having the shape of a cone with vertex pointing

ji vR2H2down, altitude H and radius of base R. Ans. — — .

72. A wooden float of cylindrical shape whose basal area S =  4,000 cm4and 
altitude / /  =  50 cm is floating on the surface of the water. What work must be 
done to pull the float up to the surface? (Specific weight of the wood, 0.8).
Ans. =  32 kg-m.

73. Compute the force with which the water presses on a dam in the form 
of an equilateral trapezoid (upper base a =  6.4 m, lower base b =  4.2 m, alti
tude H =  3 m). Ans. 22.2 m.

74. Find the axial component P kg of total pressure of steam on the sphe
rical bottom of a boiler. The diameter of the cylindrical part of the boiler is

nPD2D mm, the pressure of the steam in the boiler is P kg/cm*. Ans. P =  — ^
75. The end of a vertical shaft of radius r is supported by a flat thrust 

bearing. The weight of the shaft P is distributed equally over the entire sur
face of the support. Compute the total work of friction in one rotation of the

4
shaft. Coefficient of friction is p,. Ans. — n\xPr.o

76. A vertical shaft ends in a thrust pin having the shape of a truncated
cone. The specific pressure of the pin on the thrust bearing is constant and 
equal to P.  The upper diameter of the pin is D, the lower, d, and the angle
at the vertex of the cone is 2a. Coefficient of friction, jli.

3%2P  LIFind the work of friction for one rotation of the shaft. Ans. - ■ . r  (D3—d3).6 sm a '
77. A prismatic rod of length / is slowly extended by a force increasing 

from 0 to P so that at each moment the tensile force is balanced by the for
ces of elasticity of the rod. Compute the work A expended by the force on 
tension, assuming that the tension occurred within the limits of elasticity. F 
is the cross-sectional area of the rod, and E is the modulus of elasticity of 
the material.

Hint. If x is the elongation of the rod and f is the corresponding force,
FE PIthen f =  —  x. The elongation due to the force P is equal to A •I h r

An, a - P A I - HAns. a — 2 — 2 £ f
78. A prismatic beam is suspended vertically and a tensile force P is ap

plied to its lower end. Compute the elongation of the beam due to the force 
of its weight and to the force P if it is given that the original length , of the
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beam is /, the cross-sectional area F , the weight Q and the modulus of elas
ticity of the material E. Ans. Al — ^  •

79. Determine the time during which a liquid will flow out of a prismatic 
vessel filled to a height H. The cross-sectional area of the vessel is F, the 
area of the aperture /, the exit velocity is computed from the formula 
i /= j i  V 2gh, where jx is the coefficient of viscosity, g is the acceleration of 
gravity, and h is the distance from the aperture to the level of the liquid.

An s .T  =  l / 2" .
nf y  2{« i*ff s

80. Determine the discharge Q (the quantity of water flowing in unit time) 
over a spillway of rectangular cross section. Height of spillway, h , width, b.
Ans. Q = - — pbh }r 2gh.

81. Determine the discharge of water Q flowing from a side rectangular 
opening of height a and width b , if the height of the open surface of the wa-

1/—  ̂̂
ter above the lower side of the opening is H. Ans . Q =  [H 2 — (H —a) 2 ].

3



CHAPTER XIII

DIFFERENTIAL EQUATIONS

SEC. 1. STATEMENT OF THE PROBLEM.
THE EQUATION OF MOTION OF A BODY WITH RESISTANC 

OF THE MEDIUM PROPORTIONAL TO THE VELOCITY. THE EQUATION
OF A CATENARY

Let the function y = f(x) reflect the quantitative aspect of some 
phenomenon. Frequently, it is not possible to establish directly the 
type of dependence of .y on x, but it is possible to give the rela
tionship between x and y and the derivatives of y with respect to 
x: y , y \  . . .»  y in). That is, we are able to write a differential 
equation.

From the relationship established between the variable x, y and 
the derivatives it is required to determine the direct dependence 
of y on x; that is, to find y = f(x) or, as we say, to integrate the 
differential equation.

Let us consider two examples.
Example 1. A body of mass m is dropped from some height. It is required 

to establish that law according to which the velocity v will vary as the body 
falls, if, in addition to the force of gravity, the body is acted upon by the 
decelerating force of the air, which is proportional to the velocity (with con
stant of proportionality k)\ in other words, it is required to find v =  f(t).

Solution. By Newton's second law

where ^  is the acceleration of a moving body (the derivative of the velocity
with respect to time) and F is the force acting on the body in the direction 
of motion. This force is the resultant of two forces: the force of
gravity mg and the force of air resistance, — kv , which has the minus sign be
cause it is in the opposite direction to that of the velocity. And so we have

m-j-t = m g — kv. (1)

This relation connects the unknown function v and its derivative — , which
a t

is a differential equation in the unknown function u. To solve the differen
tial equation is to find a function v =  f(t)  such that identically satisfies the 
given differential equation. There is an infinitude of such functions. The stu
dent can easily verify that any function of the form

v = C e ~ t (2)

satisfies equation (1) no matter what the constant C is. Which one of these
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functions yields the sought-for dependence of v on t? To find it we take ad
vantage of a supplementary condition: when the body was dropped it was im
parted an initial velocity v0 (which may be zero as a particular case); we as
sume this initial velocity to be known. But then the unknown function v =  
=  f(t) must be such that when f =  0 (when motion begins) the condition v =  v0 
is fulfilled. Substituting t =  0, v =  v0 into formula (2), we find

whence

>o = C + f .

c - vL - V 0 k  .

Thus, the constant C is found, and the sought-for dependence of v on / is

(2')

It will be noted that if £ =  0 (the air resistance is absent or negligibly 
small so that we can disregard it), then we have a result familiar from phys

ics *):
v =  v0 +  gt. (2•)

This function satisfies the differential equation 
(1) and the initial condition: v =  v0 when f =  0.

Example 2. A flexible homogeneous thread 
is suspended at two ends. Find the equation 
of the curve that it describes under^tts^own 
weight (it is the same as any suspended ropes, 
wires, chains, as for instance the caterpillar track 
of a tank between two supporting rollers).

Solution. Let M0(0, b) be the lowest point 
of the thread, and M an arbitrary point 

.244). Let us consider a part of the thread, 
0A4. This part is in equilibrium, the resultant 

of three forces:
1) the tension 71, acting along the tangent 

to the point M and forming an angle cp with 
the x-axis;

2) the tension H at M0 acting horizontally;
3) the weight of the thread ys acting vertically downwards, where sis  the

length of the arc M0M and y  is the linear specific weight of the thread.
Breaking up the tension T into horizontal and vertical components, we get 

the equations of equilibrium:
T cos (p =  / / f T sin(p =  Ys*

Dividing the terms of the second equation by the corresponding terms of 
the first, we obtain

Vtan <p=—-s.

*) Formula (2") can be obtained from (2') by passing to the limits
kt

lim If -[(«.-7 K =+ f l—+*•

(3)
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Now suppose that the equation of the sought-for curve may be written in 
the form y =  f(x). Here, f(x) is an unknown function that has to be found. 
It will be noted that

tan« P = /'M = g .
Hence,

dy= l_
dx a

where the ratio —  is denoted in terms of a.
Y

Differentiate both sides of (4) with respect to x:
d gy _  1 ds 
dx*~~ a dx * (5)

But, as we know (see Sec. 1, Ch. VT),

dx~

Substituting this expression into equation (5), we get the differential equa
tion of the sought-for curve:

dx* a V (6)

It expresses the relationship between the first and second 
the unknown function y.

Without going into the methods of solving the equations, 
that any function of the form

y

derivatives of 

we shall note

(7)

satisfies equation (6) for any values that Ct and C2 may assume. This is evi
dent if we put the first and second derivatives of the given function into (6). 
We shall indicate, without proof, that these functions (for different Ct and 
C2) exhaust all possible solutions of equation (6).

The graphs of all -the functions thus obtained are called catenaries.
Let us now find out how one should choose the constants C, and C2 so as 

to obtain precisely that catenary whose lowest point M has coordinates (0, b). 
Since for x =  0 the point of the catenary occupies the lowest possible position.
the tangent here
the ordinate is equal 

From (7) we find

is horizontal, ~r  =  0.dx Also, it is given that at this point
to b , y =  b.

Putting *=>0 here, we obtain 0 =  --- (eCi- e ~ Ci). Hence, C, =  0. 
If the ordinate of the point Af0 is b, .then y = b  when x =  0.
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From equation (7) we get & =  y ( l  +  1) +  C2, assuming x =  0 and C, =  0» 
whence C2 =  b — a. Finally we have

y ^ ^ ^ + e ' ^  + b-a .

Equation (7) assumes a very simple form if we take the ordinate of M0 equal 
to a. Then the equation of the catenary is

SEC. 2. DEFINITIONS

Definition 1. A differential equation is one which connects an 
independent variable, x, an unknown function, y = f(x), and its 
derivatives / ,  y”, . . . .  yn.

Symbolically, a differential equation may be written as follows:
F(x, y, y \  V . i/(n,) =  0

or
dy 
dx *

d2y 
dx2 ’ dxn) =  0 .

If the sought-for function y = f(x) is a function of one indepen
dent variable, then the differential equation is called ordinary. 
We shall deal only with ordinary differential equations*).

Definition 2. The order of a differential equation is the order 
of the highest derivative which appears.

For example, the equation
y' — 2xy2 + 5 = 0

is an equation of the first order.

*) In addition to ordinary differential equations, mathematical analysis 
makes a .study of partial differential equations. Such an equation is a relation 
between an unknown function z (that is, dependent upon two or several
variables x, y, . . .), these variables x , y ........... and the partial derivatives

r dz dz d2z .
of 5 * ’ dy'  l x 2’ etc’

The following is an example of a partial differential equation with 
unknown function z (xt y):

dz dz
dx J dy'

It is easy to verify that this equation is satisfied by the function z =  x2q2 
(and also by a multitude of other functions).

In this course we shall have little to do with partial differential equa- 
tions.
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The equation
y" +  ky' — by — sin;t =  0

is an equation of the second order, etc.
The equation considered in the preceding section in Example 1 

is an equation of the first order, in Example 2, one of the second 
order.

Definition 3. The solution or integral of a differential equation 
is any function y = f(x)y which, when put into the equation, 
converts it into an identity.

Example 1. Let there be an equation

The functions y =  sinx, y =  2 cos x, y =  3 sin* — cos x and, in general, 
functions of the form y =  C1 sin*, y =  C2cosx 
or

y =  Cj sin x +  C2 cos x
are solutions of the given equation for any choice of constants Cx and C2; 
this is evident if we put these functions into the equation.

Example 2. Let us consider the equation
y r x A'* y =  0.

Jts solutions are all functions of the form
y =  x2 +  Cx

where C is any constant. Indeed, differentiating the functions y =  x2-\~Cx, we 
find

y' =  2x +  C.

Putting the expressions for y and y' into the initial equation, we get the 
identity

(2x +  C) x— x2—x2—Cx =  0.
Each of the equations considered in Examples 1 and 2 has an infinitude of 
solutions.

SEC. 3. FIRST-ORDER DIFFERENTIAL EQUATIONS 
(GENERAL NOTIONS)

1. A differential equation of the first order is of the form
F(x, y, y') = 0. (1)

If this equation can be solved for y , it can be written in the form
y' = f(x, y)- (T)

In this case we say that the differential equation is solved for 
the derivative. For such an equation the following theorem, called 
ihe theorem of the unique existence of solution of a differential 
equation, holds.
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Theorem. If in the equation
y' = f(x, y)

the function f(x, y) and its partial derivative with respect to y,
, are continuous in some region D in an xy-plane containing

some point {x0, y0), then there is only one. solution to this equation 
y =  <p (jc) which satisfies the condition x = xft, y — y0. The geometric 
meaning of the theorem consists in the fact that there exists one 
and only one such function y — f.p(x), the graph of which passes 
through the point (xa, t/0).

It follows from this theorem that equation (T) has an infinitude 
of various solutions [for example, a solution the graph of which 
passes through (x0, £/0); another solution whose graph passes through 
(*0, f/J; through (*0, yt), etc., provided these points lie in the 
region £>].

The condition that for x = xt the function y must be equal to 
the given number y0 is called the initial condition. It is frequent
ly written in the form

y | x=x0 =  */„•

Definition 1. The general solution of a first-order differential 
equation is the function

y = <f(x, C), (2)

which depends on a single arbitrary constant C and satisfies the 
following conditions:

a) It satisfies the differential equation for any specific value of 
the constant C.

b) No matter what the initial condition y = y„ for x = xa, that 
is, {y)x=x, = yt, it is possible to find a value C =  Ct such that the 
function y=q>(x, C0) satisfies the given initial condition. It is 
assumed here that the values x# and y„ belong to the range of 
the variables x and y in which the conditions of the existence 
theorem are fulfilled.

2. In searching for the general solution of a differential equation 
we often arrive at a relation like

<D(x, y,  C) =  0, (2 ')

which is not solved for y. Solving this relationship for y, we get 
the general solution. However, it is not always possible to express 
y from (2') in terms of elementary functions; in such cases, the 
general solution is left in implicit form.



First-Order Differential Equations 475

An equation of the form 0 (xt y , C) =  0 which gives an implicit 
general solution is called the complete integral of the differential 
equation.

Definition 2. A particular solution is any function y = y(x, C0) 
which is obtained from the general solution y = y(x, C), if in the 
latter we assign to the arbitrary constant C a definite value C =  C0. 
In this case, the relation ®(jc, y, C0) =  0 is called a particular 
integral of the equation.

Example 1. For the first-order equation

<*yz=z_ ±
dx x

Q
the general solution is a family of functions y =  —  \ this can be checked by
simple substitution in the equation.

Let us find a particular solution that will satisfy the following initial 
condition: y0 =  1 when x0 =  2.

C CPutting these values into the formula y =  —  t we have l = - y  or C =  2.
2

Consequently, the function y = — will be the particular solution we are 
seeking.

From the geometric viewpoint, the general solution (complete 
integral) is a family of curves in a coordinate plane, which family 
depends on a single arbitrary constant C (or, as it is common 
to say, on a single parameter C). These curves are called integral 
curves of the given differential equation. A particular integral is 
associated with one curve of this family that passes through a 
certain given point of the plane.

Thus, in the latter example, the complete integral is geometri-Q
cally depicted by a family of hyperbolas y = —  while the partic
ular integral defined by the given initial condition is depicted 
by one of these hyperbolas passing through the point Af0(2, I). 
Fig. 245 shows the curves of a family that are associated with
certain values of the parameter: C =  —, C = 1, C =  2, C = — l,etc.

To make the reasoning still more pictorial, we shall from now 
on say that not only the function y = cp(jc, C0) that satisfies the 
equation but also the associated integral curve is a solution of 
the equation. We will therefore speak of a solution passing through 
the point (*„, t/0).

Note. The equation ^x = —~  has no solution passing through a
point lying on the y-axis (see Fig. 245). This is because the right
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side of the equation is not defined for x = 0 and consequently is 
not continuous.

To solve (or as we frequently say, to integrate) a differential 
equation means:

a) to find its general solution or complete integral (if the initial 
conditions are not specified) or

b) to find a particular solution of the equation that will satisfy 
the given initial conditions (if such exist).

3. Let us now give a geometric interpretation of a first-order 
differential equation.

Let there be a differential equation solved for the derivative

rx = f(x, y) (1')

and let y = y(x, C) be the general solution of this equation. This 
general solution determines the family of integral curves in the 
ju/-plane.

For each point M with coordinates x and y, equation (T)
defines the value of the derivative — , or the slope of the tangent
line to the integral curve passing through this point. Thus, the 
differential equation (T) yields a collection of directions or, as 
we say, defines a direction-field in the xp-plane.
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Consequently, from the geometric point of view, the problem 
of integrating a differential equation consists in finding the curves,

the direction of the tangents to which coincides with the direc
tion-field at the corresponding points.

Fig. 246 shows a direction-field defined by the differential 
equation

dy= _y_
dx x

4. Let us now consider the following problem.
Let there be given a family of functions that depends on a 

single parameter C:
y =  <p(*, Q. (2)

and let only one curve of this family pass through each point of 
the plane (or some region in the plane).

For what differential equation is this family of functions a com
plete integral?

From relation (2), differentiating with respect to x, we find

f x = y ’A x ,C ) .  (3)

Since only one curve of the family passes through each point 
of the plane, for every number pair x and y, a unique value of
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C is determined from equation (2). Putting this value of C into
(3) we find -  as a function of x and y. This is what yields

the differential equation that is 
satisfied by every function of 
the family (2).

Hence, to " establish a rela
tionship between x, y and ^  ,
that is, to write a differential 
equation whose general solution 
(complete integral) is given by 
formula (2), one has to eli
minate C from relations (2) 
and (3).

Example 2. Find the differential 
Fig. 247. equation of the family of parabolas

y =  Cx* (Fig. 247).
Differentiating the equation of the family with respect to x , we get

Putting the value C==-^ in*0 this equation from the equation of the fam
ily, we obtain a differentiable equation of the given family:

= 2y 
dx x

This differential equation is meaningful when x^O; which is to say, in 
any region not containing points on the y-axis.

SEC. 4. EQUATIONS WITH SEPARATED AND SEPARABLE 
VARIABLES. THE PROBLEM OF THE DISINTEGRATION 

OF RADIUM

Let us consider a differential equation of the form

=  ( ! )

where the right side is a product of a function dependent only 
on x by a ’function dependent only on y . We transform it in the 
following manner assuming that (r/) =̂= 0:

—  dy = fl (x)dx. O')

Considering y a known function of x, equation (1') may be regard
ed as the equality of two differentials, while the indefinite
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integrals of them will differ by a constant term. Integrating the 
left aide with respect to y and the right with respect to x, we 
obtain

$ m d y = ^ ' M d x + c

which is a relationship connecting 
the solution of y, the independent 
variable x, and an arbitrary con
stant C; we have thus obtained a 
general solution (complete integral) 
of equation (1).

1. A type (T) differential equa
tion

M(x)dx +  N(y)dy = 0 (2)
is called an equation with separated variables. From what has 
been proved, its complete integral is

J M (x) dx + ^N  (y) dy = C.

Example 1. Given an equation with separated variables:
xdx +  y dy =  0.

Integrating we get the general solution:

Since the left side of this equation is nonnegative, the right side Is also 
nonnegative. Denoting 2Ct in terms of C*, we will have

*2 + ̂ = C 2.
This is the equation of a family of concentric circles (Fig. 248) with 

centre at the coordinate origin and radius C.

2. An equation of the form
M l (x)N1(y)dx + Mi (x)Nt (y)dy = 0 (3)

is called an equation with variables separable. It can be reduced*) 
to an equation with separated variables by dividing both sides 
by the expression Nt (y)Mt (x):

Mt (x) Nt (if) 
Nt (y) Mt (x) dx-\ Mt {x) Nt (y) . 

NiW A4.W y

*) These transformations are permissible only in a region where neither 
N.t (y). nor M,(*) vanish.
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or
A M * )

a m * )
d x NAy)

Nxiv)

r

d y  =  0,

that is, to an equation like (2).

Example 2. Given the equation
dy___ y_
dx x

Separating variables, we have
dy  __ dx
~y

Integrating we find

which is

In | y | =  — In | x | +  In | C | *) or In | y  | =  In C_
x

whence we get the general solution: # =  — . 
Example 3. Given the equation

(1 +  x) y dx +  (1 — y) x dy =  0.

Separating variables we have

( 7  +  ' )  «* +  ( } - ' ) * - « •

Integrating we obtain
In | x | +  * +  In \y | — t/ =  C or \n\xy\ -\ -x—y =  C.

This relation is the complete integral of the given equation.
Example 4. It is known that the decay rate of radium is directly propor

tional to its quantity at each given instant. Find the law of variation of a 
mass of radium as a function of the time if at / =  0 the mass of radium was 

The decay rate is determined as follows. Let there be mass m at time t 9 
and mass m +  Aw at time t +  At. During At mass Am decays. The ratio
^  is the mean rate of decay. The limit of this ratio as A t —*0

.. A m dm lim — == —  
kt -*■ o &t dt

is the rale of decay of radium at time t.

*) Having in view subsequent transformations, we denoted the arbitrary 
constant by In | C |, which is permissible since In | C | (when C^O) can take 
on any value from — oo to -J-oo.
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It is given that
dm
~dt =  — km, (4)

where k is the constant of proportionality (k>0).  We use the minus sign 
because the mass of radium diminishes with increasing time and therefore

Equation (4) is an equation with 
variables separable. Let us separate the 
variables:

dJ ± = - k d t .  m

Solving the equation we obtain 

In m — — kt — In C

whence
i m usIn £ - =  — kt,

m =  Ce -kt
(5)

Since at £ =  0 the mass oh radium was mq, C must satisfy the relationship

mQ =  Ce k° =  C.

Putting the value of C into (5) we get the desired mass of radium as a fun
ction of time (Fig. 249):

m =  m0e . (6)
The constant k is determined from observations as follows. During time ta 
let a% of the original mass of radium decay. Hence, the following relation
ship is fulfilled:

whence

or

( ‘ - r So) " 1’
-kt {

=  m0e

JZII01

100 J

k = — ?- In ( ] ---- — ^t0 \ ioo y •

Thus, it has been determined that for radium k =  0.00044 (the unit of 
measure of time is one year).

Putting this value of k into (6) we obtain
— 0 . 0 0 0 4 4 /m =  m0e

Let us find the radium half-life, which is the interval of time during 
which half of the original mass of radium decays. Putting in place of tn

16— 3388
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in the latter formula, we get an equation for determining the half-life Ti
m - o .o o o - u r
T  =  m0e

whence
— 0.00044 71 =  — In 2

or
In 2  

0.00044 =  1,590 years.

Note. The simplest differential equation with separated variables is one 
of the form

^ | =  /(x ) or dy =  f (x) dx.

Its complete integral is of the form

y— 5 f (x )dx  +  c.

We dealt with the solution of equations of this kind in Ch. X.

SEC. 5. HOMOGENEOUS FIRST-ORDER EQUATIONS

Definition 1. The function f(x, y) is called a homogeneous 
function of degree n in the variables x and y , if for any X the 
following identity is true:

f(Xx, Xy) = Xnf(x, y).

Example 1. The function f(x, y ) = ^ / x >+ y > is a homogeneous function 
of degree one, since

f(Xx, Xti) =  Y (*•*)’ + 0 - y f ~ X ] / x3 +  i/J =  Xf (x, y).

Example 2. f(x, y) =  x y — y2 is a homogeneous function of degree two, 
since (kx) (Xy) — (Xy)2 =  X2 [xy—y2].X̂_

Example 3. f (x , y) =  ■ ■■ is a homogeneous function of zero degree,

since = * ~ y ' ■ that is- f(X*> Xy) =  i(x, y) or f(Xx, Xy) =(ax)(Ay) xy
=  X°f(x, y).

Definition 2. An equation of the first order

Tx=f(*.  y) . (i)

is called homogeneous in x and y if the function f(x, y) is a ho
mogeneous function of zero degree in x and y.
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Solution of a homogeneous equation. It is given that f(Xx, Xy) =  
=  /(*> y)• Putting in this identity, we have

fix, y) = f ( l ,  .

Thus, a homogeneous function of zero degree is dependent only 
on the ratio of the arguments.

In this case, equation (1) takes the form

d ')
Making the substitution

we get
« =  -  , or y = ux,

dy , du
Tx = u + Tx x '

Putting this expression of the derivative into equation (l')> wo 
obtain

u + x -£  = f (  1, «).

This is an equation with variables separable: 
du £ /1  x du

= «)—■« or

Integrating we find

_____________dx
f (1, u) — u x

c =  r **+c.
J f ( U u ) —u J x

Putting the ratio ~  in place of u after integration, we get 
the integral of equation (1').

Example 4. Given the equation
dy xy
dx~~ x2—y2 *

On the right is a zero-degree homogeneous function, which means that wo 
have a homogeneous equation. Making the substitution ~  =  k we have

dy , du . y — ux\ —  =  u +  x-r- , v dx ‘ dx

du u
u + * - 7 Z  =dX~ l — U*’

,du__ u8 
d x ~  1— u2 *

16*
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Separating variables we obtain

= *£.t ( L  L ) du=*£,
U* X  \ U 3 U J X  ’

Whence, integrating, we find

— 2^5 — !n \u | =  ln \x | +  ln | C| or — ̂  =  ln |u * C |.2 u*
Substituting u =  — t we get the general solution of the original equation:

"“ 2̂ 2 “  ln I Cy I
It is impossible here to get y as an explicit function of x in terms of jele- 
mentary functions. Incidentally, it is very easy to express x in terms of y :

x =  yV  —2C In | Cy\.

Note. An equation of the type
M(x, y)dx + N(x , y)dy = 0

will be homogeneous if, and only if, M (xy y) and N(xt y)are 
homogeneous functions of the same degree. This follows from the 
fact that the ratio of two homogeneous functions of the same de
gree is a homogeneous function of degree zero.

Example 5. The equations
(2* +  3*/) dx  +  (x— 2y) dy =  0, 

y 2) dx — 2xy dy =  Q
are homogeneous.

SEC. 6 . EQUATIONS REDUCIBLE TO HOMOGENEOUS 
EQUATIONS

Equations of the following type are reducible to homogeneous 
equations:

dy __ a x + b y  +  c ,jv
dx a ^  +  b^y +  Ci 9 '

If cl = c = 01 then equation (1) is obviously homogeneous. Now let 
c and c, (or one of them) be different from zero. Change the va
riables:

x =  xx +  h, y =  yx +  k.
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Putting into (2) the expressions x, y, and' , we obtain
dy ,   ax, +  by, +<i/i +  bk +  e
dx, a,x,-\- b,y,-{-a,h-[- b,k-{-c.

Choose h  and k  so that the following equalities are fulfilled:
ah-\-bk + c = 0, 1 

Q,h +  b,k -t-c, =  0. j (4)

In other words, define h and k as solutions of a system of equa
tions (4). Equation (3) then becomes homogeneous:

d y , _  ax, -j- by, 
dx, a , x , + b , y , ’

Solving this equation and passing once again to x and y by 
formulas (2), we obtain the solution of equation (1).
The system (4) has no solution if

i. e., ab,=a,b. But if ^  that is> o., = hi, b1 = Xb,. and,
hence,- equation (1) may be transformed to

dy
dx

Then by substitution

(ax +  by) +  c 
■ k ( a x - \ - b y )+ c t ‘

z = ax + by
and the equation is reduced to one with variables separable. 

Indeed,
dz
dx =  a +  6 dy

dx
whence

d y _ 1 dz a
l x ~ ~ b  d x ~ T  #

(5)

(6)

(7)

Putting into (5) expressions (6) and (7), we get
1 dz a _ 2 +  c

, b dx b \z- \ -c,  ’
which is an equation with variables separable.

The device applied to integrating equation (1) is also applied 
to the integration of the equation

d y _  f /  a x + b y + c  \  
dx ' \ a ,x  +  b,y + c , J '

where f  is an arbitrary continuous function.



486 D i f f e r e n t i a l  E q u a t i o n s

Example 1. Given the equation
dy _ x +  y —3 
dx x —y — 1 ’

To convert it into a homogeneous equation, make the substitution x = 
y =  y  1 +  fc. Then

d y i_xx yx h -f~ &—3
dxx xl ^-yl + h  — k — 1 *

Solving the set of two equations
/i +  /e — 3 =  0 ; h — k — 1 = 0 ,

we find
h =  2, k =  \.

As a result we get the homogeneous equation

dx i
which we solve by substitution:

-  = u ;

then
d*/, ,s du

y>=ux'; d 7 r tt+Xtd z
u +  x, rfu _  1 +  u

dxx 1 —u 9
and we get an equation with variables separable:

du 1 -fw*
1 dxx 1 — u #

Separating the variables, we have
1—u , dx,
1 +a

Integrating we find
arc tan u— y  In (1 -f- w*) =  ln x, -f In C, 

arc tan u =  In ( ] /T +  u*x,C)

C*. K T H ? = e arc Un “ . 
Putting — in place of u, we obtain

------   aarc tan ^

Passing to the variables x and y t we finally get

C Y ( * - 2 ) * + ( 4 — l ) ' = e arc tan

•*i + A;



First-Order Linear Equations 487

Example 2 . The equation

y  =
2x -f y — 1

4x-t-2*/+5
cannot be solved by the substitution x =  xl +  ht y =  y l ’\~k, since in this case 
the set of equations that serves to determine h and k is insolvable (here, the 

12 IIdeterminant L £ °f the coefficients of the variables is equal to zero).
This equation may be reduced to one with variables separable by the 

substitution
2 x +  y =  z.

Then * /'= z '— 2 and the equation is reduced to the form

2' _o— 2 ^Z~2z+l
or

/ _  5z + 9 
~~2z +  5 ’

Solving it we find

T z  + 5 g , n l 5 z + 9 l = * + c -

Since z =  2x +  y, we obtain the final solution of the initial equation in the 
form

(2x-\-y) in | lOx +  5f/-|-91 =x-{ -C

or
10*/—5* +  7 In | 10  ̂+  5*/ +  9 |= C lf 

that is, as an implicit function y  of x .

SEC. 7. FIRST-ORDER LINEAR EQUATIONS

Definition. A first-order linear equation is an equation that 
is linear in the unknown function and its derivative. It is of the 
form

% + P(x)y = Q(x), (1)

where P (x) and Q (*) are given continuous functions of x (or are 
constants).

Solution of linear equation (1). Let us seek the solution of 
equation (1) in the form of a product of two functions of x :

y-=u(x) v (x). (2)
One of these functions may be arbitrary, while the other will 

be determined from equation (1).
Differentiating both sides of (2), we find



488 Differential Equations

Putting the expression obtained of the derivative into (1), we 
have

dv  , du , n ~ 
u Tx +  ̂ v +  Puv = ^

or

“ ( n + f’” ) + l’ c =<3- ®.
Let us choose the function v such that

r , + p ” - < 4>
Separating the variables in this differential equation in the func
tion v, we find

— = — P dx.
v

Integrating we obtain
— In C, -f in v =  —J P dx

or
'  „ - f  P d xv = Cxe J

Since for us it is sufficient to have some nonzero solution of 
equation (4), we take, as the function v(x),

v (x) =  e~$ Pdx, (5)
where J P dx is some antiderivative. Obviously, v(x)=£0.

Putting the value of v (x) which we have found into (3), we 
get (noting that ^ + P u  =  0):

v(x)px =  Q(x),

or
du Q (x) 
cfx“ t;(x) »

whence

u = l W > d x + c '
Substituting- into formula (2), we finally get
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or
y = v ( x ) ^ ^ ^ d x - \ ~ C v ( x ) .  (6)

Note. It is obvious that expression (6) will not change if in 
place of the function v (x) defined by (5) we take some function 
vl (x) = Cv (x). Indeed, putting vt (x) in (6) in place of i>(x), we 
get

y = Cv(x) { dx = CCv (x).J Cv (x)

The C's in the first term cancel out; in the second term the product 
CC is an arbitrary constant, which we shall denote by C, and we 
•again arrive at expression (6). If we denote ^ —~ d x  = (f{x), then 
expression (6) will take the form

y = v(x)y(x) + Cv(x). (6')
It is obvious that this is a complete integral, since C may be 
chosen in such manner that the initial condition will be fulfilled;

when x =  x0, y = y0.
The value of C is determined from the equation 

f/. =  y(*o)900 +  Cy(*«)-
Example. Solve the equation

d y ___ 2_
dx x - \ - \ ^

Solution. Putting

(* + !)*.

we have
y =  uv

du dv , du— b —  v. dx dx dx

Putting the expression —  into the original equation, we obtain

dv . du 2 , ,
u - 3— f - - r -  v ----------- ;— r  uv  =  (x  +  1) * ,dx dx x +  i

( dv 2 \  , du . , . . .
“ (5 T ~ ^ + ryJ + t' s = (JC+1)

To determine v we get the equation

dv 2

(7)

dx jc +  1 o = 0 ,
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that is,
dv _  2dx
T ~ x  + T’

whence
In v =  2 In (* +  1) or o =  ( * - f l ) 2.

Putting the expression of the function v into equation (7), we get the 
following equation for ui

whence
(*+i)S£ =(*+ i)‘ or S =(*+ i)’

u — (x+\)2
2 +  C.

Thus, the complete integral of the given equation will be of the form

The family obtained is the general solution. No matter what the initial 
condition (*0, y0)t where * 0 1, it is always possible to choose C so that
the corresponding particular solution should satisfy the given initial condi
tion. For example, the particular solution that satisfies the condition yQ =  3 
when * 0 =  0 is found as follows:

.(0+')! + C(0+ l)i;3 = i C- 1L~ 2 '
Consequently, the desired particular solution is

+ -(*  + l)2

However, if the initial condition (*0, y0) is chosen so that * 0 =  — 1, we will 
not find the particular solution that satisfies this condition. This is due to2
the fact that when *Q =  — 1 the function P(x) = ------ —r is discontinuous0 Jt+i
and, hence, the conditions of the theorem of the existence of a solution are 
not observed.

SEC. 8 . BERNOULLI'S EQUATION

We consider an equation of the form510 

^x + P(x)y = Q(x)yn, ( 1 )

*) This equation results from the problem of the motion of a body 
provided the resistance of medium F depends on the velocity: F =  X,1u + ^ tw".
The equation of motion will then assume the form m ~  =  — —X2vn or
dv ^  
dt m v — K

m
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where P (x) and 0(x) are continuous functions of x (or constants), 
and n =£ 0 and ti =£ 1 (otherwise we would have a linear equation).

This equation is called Bernoulli's equation and reduces to 
a linear equation by the following transformation.

Dividing all terms of the equation by ynt we get

y - nd/ x + p y~n+' = Q. (2)
Making the substitution 

we have
* =  y~

dy 
dx '

Substituting into (2), we get

75 +  (—» +  l)Pz = (— n+l)Q .
This is a linear equation.

Finding its complete integral and substituting the expression 
y-n+i for 2> we ge{ complete integral of the Bernoulli equation.

Example. Solve the equation

Tx +xy=x'y'-
Solution. Dividing all terms by y*f we have 

y - ' y '  +  x y - t  — x*.
Introducing the new function 

we get
z = y— 2

dz
dx

Substituting into equation (4), we obtain

— —2*z = — 2*3, dx
This is a linear equation.

Let us find its complete integral:

z dz dv , dutiv; —  =  u-7-  +  -T- v, dx dx dx

Put expressions z and ^  into (5):

(3)

(4)

(5)
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or

u { ^ - 2xv) + vTx— 2xi 
Equate to zero the expression in the brackets;

^ —2*o =  0 ; —  =  2x dx\dx v

lno =  *2; v =  e*a.
For u we get the equation

e*a^  =  _ 2r>. 
dx

Separating variables, we have

du —— 2e~x l x* dx, u =  — 2 J e~x* x* dx-\-C.

Integrating by parts, we find
u =  Jc*e- *, +  e - *> +  C; 
z =  u v = x ‘ + l + C e - x\

Consequently, the complete integral of the given equation is

y ~ 2= x 2+ l  + C e — or' y = - y ----- 1
V jc* + l+ C e-* *

Note. Just as was done for linear equations, it may be shown 
that the solution of the Bernoulli equation may be sought in the 
form of a product of two functions:

y=u(x)v (x ) ,
where v(x) is some nonzero function that satisfies the equation 
v' -(- Pv =  0.

SEC. 9. EXACT DIFFERENTIAL EQUATIONS

Definition. The equation
M(x, y)dx + N(x, y)dy = 0 (1)

is called an exact differential equation if M(x, y) and N (x, y) are 
continuous differentiable functions for which the following rela
tionship is fulfilled

d_M_dN
d y ~ d x  ’ W

and ^  and ^  are continuous in some region.
Integrating exact differential equations. We shall prove that if 

the left side of equation (1) is an exact differential, then condi-
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tion (2) is fulfilled, and, conversely, if condition (2) is fulfilled 
the left side of equation (1) is an exact differential of some fun
ction u(x, y). That is, equation (1) is an equation of the form

du (x, y) =  0 (3)

and, consequently, its complete integral is
u(x, y) — C.

Let us first assume that the left side of (1) is an exact diffe
rential of some function u(x, y); that is,

M(x, y)dx + N(x, y)dy = du = d£ d x  + ~dy \

then

(4)

Differentiating the first relationship with respect to y, and the 
second with respect to x, we obtain

dM _  d‘u . dN d*u 
dy dxdy '  dx dy dx '

Assuming continuity of the second derivatives, we have
dM dN 
dy ~ d x  ’

that is, (2) is a necessary condition for the left side of (1) to be 
an exact differential of some function u(x, y). We shall show that 
this condition is also sufficient: if (2) is fulfilled then the left 
side of (1) is an exact differential of some function u(x, y).

From the relation

»>
we find

X

« =  $ M(x, y)dx +  q>(y),
X ,

where xt is the abscissa of any point of the domain of existence 
of the solution.

When integrating with respect to x we consider y constant, and 
therefore the arbitrary constant of integration may be dependent 
on y.. Let us choose a function <p (y) so that the second of the
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relations (4) is fulfilled. To do this, we differentiate*) both sides 
of the latter equation with respect to y and equate the result to 
N(x, y):

% = l w dX + (f' {y) = N X̂’ y)] *0
1 . . dM dNbut since =  we can write

(y) = N>

that is, N(x, y)\*ti> +  <p' (y) = N(x, y) 
or

N{x, y)—N (xt, y) + (f' (y) = N (x, y).
Hence,

q>'(y) =  tf(*„ y)
or

y

ff>(f/)= s N(x„ y)dy + Ci.
Vo

Thus, the function u(x, y) will have the form
x V

u= \ M ( x , y ) d x + ^ N ( x Q, y)dy + Cx.
*0 i'o

Here P(x„, y0) is a point in the neighbourhood of which there 
is a solution of the differential equation (1).

Equating this expression to an arbitrary constant C, we get the 
complete integral of equation (1):

x y

J M(x, y ) d x + \  N (x0t y)dy = C. (5)
x0 Vo

*) The integral J M (x, y )dx  is dependent on y.  To find the derivative of 

this integral with respect to y t differentiate the integrand with respect to y :
x X

M( xt y) dx =  ^ -fy dx. This follows from Leibniz’ theorem for differen

tiating a definite integral with respect to a parameter (see Sec. 10, Ch. Xl)f
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Example. Given the equation
2x y*—3x2
? * * + * - ? - dv=Q-

Let us check to see whether this is an exact differential equation. 
Denoting

2x ,, y 2—3x2M =  — \ N =  *-
we have

y '

dJA 
dy '

6* . dN_ 
y4 ' d x m

6* 
77* *

For y ^  0, condition (2) is fulfilled. Hence, the left side of this equation is 
an exact differential of some unknown function u(x, y). Let us find this 
function.

Since ^  =  it follows that dx y 8

« = jprf-« + lP(y) = ̂ a+<P(i/).

where q> (y) is an as yet undefined function of y.
Differentiating this relation with respect to y and noting that

we find

hence

dy y*
3x* . , y ‘—3x‘

9 'W —i .  »<»>— J -+ c"y y
X 2 1

u {x, y) =  - a------- 1- Cx.y J y* y 1
Thus the complete integral of the initial equation is

4 - ± = c .  
y *  y

SEC. 10. INTEGRATING FACTOR

Let the left side of the equation
M(x, y)dx + N{x, y)dy = 0 (1)

not be an exact differential. It is sometimes possible to choose 
a function p(x, y) such that after multiplying all terms of the 
equation by it the left side of the equation is converted into an 
exact differential. The general solution of the equation thus ob
tained coincides with the general solution of the original equation; 
the function p(*, y) is called the integrating factor of equation (1).
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In order to find the integrating factor fx, do as follows. Mul
tiply both sides of the given equation by the as yet unknown 
integrating factor p:

pAf dx + pjV dy = 0.
For this equation to be an exact differential equation, it is neces
sary and sufficient that the following relationship be fulfilled:

< ? ( p M )  _  d ( p J V ) . 
dy dx ’

that is,
m -i- M — — u —  4- —^  dy +  M dy ~  dx +  ' V dx ’

or

After dividing both sides of the latter equation by jx, we get
din |j.__jy din \x _  d N__dM

dy dx dx dy (2)

It is obvious that any function jj. ( at, y) that satisfies this equa
tion is the integrating factor of equation (1). Equation (2) is 
a partial differential equation in the unknown function p depen
dent on the two variables x and y. It can be proved that under - 
definite conditions it has an infinitude of solutions and that, con
sequently, equation (1) has an integrating factor. But in the gene
ral case, the problem of finding p(*, y) from equation (2) is har
der than the original problem of integrating equation (1). Only 
in certain particular cases does one manage to find the function 
P (x, y)-

For instance let equation (1) admit an integrating factor depen
dent only on y.  Then

^  =  0 
OX

and to find p we obtain an ordinary differential equation
dN dM 

5 In u dx dy 
~Ty M '

from which we determine (by a single quadrature) lnp, and, hence, 
p as well. It is clear that this may be done only if the expression 
d N _ d M

9X M d'J~ *s no* dependent on *•
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dN dM

Similarly, if the expression -dx N~dy- is not dependent on y but
only on xy then it is easy to find an integrating factor that 
depends only on x.

Example. Solve the equation
(y +  xy2) dx—x d y  =  0 . 

Solution. Here, M =  y +  xy2; N =  — x;
dM=  1 +  2 xy\ dM dN_ 

dy dx

Thus, the left side of the equation is not an exact differential. Let us see 
whether this equation allows for an integrating factor dependent only on y or 
not. Noting that

dN___dM
dx dy _ — 1 — 1 —2xy _  2

M “  y + x y 2 V  9

we conclude that the equation permits of an integrating factor dependent 
only on y . We find it:

d In p _  2

~~d~y ~ 7 ;
whence

In (x = — 2 In y,  i. e., H =  - j .
y

After multiplying through by the integrating factor p, we obtain the equation

( j +x ) dx- f * dy=°

as an exact differential equation =  — . Solving this equation,
we find its complete integral:

or
7 + T  + C=°-

_  2x 
y ~  x * + 2C •

SEC. 11. THE ENVELOPE OF A FAMILY OF CURVES

Let there be an equation of the form
® ( x , y , C )  = 0 , (1)

where x and y are variable Cartesian coordinates and C is a para
meter that can take on a variety of fixed values.
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For each given value of the parameter C, equation (1) defines 
some curve in the xy-plane. Assigning to C all possible values, 
we obtain a family of curves dependent on a single parameter,

or using the more common term, a one- 
parameter family of curves. Thus, 
equation (1) is the equation of a one- 
parameter family of curves (because it 
contains only one arbitrary constant).

ky

Fig. 251.

Definition. The line L is called the envelope of a one-parameter 
family of lines if at each point it touches some line of the family, 
and different lines of the given family touch the line L at differ
ent points (Fig. 250),

Example I. Consider the family of lines
(x—C)2-\-y2 — R*t

where R is a constant and C is a parameter.
This is a family of circles of radius R with centres on the jt-axis. This 

family will obviously have as envelopes the straight lines y =  R and u — — R 
(Fig. 251).

Finding the equation of the envelope of a given family. Let
there be given a family of curves,

y, Q = o, (l)
that depend on the parameter C.

Let us assume that this family has an envelope whose equation 
may be written in the form y = <p(x), where q)(jr) is a continuous 
and differentiable function of jc. We consider some point M(xt y) 
lying on the envelope. This point also lies on some curve of the 
family (1). To this curve there corresponds a definite value of the 
parameter C, which value is determined from equation (1), for 
given (x, y): C =  C(x„ ty). Thus, for all points of the envelope the 
following equality is fulfilled:

0(*, y, C(x, f/)) =  0. (2)
Suppose that C(x, y) is a differentiable function that is not con
stant in any interval of the values of x and y under consideration.
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From equation (2) of the envelope we find the slope of the tan
gent to the envelope at the point M{x, y). Differentiate (2) with 
respect to x considering that y is a function of x: 

a® ra® aoac] , _ n
dx +  dC dx +  [d</ + dc dy J y ~  U

or
<D; +  <D;i/' + O c [ g - F - i / ' ] = 0 .  (3)

The slope of the tangent to the curve of the family (1) at the 
point M (*, y) is found from

<t>x + Q>W = 0 (4)
(on this curve, C is constant).

We assume that Q)'y=f=0 , otherwise we would consider x as the 
function and y as the argument. Since the slope k of the envelope 
is equal to the slope k of the curve of the family, from (3) and
(4) we obtain

But since on the envelope C (x, y) =£ const, it follows that
dC . dC i , n 
dx +  dy y  ^

and so for its points the following equation holds:
0c(*. y, C) =  0. (5)

Thus, the following two equations serve to determine the envelope:
®(jc, y, C) =  0, \ ^

y, C) =  0. J
Conversely, if, by eliminating C from these equations, we get an 
equation y = q>(x), where <p(;e) is a differentiable function, and 
C =jfc const on this curve, then r/ =  (jc) is the equation of the 
envelope.

Note 1. If for the family (1) a certain function y = <p(x) is the 
equation of the locus of singular points, that is, of points where

=  0 and0„ =  O, then the coordinates of these points also satisfy 
equations (6).

Indeed, the coordinates of singular points may be expressed 
in terms of the parameter C that enters into equation (1):

x = X(C), y = \i(C). (7)
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If these expressions are substituted in equation (1), we get an 
identity in C:

<DIMC), P(C), C] =  0.
Differentiating this identity with respect to C, we obtain

Since for any points the equalities (D* =  0, (Dy =  0, are fulfilled, 
it follows that for them the equality O c^O  is also fulfilled.

We have thus proved that the coordinate of singular points 
satisfy equations (6).

Summarising, equations (6) define either the envelope or the 
locus of singular points of the curves of the family (1), or a 
combination of both. Thus, after obtaining a curve that satisfies 
equations (6), one has further to find out whether it is an envelope 
or the locus of singular points.

Example 2. Find the envelope of the family of circles 
(X—C)z +  y 2 — R2 =  0 ,

that are dependent on the single parameter C.
Solution. Differentiating the equation of the family with respect to C, 

we get
2 (x—C) =  0.

Eliminating C from these two equations, we obtain the equation 
y 2 — R2 =  0 or y =  ±  R.

It is clear, by geometric reasoning, that the pair of straight lines is the 
envelope (and not the locus of singular points, since the circles of a family 
do not have singular points).

Example 3. rind the envelope of the family of straight lines
x cos a -f y sin a — p =  0 (a)

where a is a parameter.
Solution. Differentiating the given equation of the family with respect 

to a, we have
—x sin a +  y cos a =  0 . (b)

To eliminate the parameter a from equations (a) and (b), multiply the 
terms of the first by cos a, and of the second, by sin a, and then subtract 
the second from the first; we will then have

x =  p cos a.

Putting this expression into (b), we find
y =  p sin a.

Squaring the terms of the two latter equations and adding termwise, we get
x2 + y2 = p2.
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This is a circle. It is the envelope of the family (and not the' locus of singu
lar points, since straight lines do not have singular points) (Fig. 252).

Example 4. Find the envelope of the trajectories of shells fired from a gun
with velocity v0 at different angles of incli
nation of the barrel to the horizon. We shall 
consider that the gun is located at the

coordinate origin and that the trajectories of the shells lie in the *#-.plane 
(air resistance is disregarded).

Solution. First find the equation of the trajectory of the shell for the case 
when the barrel makes an angle a with the positive ,v-axis. In flight, the 
shell participates simultaneously in two motions: a uniform motion with 
velocity v0 in the direction of the barrel and a falling motion due to the 
force of gravity. Therefore, at each instant of time Hhe position of the shell M 
(Fig. 253) will be defined by the equations

x = v 0t cos a,

. . gt2 y =  v0t sin a — .

These are parametric equations of the trajectory (the parameter is the time t). 
Eliminating t , we get the equation of the trajectory in.the form

y =  x tan a g*2 
2v\ cos2a

o
Finally, introducing the notation tana =  £, - ~ -  =  a, we 6e*

y  =  kx —  ax2(\ +k*).  (8)

This equation defines a parabola with vertical axis passing through the origin 
and with branches downwards. We obtain a variety of trajectories for the 
different values of k. Consequently, equation (8) is thfe equation of a one- 
parameter family of parabolas, which are the trajectories of a shell for 
different angles a and for a given initial velocity v0 (Fig. 254).

Let us find the envelope of this family of parabolas. Differentiating with 
respect to k both sides of (8), we have

x — 2akx2 =-0. (9)

Eliminating k from equations (8) and (9), we get
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This is the equation of a parabola with vertex at the point ^0, ~  j , the
axis of which coincides with the y-axis. It is not a locus of singular points 
[since parabolas (8) do not have singular points]. Thus, the parabola

is the envelope of the family of trajectories. It is called a safety parabola 
because no point outside it is in reach of a shell fired from a given gun with 
a given initial velocity v0.

Example 5. Find the envelope of a family of semicubical parabolas
y * - ( x - C )2 =  0 .

Solution. Differentiate the given equation of the family with respect to 
the parameter C:

2 (x—C) =  0 .
Eliminating the parameter C from the two equations, we get

y =  o .

The x-axis is a locus of singular points — a cusp of the first kind (Fig. 255). 
Indeed, let us find the singular points of the curve

y*—(x—C)4 =  0
for a fixed value of C. Differentiating with respect to x and y, we find

Fx =  — 2 (x—C) = 0 ;

F;=3y* = 0.
Solving the three foregoing equations simultaneously, we find the coordi

nates of the singular point: x =  C, y =  0 ; thus, each curve of the given
family has a singular point on the 

hi/ x*axis.

Locus of singular points 
Fig. 255.

For continuous variation of the 
parameter C, the singular points will 
fill the entire x-axis.

Example 6 . Find the envelope and 
locus of singular points of the family

( y - c y —|-(* -C ), =o. (10)
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Solution. Differentiating both sides of (10) with respect to C, we find

- 2 ( 0 - C )  +  -±-3(*-C )* =  O
or

y - C - ( x - C )2 =  0. (11)
Now eliminate the parameter C from (11) and from the equation (10) of the 
family: y-c=(x-cy.

Putting the expression y —C into the equation of the family, we get

or
(* -C )4- t ( * - C )5 =  0

(x-C)>  = 0 ,

whence we obtain two possible values of C and two solutions of the problem 
corresponding to them.

First Solution:

C =  x,

and so from (11) we find 

y —x — (x—x)2=Q

y =  x.

Second Solution:

c . , - 4
and so from (11) we find

2 r 2 *1 2=0

2
y= x—9 •

2We have obtained two straight lines: y =  x and y =  x — -g-  The first is a locus 
of singular points, the second is an envelope (Fig. 256).

W y

Fig. 256. Fig. 257.
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Note 2. In Sec. 7, Ch. VI, it was proved that the normal to a 
curve serves as a tangent to its evolute. Hence, the family of 
normals to a given curve is at the same time a family of tangents 
to its evolute. Thus, the evolute of the curve is the envelope of 
the family of normals of this curve (Fig. 257).

This remark enables us to point out another method for finding 
evolutes: to obtain the equation of an evolute, first find the family 
of all normals of the given curve and then find the envelope of 
this family.

SEC. 12. SINGULAR SOLUTIONS OF A FIRST-ORDER 
DIFFERENTIAL EQUATION

Let the differential equation

0  ( 1)

have a complete integral
<D(.*, y, C) — 0. (2)

Let us assume that the family of integral curves that corresponds 
to equation (2) has an envelope. We shall prove that this envelope 
is also an integral curve of the differential equation (1).

Indeed, at each point the envelope touches some curve of the 
family; that is, it has a common tangent with it. Thus, at each 
common point the envelope and the curve of the family have the 
same values of x, y, y ' .

But for a curve of the family, the numbers x, y, and y' satisfy 
equation (1). Consequently, the very same equation is satisfied by 
the abscissa, the ordinate and the slope of each point of the 
envelope. But this means that the envelope is an integral curve 
and its equation is a solution of the given differential equation.

Since, generally speaking, the envelope is not the curve of the 
family, its equation cannot be obtained from the complete inte
gral (2) for any particular value of C. The solution of the differential 
equation which is not obtained from the complete integral for any 
value of C and which has as its graph the envelope of a family 
of integral curves entering into the general, solution, is called a 
singular solution of the differentia) equation.

Let the complete integral be known:
<!>(x,, y, C) =  0;

eliminating C from this equation and from the equation Oc (x> y, C) =  0 
we get y) = 0. If this function satisfies the differential equation 
land does not belong to the family (2)], then it is a singular Integral.
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It should be noted that at least two integral curves pass through 
each point of the curve that describes a singular solution; that is, 
uniqueness of solution is violated at each, point of a singular 
solution.

Example. Find a singular solution of the equation
y2( 1 +y’*) = R2-

Solution. Let us find its complete integral. We solve the equation for y r:

VW=y*dy_
dx =  ± y (*)

Separating variables, we obtain
ydy

±
— dx.

Whence, integrating, we find the complete integral:
(x -C )*  +  y* =  R*.

It is easy to see that the family of integral lines is a family of circles of 
radius R with centres on the x-axis. The pair of straight lines y = ±  R will 
be the envelope of the family of curves.

The functions y = ±  R satisfy the differential equation (1), This, conse
quently, is a singular integral.

SEC. 13. CLAIRAUT’S EQUATION

Let us consider the so-called Clairaut equation:

y - x ^ r + ^ { i t ) -  ( i )

It is integrated by introducing an auxiliary parameter. P u t~ -  =  p\ 
then equation (1) will take the form

y = xp + ty{p). (1')
Differentiate, with respect to x, all the terms of this equation, 

bearing in mind that P — ̂ -  is a function of x:

p = xiir+ p+ * ' W-af
or

[x +  ^ ' (p ) ] -^ -  =  0.

Equating each factor to zero, we get
dp
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a n d
* +  V ( p ) =  0. (3)

1) Integrating (2) we obtain p — C (C — const). Putting this 
value of p into (1'), we find its complete integral:

i/ =  *C +  \|>(C), (4)
which, geometrically, is a family of straight lines.

2) If from (3) we find p as a function of x and put it into 
(1'), we obtain the function

y =  *p(.*:) +  ̂ [p(x)], (1")
which may be readily shown to be the solution of equation (1). 

Indeed, by virtue of (3) we have

- f c ^ P  + lx + V  (p)]^fc = p.
And so, by substituting the function (1") into equation (1) we get 
the identity

xp + y(p) = xp + y(p).
The solution of (1") is not obtained from the complete integral (4) 

for any value of C. This is a singular solution; it is obtained by 
elimination of the parameter p from the equations

y = xp + q(p), \
x + y'(p) = 0 , j

or, which is the same thing,' by eliminating C from the equations
y = xC +^(C), 
jc +  ̂ c (C) =  0.

Thus, the singular solution of Clairaut’s equation defines the 
envelope of a family of straight lines represented by the complete 
integral (4).

Example. Find the general and singular solutions of the equation

Solution. The

dy
y= x i u  +

dy_
dx

v  ■ + ( - & )■
dygeneral solution is obtained by substituting C for i

y =  xC +
aC

j/TTc*‘
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To obtain the singular solution, differentiate 
the latter equation with respect to C:

* + — E- r = ° -
( i+ c y

The singular solution (the equation of the 
envelope) is obtained in parametric form (where 
the parameter is C):

a
* = ---------- r

(1+C2)2
aC>

y = -------- r-
(1 +  C2) 2

Eliminating C, we get a direct relationship 
between x and y. Raising both sides of each

equation to the power — and adding the resultant equations termwise, v;c 
get the singular solution in the following form:

2 2 2

+y* —a‘ .
This is an astroid. However, the envelope of the family (and, hence, the 
singular solution) is not the entire astroid, but only its left half (since it is 
evident from the parametric equations that x«^0) (Fig. 258).

SEC. 14. LAGRANGE’S EQUATION

The Lagrange equation is an equation of the form
y = x^{y')-\r^(y') ( 1)

where <p and 41 are known functions of .
This equation is linear in y and x. Clairaut’s equation, which 

was considered in the preceding section, is a particular case of 
the Lagrange equation when q>(y')=y'. The Lagrange equation, 
like Clairaut’s, is integrated by means of introducing an auxiliary 
parameter p. Put

y' = p\
then the initial equation is written in the form

y = x(f(p) + y\>(p). (1')
Differentiating with respect to x, we obtain

P =  <P (P) +  [ - V  (P) + (p)i
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or

p— q>(p) =  [*<p' (p) + ̂ '  ( p ) } - ^ . (l*)
From this equation we can straightway find certain solutions: 

namely, it becomes an identity for any constant value p =  p# 
that satisfies the condition

P„— <P(P.) =  0.

Indeed, for a constant value p the derivative —  =  0, and both 
sides of equation (1") vanish.

The solution corresponding to each value p =  p0, that is, - ^ j=  p0

is a linear function of x ^since the derivative — ■ is constant only

in the case of linear functions j . To find - this function it is suf
ficient to put into (1') the value p =  p0:

y=x<p(po) + y(Po)-
If it turns out that this solution is not obtainable from the gener
al solution for any value of the arbitrary constant, it will be a 
singular solution.

Let us now find the general solution. Write (1") in the form
dx <p' (p) __ \j>' (p )
dp X p —<P(P) P-<P(P)

and regard * as a function of p. Then the equation obtained 
will be a linear differential equation in the function x of p. 

Solving it, we find
x = (p{p, C). (2)

Eliminating the parameter p from equations (1') and (2), we 
get the complete integral (1) in the form <D (x, y, C) = 0.

Example. Given the equation
y = x y , 2 + y ' z- ( I )

Putting y ' = p  we have
y  — XP2 +  p2* <D

Differentiating with respect to x, we get

p = p *  +  {2xp +  2p\ (I*)

Let us find the singular solutions. Since p =  p2 for p0 =  0 and px =  1, the 
solutions will be linear functions [see (I')]:

y — x-Q2-\-Q2t that is, y =  0 ,
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When we find the complete integral, we will see whether these functions arc 
particular or singular solutions. To find it, write equation (1") in the form

dx 2p _  2

~dp X P—
and we shall regard x as a function of the independent variable p. Integrating 
this linear (in x) equation, we find

X = ~  1 +(p _ 1)2 • (]I>
Eliminating p from equations (I') and (II), we get the complete integral 

y =  ( C +  J /T +T p .
The singular integral of the initial equation is

y — 0
since this solution is not obtainable from the general solution for any value 
of C.

However, the function y =  x- \ -1 is not a singular but a particular solution; 
it is obtained from the general solution when C =  0.

SEC. 15. ORTHOGONAL AND ISOGONAL TRAJECTORIES

Suppose we have a one-parameter family of curves
® (x ,y ,C)  = 0 . (1)

Lines intersecting all the curves of the given family (1) at a 
constant angle are called isogonal trajectories. If this angle is 
a right angle, they are orthogonal trajectories.

Orthogonal trajectories. Let us find the equation of orthogonal 
trajectories. Write the differential equation of the given family of 
curves, eliminating the parameter C from the equations

0 (*. y,C) = 0
and

M> . dy__«
dx ' dy dx

Let this differential equation be

F {*■*■ %)-<>■ d ')
Here, | |  is the slope of the tangent to some member of the

family at the point M (x, y). Since an orthogonal trajectory pass
ing through the point M (x , y) is perpendicular to the correspond
ing curve of the family, the slope of the tangent to it, —  , is
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connected with by the relationship (Fig. 259)
d y _ 1
dx - d y r * 

dx
(2)

Putting this expression into equation (1') and dropping the 
subscript T, we get a relationship between the coordinates of an 
arbitrary point (x , y) and the slope of the orthogonal trajectory

at this point, that is, a differential 
equation of orthogonal trajectories:

F (x>V’- - h Y ° '  (3)

The complete integral of this equa
tion

(xt y, C) =  0
yields a family of orthogonal trajec
tories.

A consideration of the plane flow 
of a fluid involves orthogonal trajec
tories.

Let us suppose that the fluid flow 
in a plane takes place in such man

ner that at each point of "the xy-plane the velocity vector, 
v(x, y), of motion is defined. If this vector depends solely on 
the position of the point in the plane, but is independent of the 
time, the motion is called stationary or steady-state. We shall 
consider such motion. In addition, we shall assume that there 
exists a potential of velocities, that is, a function u(x,y)  such 
that the projections of the vector v(x ,y )  on the coordinate axis 
vx (xt y) and vy (x>y) are its partial derivatives with respect to x 
and y:

du du /AX(4)5? =  °*
du
di = vr

The lines of the family
u (x , y) =  C (5)

are called equipotential lines (lines of equal potential).
The lines, the tangents to which at all points coincide With the 

vector v(x, y)  in direction, are called flow lines and yield the 
trajectories of moving points.
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We shall show that the flow lines are the orthogonal trajectories 
of a family of equipolential lines (Fig. 260).

Let tp be an angle formed by the velocity vector v  with the 
;t-axis. Then by relation (4)

du (x, y)^  =  I ® I cos <p; dy
whence we find the slope of the tangent to the flow line

du (.x, y)
d y _ _

du (.v, y) \V \ s in  <p,

tan 9 =' du(x , y ) ' 
dx

(6)

We obtain the slope of the tangent to the equipotential line by 
differentiating, with respect to x, relation
(5):

whence

du . 
dx ‘

du
dy £ - 0 .

du
dy dx
dx du *

dy
(7)

Thus, in magnitude and sign, the slope ™ x
of the tangent to the equipotential line is Fig. 260.
the inverse of the slope of the tangent to
the flow line. Whence it follows that equipotential lines and flow 
lines are mutually orthogonal.

In the case of an electric or magnetic field, the lines of force 
of the field serve as the orthogonal trajectories of the family of 
equipotential lines.

Example 1. Find the orthogonal trajectories of the family of parabolas
y =  Cx2.

Solution. Write the differential equation of the family
t / = 2 C x .

Eliminating C, we get

y * *
Substituting — ^7 for y ' , we obtain a differential equation of the family of 
orthogonal trajectories

1 2
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or

Its complete integral is

y dy =  — x dx
T *

Hence, the orthogonal trajectories of the given family of parabolas will be 
represented by a certain family of ellipses with semi-axes a =  2C, b = c V ^  2 
(Fig. 261).

Fig. 261.

Isogonal trajectories. Let the trajectories cut the curves of a 
given family at an angle a, where tan a =  k.

The slope ^  =tan<p (Fig. 262) of the tan
gent to a member of the family and the slope 
—  =  tan^  to the isogonal trajectory are con
nected by the relationship

, , z,  . tan ty — tanatan <p =  tan ( ^ - a )  =  1 +  tanotain|, ;Fig. 262.
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that is,

dy 
d x '

O n_  k
dx

dx

(2')

Substituting this expression into 
equation (T) and dropping the sub
script 7\ we obtain the differential 
equation of isogonal trajectories.

Example 2. Find the isogonal trajec
tories of a family of straight lines,

y =  Cx, (8)

that cut the lines of the given family 
at an angle a, the tangent of which 263.
equals k : tan a =  k.

Solution. Let us write the differential equation of the given family. Diffe
rentiating equation (8) with respect to x, we find

? = c -dx

On the other hand, from the same equation we have

C = y

Consequently, the differential equation of the given family is of the form

dy= ŷ
dx x

Utilising relationship (2') we get the differential equation of isogonal 
trajectories

iMi—k
dx . = JL

k p + i  xdx

Whence, dropping the subscript 7\ we find

k + ±  xdyz
dx l - aJL

Integrating this homogeneous equation, we get the complete integral: 

In x2 +  z/ 2 =  -i- arctan “  +  ln C, (9)
which defines the family of isogonal trajectories. To find out precisely which 

1 7 — 3 3 8 8
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curves enter into this family, let us change to polar coordinates:

-=tan<p; V~x*-{-y2=Q.

Substituting these expressions into (9) we obtain

In Q =  -̂ - <p +  In C
or

<p

Q= C e  k .
Consequently, the family of isogonal trajectories is a family of logarithmic 
spirals (Fig. 263).

SEC. 16. HIGHER-ORDER DIFFERENTIAL EQUATIONS 
(FUNDAMENTALS)

As has already been indicated above (see Sec. 2), a differential 
equation of the nth order may be written symbolically in the form

F(xt yt yft y \  ...,*/<">) =  0 (1)
or, if it can be solved for the nth derivative,

i/n) = H x ,y ,y ',y ' ........ «/<""’). O')
In this chapter we shall consider only such equations of higher 

order that may be solved for a higher derivative. For these 
equations we have a theorem on the existence and uniqueness of 
a solution, similar to the corresponding theorem on the solution 
of first-order equations.

Theorem. If in the equation
y(n>= f{ x ,y ,y ',  . . . .  </<n- ,>)

the function f (x, y, y ' , . . . ,  y{n~i>) and its partial derivatives with 
respect to the arguments y, y’, . . . ,  are continuous in some
region containing the values * =  *„, y = y„, y' =  {/„• ••••
y(n-t) = y(n-i)t (fien (here is one and oniy one solution, y =  y(x), of 
the equation that satisfies the conditions

&xsxo= y»'
y,̂ x = y:> I (2)
« • • • • • •

.■ ■ y z g - v ? - * -  )
These conditions,are callefl initial conditions. The proof is beyond 
the scope of this book.
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If we consider a second-order equation y" = f(x, y, y')} then the 
initial conditions for the solution, when x = xQi will be

y = y Q> y' = y\
where x0, y0, y[ are given numbers, which have the following 
geometric meaning: only one curve passes through a given point 
of the plane (x0> y0) with given tangent of the angle of inclination 
of the tangent line y'o. From this it follows that if we want to 
assign different values of y'Q for constant x0 and yQi we get an 
infinitude of integral curves with different angles of inclination 
passing through the given point.

We now introduce the concept of a general solution of an equa
tion of the nth order.

Definition. The general solution of a differential equation of the 
nth order is the function

y = (f(x, C„ Ct,

which is dependent on n arbitrary constants Ct, Ct, . . . ,  Cn and 
such that:

a) it satisfies the equation for any values of the constants 
Ct, Ct, . . . ,  C„;

b) for specified initial conditions
*/*=*„= y0, 
y'x=x0=y'»>

,.(n—i) _  „<n—1)
" x= x0 “ o

the constants C,, Ct...........C„ may be chosen so that the func
tion y — tf(x, C,, Ct, . . . ,  Cn) will satisfy these conditions (on the
assumption that the initial values x0, y0, y '0..........y{n~l) belong
to the region where the conditions of the existence of a solution 
are fulfilled).

A relationship of the form <D(x, y, C,, Ct.........C„) =  0, which
implicitly defines the general solution, is called the complete 
integral of the differential equation.

Any function obtained from the general solution for specific
values of the constants C„ Ct ..........Cn is called a particular
solution. The graph of a particular solution is called an integral 
curve of the given differential equation.

To solve (integrate) a differential equation of the nth order 
means:
17*
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1) to find its general solution (if the initial conditions are not 
given) or

2) to find a particular solution of the equation that satisfies 
the given initial conditions (if there are such).

In the following sections we shall present methods of solving 
various equations of the nth order.

SEC. 17. AN EQUATION OF THE FORM j/(«) = /( .* )

The simplest type of equation of the nth order is of the form
ym - f ( x ) . 0 )

Let us find the complete integral of this equation.
Integrating the left and right sides with respect to x, and 

taking into account that yin> = (yin~l>Y, we obtain

yin-"  = $ f(x )d x  + Cv
*o

where x0 is any fixed value of x, and Ct is the constant of 
integration.

Integrating once more we get

#(«
X . X■2,= S ($ f(x )d x) d x+ C t (x— x0) + c v

Continuing, we finally get (after n integrations) the expression of 
the complete integral:

y - l . , i n x ) d x . . . d x  + c~ l J ; i ; - ' + C , ' ± ^ g t + . . . + C , .

In order to find a particular solution satisfying the initial condi
tions

=  y'xmx,~ y ' j  • • • :  y ^ - y T " ’
it is sufficient to put

c n. ,  =  i/;.........

Example 1. Find the complete integral of the equation
y" =  sin (kx)

and a particular solution satisfying the initial conditions

yx=o=°. Vx=o=1*
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Solution.

y' =  j  sin ** d* +  C, =  -  ^21^5— ’ +  C„
0

K
cos kx — i \  r

£ J dx +  j C\ d* +  C2
o o

o r
sinkx x , _ , _

y —-p — h -jg-+ + c2.

This is the complete integral. To find a particular solution satisfying the 
given initial conditions, it is sufficient to determine the corresponding values 
of Cj and £ 2*

From the condition */*=0 =  0, we find C2 =  0.
From the condition y'xszQ =  1, we find Cj =  0.
Thus, the desired particular solution is of the form

sin kx , f  \ t
y ---- ~ k ^ + x \ T  +  l )■

Differential equations of this kind are encountered in the theory of the 
bending of girders.

Example 2 . Let us consider an elastic prismatic girder bending under the 
action of external forces both continuously distributed (weight, load), and 
concentrated. Let the x-axis be horizontal 
along the axis of the girder in its underformed 
state and let the y-axis be directed vertically 
downwards (Fig. 264).

Each force acting on the girder (the load 
of the, girder, and the reaction of the supports, 
for instance) has a moment, relative to some 
cross section of the girder, equal to the prod
uct of the force by the distance of the point 
of application of the force from the given 
cross section. The sum, M (*), of the moments 
of all the forces applied to that part of the 
girder situated to one side of the given cross 
section with abscissa x is called the bending moment of the girder relative 
to the given cross section. In courses of strength of materials, it is proved that 
the bending moment of the girder is

EJ
R ’

where E is the so-called modulus of elasticity which depends on the material 
of the girder, J is the moment of inertia of the cross-sectional area of the 
girder relative to the horizontal line passing through the centre of gravity of 
the cross-sectional area, and R is the radius of curvature of the axis of the 
bent girder, which radius is expressed by the formula (Sec. 6 , Ch. VI)

D__i\+y'*f'2
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Thus, the differential equation of the bent axis of a girder has the form
y" m (x)

(i + y ' V ~  ' 1 ’
If we consider that the deformations are small and that the tangents to 

the axis of the girder, when bent, form a small angle with the *-axis, we can 
disregard the square of the small quantity y'% and consider

Then the differential equation of the bent girder will have the form
_Af (x) 
~~ EJ ’

but this equation is of the form of (1).
Example 3. A girder is fixed in place at the extremity 0  and is subjected 

to the action of a concentrated vertical force P applied to the end of the 
girder L at a distance / from 0 (Fig. 264). The weight of the girder is ignored.

We consider a cross section at the point N (*). The bending moment rela
tive to section N is, in the given case, equal to

M (*) = (/—*)P. 
the differential equation (2 ') has the form

The initial conditions are: for * =  0 the deflection y is equal to zero and the 
tangent to the bent axis of the girder coincides with the jt-axis; that is,

yx—Q yx=q o.
Integrating the equation, we find

x

In particular, from formula (3) we determine the deflection h at the extre
mity of the girder L:

. PI3
h yx=l 3EJ *

SEC. 18. SOME TYPES OF SECOND-ORDER DIFFERENTIAL 
EQUATIONS REDUCIBLE TO FIRST-ORDER EQUATIONS

I. An equation of the type

does not explicitly contain the unknown function y.
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Solution. Let us denote the derivative | |  in terms of p, that

iS, we set g  =  p. T h e n g  =  g .
Putting these expressions of the derivatives into equation (1), 

we get a first-order equation,

g  =  P).
in the unknown function p of x. Integrating this equation, we 
find its general solution:

p =  p(x, Cx),

and then from the relation g  =  p we get the complete integral 
of equation (1):

y=^P(x>  CJdx-J-C,.

Example I. Let us consider the differential equation of a catenary (see 
Sec. 1):

then
d*y dp 
dxz~~dx'

and we get a first-order differential equation in the auxiliary function p of j h

g - i m p :
Separating variables, we have

dp _  dx

whence

ln(p +  |^ T T 7 j =  ~  +  Clf

P

But since p = ^ - ,  the latter relation is a differential equation in the sought- 
for function //. Integrating it, we obtain the equation of a caterilary (£e'e
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Sec. 1);

Let us find the particular solution that satisfies the following initial con
ditions:

yx=o = a’ 
yx=o=0.

The first condition yields C2 =  0, the second, C,==0. 
We finally obtain

Note. We can similarly integrate the equation 
yin) — j(x,

Setting t/<n - ,) =  p, 
order equation

we get for a , (determination of p the first-

dp
dx f (X, p ) .

From here we get p as a function of x, and from the relation 
y(n-i) = p we find y (See Sec. 17).

II. An equation of the type.
d*y 
dx* (2)

does not contain the independent variable x explicitly. To solve 
it, we again set

(3)

but now we shall consider p as a function of y (and not of x, 
as before). Then

d‘y d p  d p d p  dp
dx,<= dx dy dx d y ^ ‘

Putting into (2) the expressions and we get a first-
order equation in the auxiliary function p:

P ^  =  /(l/> P)- ■ (4)

Integrating it, we find p as a function of y and the arbitrary 
constant C,:

p  =  p{y> C J -
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Substituting this value in (3), we get a first-order differential 
equation for the function y of x:

^ = p { y ,  c,).
Separating variables, we have

p(y> c.)
Integrating this equation, we get the complete integral of the 
initial equation:

0(a:, y, Ct, Ct) — 0.

Example 2 . Find the complete integral of the equation

3y " = y .  ’ ’
Solution. Put and consider p as a function of y. Then y* =  p ' ~ L

dx ... .4 y
and we get a first-order equation for the auxiliary function p:

3p^ = y ” T -
Integrating this equation, we find

2 ___ ____
p* =  Ci —y * or p =  ± V c t —y ~ 2f*.

But consequently, for a determination of y we get the equation

dy - =  dx, or y hdy

whence
V C t- y - 't ’ ± K c ./fc - l

* + C .- ±  [ y ^ - .
J V C t y ' * - \

To compute the latter integral we make the substitution

C ,/'*— 1=<*.

•-dx.
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Consequently,

f
y 'hdy

V C # ! ’ - 1
J _  (*«  (<»+l)
CJ J '

=  - / c ,s ,‘ - 1 ( C , i, H 2 ) .
Finally we get

* +  C, =  ±  -±- V c y i ’- l  (C,y */• +  2). 
C1

Example 3. Let a point move along the x-axis under the action of a force 
that depends solely on the position of the point. The differential equation 
of motion will be

d*X 17/ Vm dT*=F (*)•

At t =  0 let x = x „  =

Multiplying both sides of the equation by —  d/ and integrating from 0 
to /, we have

l ! m ( w )  ~ ^ mvo = ̂ F(x)dx

l ! m(z r )  + [~  = const*
•*0

The first term of this equation is the kinetic energy, the second term, 
the potential energy of the moving point. From this equation if follows that

the sum of the kinetic and potential energy re
mains constant throughout the time of motion.

The problem of a simple pendulum. Let there 
be a material point of mass m, which is in 
motion (by the force of gravity) along the circle L 
lying in the vertical plane. Let us find the equa
tion of motion of the point neglecting resistance 
forces (friction, air resistance, etc.).

Putting the origin at the lowest point of the 
circle, we put the *-axis along the tangent to 
the circle (Fig. 265).

Denote by I the radius of the circle, by s the 
arc length from the origin 0  to the variable point 
M where the mass m is located; this length is 
taken with the appropriate sign (s >  0 , if the 
point M is on the right of 0; s < 0  if M is on 
the left of 0 ).

Our problem consists in establishing *£ as a 
function of the time t.

Let us decompose the force of gravity mg into 
tangential and normal components. The former,
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equal to —mg sinq>, produces motion, the latter is cancelled by the reaction 
of the curve along which the mass m is moving.

Thus, the equation of motion is of the form

d*smjj-2= - m g  sinq>.

Since the angle <p =  -r- for a circle, we get the equation

d*s , sa7-l = - g s i n T ,

This is a Type l\ differential equation (since it does not contain the inde
pendent variable t explicitly).

Let us integrate it in the appropriate fashion:
ds__ d2s _  dp

, T t ~ P' dt* ds P'
Hence,

or

whence

gsin j

p d p  == —g sin y  ds,

P * = 2 g l  C O S y  +  C p

Let us denote by s0 the greatest arc length to which the point M swings. 
For s =  s0 the Velocity of the point is zero:

—I = I —0dt I s =s0 I s =s0 

This enables us to determine Ctj

0 =  2gl c o s ^ +  Cl§

whence

Therefore,

C, =  —2gl cos - y  •

s sQ \  
COS ------COSy- 1

or, applying to the latter expression the formula for the difference of cosines.

( s ) i=4g,sln 21 (5)
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or*)

This is an equation with variables separable. Separating the variables, we get

dS.---------  = 2  Y g i d t .  (!)

We shall assume, for the time, being, that s #  s0, then the denominator of 
the fraction is different from zero. If we consider that s =  0 for t = 0 ,  then 
from (7) we get

I
ds

l / sin 4 r sln
S„— S 

21
=  2 VTl't- (8)

This is the equation that yields s as a function of t. The integral on the 
left cannot be expressed in terms of elementary functions; neither can 
the function s of t. Let us consider this problem approximately. We shall

S ' S  S "I- S 5  Sassume that the angles and y  are small. The angles ^  0 and -

will not exceed . In (6) let us replace, approximately, the sines of the 
angles by the angles

— = 2 v m  iX  ■- ~ ~dt Y g V 21 21
or

£ -  / f / «-<*>• («')
Separating variables, we get (assuming, for the time being, that s s0)

Again we consider that s =  0 when / =  0. Integrating the latter equation, we get

arcsins7= V  f'*
*) We put the plus sign in front of the root. From the note at the end of 

the solution it follows that there is no need to consider the case with the 
minus sign.
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whence

s =  s0 sin (9)

Note. When solving, we assumed that s ^  s0. But it is clear, by direct 
substitution, that the function (9) is the solution of equation (6 ') for any 
value of t.

Let it be recalled that the solution (9) is an approximate solution of 
equation (5), since equation (6) was replaced by the approximate equation (6 ').

Equation (9) shows that the point M (which may be regarded as the 
extremity of the pendulum) performs harmonic oscillations with a period

r = 2 «  jj/"  — . This period is independent of the amplitude s0.
Example 4. Escape-velocity problem.
Determine the smallest velocity with which a body must be thrown ver

tically upwards so that it will not return to the earth. Air resistance is 
neglected.

Solution. Denote the mass of the earth and the mass of the body by M 
and m respectively. By Newton's law of gravitation, the force of attraction f 
acting on the body m is

where r is the distance between the centre of the earth and the centre of 
gravity of the body, and .k is the gravitational constant.

The differential equation of motion of this body with mass m will be
, M 
k —

d*r M
dp— k -pi r n

The minus sign indicates that the acceleration is negative. The differen
tial equation (10) is an equation of type (2). We shall solve it for the fol
lowing initial conditions:

(or r =  0 r =  R, -  =  y0.

Here, R Is the radius of the earth and v0 is the launching velocity. We denote
dr __ d*r__dv__dv d r_ dv
dt V' dl* dt dr * dt V dr'

where v is the velocity of motion. Putting this into (10), we get

Separating variables, we obtain

vdv =  —kM %  .r*
Integrating this equation, we find

v2 1Y = + f tM -  + Ct. (ID
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From the condition that v =  vQ at the earth’s surface (for r= R ) ,  we deter
mine Cx:

vl 1

or

r _  kM »;
F + T ‘

We put the value of Cj into (11):

Ef
2 =  + k M ± - kM

R
or

®a kM\
T = kMT + [ -T — R ) -  (12)

It is given that the body should move so that the velocity is always positive;
v ̂  k̂ Ahence, >  0. Since for a boundless increase of r the quantity - y -  becomes

arbitrarily small, the condition - ^ > 0  will be fulfilled for any r only for 
the case

v20
2 (13)

or

v0^ / t t

Hence, the lowest velocity will be determined by. the equation

/ 2kM 
R '

where
£ =  6 .6 6 * 1 0 ~ 8 cms/gm*sec2,
R =  63* 107 cm.

At the earth's surface, for r =  Rt the acceleration of gravity is g ( g  =  981 cm/sec*). 
For this reason, from (10) we obtain

or

Putting this value of M Into (14) we obtain

» ,=  ^2 i7 e  =  V  2-981.63-10’ «= 11.2.10‘ — =  11.2g .
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S E C .  19.  G R A P H I C A L  M E T H O D  O F  I N T E G R A T I N G  
S E C O N D - O R D E R  D I F F E R E N T I A L  E Q U A T I O N S

Let us find out the geometric meaning of a second-order differ- 
1 ential equation. Suppose we have an equation

y" = f(x,y,y’). (1)
Denote by 9 the angle formed by the positive *-axis and the 
tangent to a curve; then

jfif =  tanq>. (2)

To find the geometric significance of the second derivative, 
recall the formula that determines the radius of curvature of a 
curve at a given point*)

, n , - .  ,fl-NI'*)'1*
_ y"

Whence

But
y' =  t an 9 ;

therefore

y  R

1 +y'* = 1 +  tan*cp — sec* 9 ; (1 + y 'tYh —

=  lsec,<Pl =  ll3^T -

y  ~~ R | cos3 9  | * (3)

Now putting into (1) the expressions obtained for y and y", we 
have

w ] d F v r n x ' y ’ tan(p)
or

^  | cos3 9 1 • f. (xty, tan q>) *

It is thus evident that a second-order differential equation deter
mines the magnitude of the radius of curvature of an integral 
curve if the coordinates of the point and the direction of the 
tangent to this point are specified.

*) Up till now we have always considered the radius of curvature positive; 
in this section we shall consider it a number that can take on both positive 
and negative values: if the curve is convex ((/"CO), we consider the radius 
of curvature negative (/3< 0); if the curve is concave (yff> 0). it is positive 
( R > 0).
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From the foregoing there follows a method of approximate con
struction of an integral curve by means of a smooth curve com
posed of arcs of circles. *)

To illustrate, let it be required to find the solution of equation
(1) that satisfies the following initial conditions:

Ux-x0—y0’» yx-x0 ~  yi

Through the point M0(x0,y 0) draw a ray M0T0 with slope y =  
= tan(p0 =  i/o (Fig. 266). From equation (4) we find the magnitude 
of R = R 0. Lay off a segment A40C0, equal to R 0, perpendicular
to MqT q, and from the point C0 (as centre) strike an arc M~M

with radius R Q. It should be noted 
that if R 0<i0, then the segment M0C0 
must be drawn in that direction so 
that the arc of the circle is convex 
upwards, and for R o>0, convex down 
(see footnote on page 527).

Then let xx> y t be the coordinates 
of the point Mx which lies on the 
constructed arc and is sufficiently 
close to the point M0 while tan q)j is 
the slope of the tangent M XTX to the 
circle drawn at M x. From equation (4) 
we find the value of R==RX that cor

responds to 'M x. Draw the segment MxCxt perpendicular to M XT X, 
equal to /?,, and from Cx (as centre) strike an arc M XMZ with 
radius R x. Then on this arc take a point M2(x2i y2) close to Mx 
and continue construction as before until we get a sufficiently 
large piece of the curve consisting of the arcs of circles. From 
the foregoing it is clear that this curve is approximately an integral 
curve that passes throught the point Af0.

Obviously, the smaller the arcs M^Mxt M[M2, .. 
the constructed curve will be to the integral curve.

£ S t__ ^Tz

f t

Mo

J /

Xo
Fig. 266.

the closer

SEC. 2 0 . HOMOGENEOUS LINEAR EQUATIONS. 
DEFINITIONS AND GENERAL PROPERTIES

Definition 1. An nth-order differential equation is called linear 
if it is of the first degree in the unknown function y and its

*) A curve is called smooth if it has tangents at all points and the angle 
of inclination of the tangent is a continuous function of the arc length s.
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derivatives y 'y . . . , y(n~ l), y{n)\ that is, if it is of the lorm
a„yw + a ly{n- ' )+ - - - + a ny = f(x), (1)

where a0, at, a........ , an and f(x) are given functions of x or
constants, and a0+ 0 for all values of x from the domain in which 
we consider equation (1). From now on we shall presume that 
the functions a0,a ,, . . .  ,an and f{x) are continuous for all values 
of x and that the coefficient a0= l  (if it is not equal to I we 
can divide all terms of the equation by it). The function f(x) 
on the right side of the equation is called the right-hand member 
of the equation.

If f ( x ) ^ 0, then the equation is called nonhomogeneous linear 
or an equation with a right-hand member. But if / ( jc) =  0 then 
the equation has the form

y (n) +  a, y^ +  a„i/ =  0 (2)
and is called homogeneous linear or an equation without a right- 
hand member (the left side of this equation is a homogeneous 
function of the first degree in y ,y ' , t f ,  . . . , y <n)).

Let us determine some of the basic properties of homogeneous 
linear equations,confining our proof to second-order equations.

Theorem 1. If y, and yt are two particular solutions of a homo
geneous linear equation of the second order

y" + a ty '+ a ty = o , (3)
then yt +  yt is also a solution of this equation.

Proof. Since yt and yt are solutions of the equation, we have

and I (4)
y"t + a xy t + a iy 1 = 0.1

Putting into equation (3) the sum yt + yt and taking into account 
the identities (4), we will have

(y, +y*Y+ a, («/, + ytY + a, (y, + y j  =
=  iy\ +  axy\ +  atyx) +  (y2 + axy2 +  atyt) =  0 +  0 =  0.

Thus, £/, +  «/, is a solution of the equation.
Theorem 2. If y i is a solution of equation (3) and C is a con

stant, then Cyt is also a solution of (3).
Proof. Substituting into (3) the expression Cyt, we get

(Q /.r+ a , {Cyt) '+ a t (Cyt) = C \y\ + a ^ , + aty ,]= C -0 =  0;
and the theorem is thus proved.
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Definition 2. The two solutions of equation (3), yx and ytt 
are called linearly independent on an interval [a, b] if their ratio 
on this interval is not a constant; that is, if

— const.

Otherwise the solutions are called linearly dependent. In other 
words, two solutions, yx and yt, are called linearly dependent on 
an interval [a, b] if there exists a constant number X such that
~ = X when a ^ x ^ b .  In this case, y .—Xy..tJl

Example 1. Let there be an equation i f — y  =  0. It is easy to verify that 
the functions ex, e~xt 3ex, 5e~x are solutions of this equation. * Here, the 
functions ex and e~x are linearly independent on any interval because the 

£Xratio — ? =  eix does not remain constant as x varies. But the functions ex 
e ~ x

and 3ex are linearly dependent, since — - =  3 =  const.

Definition 3. If yl and yt are functions of x, the determinant

W (yt,yt) «/. y ,
y\ y\ yty —y[yt

is called the Wronskiati of the given functions.
Theorem 3. If the functions y1 and yl are linearly dependent on 

an interval [a, b], then the Wronskian on this interval is identi
cally zero.

Indeed, if yl = Xyl where X =  const, then yt =  Xy\ and

y i
yt

yi
y't

yt
y\

yx
y\

yx
y't o.

Theorem 4. If the Wronskian W {yt,yt), formed for the solutions 
yl and yt of the homogeneous linear equation (3), is not zero for 
some value x = xa on an interval [a, b] where the coefficients of 
the equation are continuous, then it does not vanish for any value 
of x whatsoever on this interval.

Proof. Since t/, and yt are two solutions of equation (3), we 
have

y’x +  <*,</» +  a^y, =  0, y\ +  a.t/i +  atyt =  0.
Multiplying the terms of the first equation by yt, the terms of 

the second equation by —{/,, and adding, we get

(yyt—y,yl) +«, (y,y't—y,yi)=°- ( 5 )
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The difference in the second brackets is the Wronskian' W (y„ yt). 
The expression in the first brackets is a derivative of the Wrons
kian W '(yl tyt):

W  (y,yt) = (y'1y ,—yly'iY =y'[y,+y'lyt— y[y't —ylyt = yiyt —ylyi-
Thus, equation (5) assumes the form

VT =  — a,lF.
Separating variables (for IF^O), we obtain

W'
W ~  a»’

Integrating, we find

lnlF =  — ja ,d *  +  lnC

or

whence

it is given that

In -£•= — Ja.djc,
x 0

-  ^  a,dx

W — Ce *• ,

r ^ 0 =  Ce° =  C #  0.

(6)

(7)

But then from (7) it follows that IF# 0 for any values of x, 
because the exponential function does not vanish for any finite 
value of the argument.

Note 1. If the Wronskian is zero for some value x = x<t, then 
it is also zero for any value x in the interval under consideration. 
This follows directly from (7): if IF =  0 when x = xt, then

(U7Wo =  C =  0;
consequently, 1F =  0, no matter what the value of the upper limit 
of x in formula (7).

Theorem 5. If the solutions i/, and yt of equation (3) are linearly 
independent on an interval [a, b], then the Wronskian IF, formed 
for these solutions, does not vanish at any point of the given 
interval.

We shall hint at the proof of this theorem without giving it 
completely.
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Suppose that 1̂  =  0 at some point of the interval; then, by 
Theorem 3, the Wronskian will be zero at all points of [a, b\:

W = 0
or

yiy't— y\y,*= °-
Let us first consider those subintervals in [a, b\ where yx + 0. 
Then

y^y \— y\yt 
— -— — =  0 

y\
or

(£)'-«•
Consequently, on each of these subintervals ^  Is a constant

^  =  X =  const.yi
Taking advantage of the existence and uniqueness theorem, it 
may be shown that yx — %yl for all points of the interval [a, b] 
including those where yt =  0; but this is impossible since it is 
given that yx and y t are linearly independent. Thus, the Wrons
kian does not vanish for any single point of [a, b].

' Theorem 6. / /  (/, and yx are two linearly independent solutions 
of equation (3), then

y =  Cxyl ^-Cjyx, (8)

where C, and Cx are arbitrary constants, is its general solution. 
Proof. From Theorems 1 and 2 it follows that the function

is a solution of equation (3) for any values of C, and Cx.
We shall now prove that no matter what the initial conditions 

!/*=*» — y»' lJx=xi>=iy'<t, it is possible to choose the values of the arbit
rary constants C, and C, so that the corresponding particular 
solution Clyl -\-Cxyx should satisfy the given initial conditions. 

Substituting the initial conditions into (8), we have

where we put

( i / l )t= jc0 = y i0 ; { y z) x - x 0 =  # 20** (!/* )*= *  0 = i/io't ( l / i ) x = x 0 =  i/*Q.

( 9 )
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From the system (9) we can determine C, and G2, since the deter
minant of this system

y 10 yt o =  f/,0

is the Wronskian for x — x  ̂ and, hence, is not equal to 0 (by 
virtue of the linear independence of the sojutiqns (/, and y2). 
The particular solution obtained from the family (8) for the 
found values of C, and C2 satisfies the given initial conditions. 
Thus, the theorem is proved.

Example 2. The equation
» , 1 , 1 „ 

y + 7 *  - 7 ^ = ° ’
whose coefficients ai= ~ “  and a2 — ~p are continuous on any interval that does
not contain' .̂ he point * =  0 , permits of the particular* solutions

1
Ui=x. 2̂ = 7 .

(this is readily verified by substitution). Hence, its general solution is of 
the form . .

y = Ci* + C2— .

Note 2. There are no general methods for finding (in finite 
form) the general solution of a linear equation with variable coef
ficients. However, such a method exists for an equation with 
constant coefficients. It will be given in the next section. For 
the case of equations with variable coefficients, certain devices 
will be given in Chapter XVI (Series) that will enable us to find 
approximate solutions satisfying definite initial conditions.

Here we shall prove a theorem that will enable us to find the 
general solution of a second-order differential equation with variable 
coefficients if one of its particular solutions is known. Since it 
is sometimes possible to find or guess one particular solution 
directly, this theorem will prove useful in many cases.

Theorem 7. If we know one particular solution of a second-order 
homogeneous linear equation, the finding of the general solution 
reduces to integrating the functions.

Proof. Let y l be some known particular solution of the equation 
i f  + a y  + a2y = 0.

We find another particular solution of the given equation so that 
y x and yz are linearly independent. Then the general solution 
will be expressed by the formula y = Cxy1 + C2y2, * where C, and 
C2 are arbitrary constants. By virtue of formula (7) (see proof of



534 Differential Equations

Theorem 4), we can write
-  \ a td xft •>y'ty*— yiy\ =  Ce

Thus, for a determination of yt we obtain a first-order linear 
equation. Integrate it as follows. Divide all terms by y\:

y\yi—yiy\ =  j_  °>
K

d x

or

whence
7r(~') = ~ r ^ e* * \ v J  y\

- f  a , d x

dx+ C t.
y> J •«/? ■ *

Since we are seeking a particular solution, we get (by putting 
C, =  0 and C =  1)

—J atdx
yt = y * le- ^ r - d x .  (io)

in
It is obvious that y t and y2 are linearly independent solutions
since — =£const.

y  i
Thus, the general solution of the initial equation is of the form

—J* a xd x

y = Clyl + C1yl \ e— T- d x .  (11)
J Vi

Example 3. Find the general solution of the equation 
(1—x2) y* — 2xy' +  2y =  0.

Solution. It is evident, by direct verification, that this equation has a 
particular solution yx= x ,  L,et us find the second particular solution yv  so 
that tyx and yt should be linearly independent.

_2x
Noting that In our case ax =  » we have, by (10),

i f
txd£

CeJ1- x\  r dx
y  =  x )  p  d x = x  j   p  _ _ _ _ =

" 'S ’ ,n| r a | ] *
Consequently, the general solution is of the form
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SEC. 21. SECOND-ORDER HOMOGENEOUS LINEAR 
EQUATIONS WITH CONSTANT COEFFICIENTS

We have a second-order homogeneous linear equation
y"+ py '+ qy = o, (i)

where p and q are real constants. To find the complete integral 
of this equation, it is sufficient (as has already been proved) to 
find two linearly independent particular solutions.

Let us look for the particular solutions in the form
y = ekx, where k = const; (2)

then
y '= k e kx\ y” = k2ekx.

Substituting the expressions of the derivatives into equation (1), 
we find

ekx (k2 + pk + q) = 0 .
Since ehx=£0, it means that

k* +  pk +  q =  0. (3)
Thus, if k satisfies equation (3), then ek* will be a solution 

of (1). Equation (3) is called an auxiliary equation with respect 
to equation (1).

The auxiliary equation is a quadratic equation with two roots; 
let us denote them by kx and kz. Then

The following cases are possible:
I. kx and k2 are real numbers and not equal (kx=£k2);

II. kx and kz are complex numbers;
III. kx and k2 are real and equal numbers (kx = k2).
Let us consider each case separately.
I. The roots of the auxiliary equation are real and distinct, 

k i ^ k 2. Here, the particular solutions are the functions
«/,=<?*•*; y2 =  ek>x.

These solutions are linearly independent because

— =  *=£ const.
y x e k xx

Hence, the complete integral has the form 
y = CxekS-YC2e*S.



536. Differential Equations

Example 1. Given the equation
y" +  y' — 2y= 0 .

The auxiliary equation is of the form
k2-\-k — 2 =  0 .

Y/e find the roots of the auxiliary equation:

*!,»=— t  +  2:
*, = 1. fts =  —2.

The complete integral is
y =  C1e* +  C2e~2*.

I!. The roots of the auxiliary equation are complex. Since complex 
roots are conjugate in pairs, we write

kx =  a +  *p; kt = a — i$t
where

I S - V P f .

The particular solutions may be written in the form
y, =  £<“+«<»*; y x — e(a-/0)* 0 )

These are complex functions of a real argument that satisfy the 
differential equation (1) (see Sec. 4, Ch. VII).

It is obvious that if some complex function of a real argument
y = u(x) + iv (x) (5)

satisfies (1), then this equation is satisfied by the functions u(x) 
and v(x).

Indeed, putting expression (5) into (1), we have
[u (x) + iv (*)]' + p[u (x) -f iv (x)]' 4- q [w (x) + iv (x)] == 0

or
(u" +  pu' +  qu) +  i (o' +  pv' +  qv) =  0.

But a complex function is equal to zero if, and only if, the real 
part and the imaginary part are equal to zero; that is,

u" 4- pu + qu— 0, 
v“ 4- pv' +  qv =  0.

Thus we have proved that u(x) and of*) are solutions of the 
equation.

Let us rewrite the complex solutions (4) in the form of a sum 
ol the real part and the imaginary part:

yx s s ^ c o s  Px 4- ie^sin Px, 
y t — c^cos px —iaax sin px.
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From what has been proved, the particular Solutions of (1) are 
the real functions

£,=<?“* cos p*. (6')
yt — e** sin p*. (6")

The functions y, and yt are linearly independent, since

X = f t ^ ==cotp̂ const-
Consequently, the general solution of equation (1) in the case of 
complex roots of the auxiliary equation is of the form

y=  Ay, + Byt = Ae*x cos px + Be*x sin Px
or

y = e*x (A cos px + B sin px), 
where A and B are arbitrary constants.

.(7)

Example 2 . Given the equation
y" +  2y' +  5*/ =  0.

Find the complete integral and a particular solution that satisfies the initial 
conditions yx=0  =  0, ^ =0=  1. Construct the graph.

Solution. 1) We write the auxiliary equation
fc2-f2/? + 5 = 0

and find its roots:
kA — — 1 -f 2/, k2=  — 1 — 2i.

Thus, the complete integral is
' y =  e~x (A cos 2*-}- Bsia 2x).

2 ) We find a particular solution that satisfies the given initial conditions 
and determine the corresponding values of A and B.

From the first condition we find
0 =  e“ ° (4 cos 2 -0 -f £ sin 2-0), whence A =  0.

Noting that
y' =  e~x2B cos 2x —e~xB sin 2x 

we obtain from the second condition

1 =  2 B, SO f i = y .

Thus, the desired particular solution is

y —~2 e~x sin x̂*
Its graph is shown in Fig. 267.

Ill The roots of the auxiliary equation are real and equal.
Mere, kl — k2.
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One particular solution, yl = ek'x, is obtained from' earlier 
reasoning. We must find the second particular solution, which is

linearly independent of the first (the function ek*x is identically 
equal to eh'x and therefore cannot be regarded as the second par
ticular solution).

We shall seek the second particular solution in the form
yt = u(x)ek'x

where u(x) is the unknown function to be determined. 
Differentiating, we find

y't =  u'ek>x +  kluek'x = ek‘x («' +  &,«),
y“t =  u"ek'x +  2klu'ek>x +  k\uek>x — ek>x («" +  2k lu' 4- £j).

Putting the expressions of the derivatives into (1), we obtain
ek,x [u" -}- (2ki +  p) u’ +  (k\ +  pkt +  <j) u\ — 0.

Since kl is a multiple root of the auxiliary equation, we have
k\ +  pkt +  <? =  0.

In addition, kl = k1= — or 2kt = —p, 2kl + p = 0.
Hence, in order to find u (x ) we must solve the equation 

=  0 or «" =  0. Integrating, we get u = Ax-\‘ B. In particular, 
we can set A — 1 and B = 0; then

u — x.
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Thus, for. the second particular solution we can take
yt = xeki*.

This solution is linearly independent of the first, since — =  * 9* const.y 1
Therefore, the following function is the complete integral: 

y  =  c xefr* +  Ctxe**x =  (C, +  Czx).

Example 3. Given the equation
/ - 4 /  +  4y =  0.

Write the auxiliary equation k*—46 +  4 = 0. Find its roots: kl =  k1 — 2. 
The complete integral is then

y =  Cxe2X +  C2xe**.

SEC. 22 . HOMOGENEOUS LINEAR EQUATIONS OF THE 
NTH ORDER WITH CONSTANT COEFFICIENTS

Let us consider a homogeneous linear equation of the nth order: 
/̂(n)!+ a l /̂(B- ,,+  =  0. (1)

We; shall assume that a,, a„ a„ are constants. Before* giving 
a method for solving equation (1), we introduce a definition that 
will be needed later on. •

Definition 1. If for all x of the interval [a, b\ we have the 
equality

<P„ (*) =  -4,9, (*) +  (* )+ ••• +  (*).
where A iy A2, . An are constants, not all equal to zero, then 
we say that cpn (x) is expressed linearly in terms of the functions 

<p,(*).........
Definition 2. n functions . . . ,  <p„̂ , (*), q>„(jr) are

called linearly independent if not one of the functions is expressed 
linearly in terms of the rest.

Note 1. From the definitions it follows that if the functions 
q>, (jc), <p,(x), ...»  q>„ (x) are linearly dependent, there will be 
found constants C,, Ct, . . . ,  C„, not all equal to zero, such that 
for all x of the interval [a, 6] the following identity will be ful
filled:

C,<P, (*) -f Ctcpt (x) +  . . .  -f Cnq>n (x) =  0.
Examples: . '
1. The functions //, =  **, ^2 =  e2JC,.^ a =  3ex are linearly dependent, since for

=  1, Cz =  0, C ,=  — -i- we have the identity

Cxex +  Cte*x +  Ci3ex =  0.
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2. The functions ^  =  1, y2 — x, y 2 =  x2 are linearly independent, since the 
expression

will not be identically zero for any Clf C2, C3 that are not simultaneously 
equal to zero.

3. The functionsy x =  eki*, y2 =  eka*> • • •, f/„==eftn* • • •» where kx, k2t knt . . .  
are different numbers which are linearly independent. (This assertion is given 
without proof.)

Let us now solve equation (1). For this equation, the following 
theorem holds.

Theorem. If the functions y l9 y2, are linearly independent
solutions of equation (7), then its general solution is

y = C\!/\ +  C2u2 +  . . .  +  Cnyn, (2)
where Cx> .. Cn are arbitrary constants.

If the coefficients of equation (1) are constant, the general so
lution is found in the same way as in the case of second-order 
equations.

1) We form the auxiliary equation
kn-i aikn~l + atkn- 2,+  .;. 4-a„t= b . ’ ,

2) We find the roots of the auxiliary equation'
k k k

3) From the character of the roots we write out the particular 
linearly independent solutions, taking note of the fact that:

a) to every real root k of order one there corresponds a parti
cular solution ehx\

b) to every pair of complex conjugate roots £(,,-=a-MP and 
k<2) = a—t‘P there correspond two particular solutions e**cosPx 
and e%x sin px;

c) to every real root k of multiplicity r there correspond r 
linearly independent particular solutions

ekx, xekx, . . . ,  xr~'ekx;
d) to each pair of complex conjugate roots ^ '^ a - f / p ,  

kw = a—t'P of multiplicity p. there correspond 2p particular so
lutions:

e*x cos Px, xeix cos px, . . . ,  xv‘~le*x cos px,
eax sin px, xeIX sin px, . . . ,  x11- V* sin px.

The number of these particular solution^ is.exactly equal to the 
degree of the auxiliary equation (that is, to the order.,of the given 
linear differential equation). It may be proved that these solutions 
are linearly independent. ' >-
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4) After finding n linearly independent particular solutions 
0i, yt, . . . ,  yn we construct the general solution of the given 
linear equation:

U =  Cxfh +  +  ■ • • +  c nyn>
where Ct, C2, Cn are arbitrary constants.

Example 4 . Find the general solution of the equation

y l v ~ y  =  o .

Solution. Form the auxiliary equation
k*— 1 = 0.

Find the roots of the auxiliary equation:
*i = l, *,= - 1. *, = <,

Write the complete integral
y — Clex ^ C 1e"x -\-A cos x-f- B sin x, 

where C„ C2, A, B are arbitrary constants.

Note 2. From the foregoing it follows that the whole difficulty 
in solving homogeneous linear differential equations with constant 
coefficients lies in the solution of the auxiliary equation.

SEC. 23. NONHOMOGENEOUS SECOND-ORDER LINEAR EQUATIONS

Let there be a nonhomogeneous second-order linear equation
!f +  aly' + a j / - f ( x ) .  (1)

The structure of the general solution of such an equation is 
determined by the following theorem.

Theorem 1. The general solution of the nonhomogeneous equation 
( 1) is represented as the sum of some particular solution of the 
equation y* and the general solution y of the corresponding homo
geneous equation

?  + a , ? +  «.]/ =  0. (2)
Proof. We need to prove that the sum

tj= y+ y*  (3)
is the general solution of equation (1). Let us first prove that the 
function (3) is a solution of (1).

Substituting the sum y + y* into (1) in place of y, we get
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or
(y" +  a ji’ +  a y  +  (y** +  a y '  -f a y )  =  / (x). (4)

Since y is a solution of (2), the expression in the first brackets 
is identically zero. Since y* is a solution of (1), the expression 
in the second brackets is equal to f(x). Consequently, (4) is an 
identity. Thus, the first part of the theorem is proved.

We shall now prove that expression (3) is the general solution 
of equation (1); in other words, we shall prove that the arbitrary 
constants that enter into the expression may be chosen so that 
the following initial conditions are satisfied:

yx=x0 — y0t \
ffx = x 0 —  ffo , )

(5)

no matter what the numbers x0, y0 and y\ [provided that x„ is 
taken from the region where the functions av at and f(x) are 
continuous]. _

Noting that y may be given in the form

where (/, and yt are linearly independent solutions of equation (2), 
and C, and C, are arbitrary constants, we can rewrite (3) in the 
form

y = Clyl + Ctyt + y*. (3')
Then, by the conditions (5), we will have*)

+  +y<t=y„,
C j i / l o  +  C j I / j o - f  l / J  = I / o .

From this system of equations we have to determine C, and Ct. 
Rewriting the system in the form

0 ^y^~\~ Ctyt  ̂ y t j/<>, \ .g.
— yo y<t, f

we note that the determinant of this system is the Wronskian
for the functions yt and y, at the point x = xe. Since it is given
that these functions are linearly independent, the Wronskian is 
not zero; consequently, system (6) has a definite solution, C,

*) Here, y l0, yM, y*„ y 10, y t„, y*  denote the numerical values oT the 
functions i/„ y t, y*, y\, y t , y*‘ when x =  xt .
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and C2; in other words, there exist values C, and C2 such that 
formula (3) defines the solution of equation (1) which satisfies 
the given initial conditions. The theorem is completely proved.

Thus, if we know the general solution y of the homogeneous 
equation (2), the basic difficulty, when integrating the nonhomo
geneous equation (1), lies in finding some particular solution y*.

We shall give a general method for finding the particular so
lutions of a nonhomogeneous equation.

The method of variation of arbitrary constants (parameters). 
We write the general solution of the homogeneous equation (2):

y ^ C .y .+ C ^ .  (7)
We shall seek a particular solution of the nonhomogeneous 

equation (1) in the form (7), considering C, and Ct as some (as 
yet) undetermined functions of x.

Differentiate'(7):
y' — Cxyi-\-Ctyt -\-Ciyx-srC tyt.

Now choose the needed functions C, and Ct so that the following 
equation is fulfilled:

G\yx + C'iyi =  0. (8)
If we take note df this additional condition, the first derivative y' 
will take thd form 1

y' = Cxyx +  Ctyt.
Differentiating this expression, we find y”: 

y" — Cxy, +  Ctt/j +  Ct i/i +
Putting y, y' and y" into (1), we get

Cxyt + C st/j +  Cif/i +  C2y, + ax (C,i/i -(- Ctyt) -f- 
■ + at (Ciyx-\-Ctyx) — f(x)

or
Cx (y\ +  «,«/! +  atyx) +  Ct (yl + aty't +  ajyJ +  C\y[ +  C\y2 =  /  (*).

The expressions in the first two brackets vanish, since yx and yt 
are solutions of the homogeneous equation. Hence, the latter equa
tion takes 'on the form

Cxyi +  Ctyt = f (x). (9)
Thus, the function (7) will be a solution of the nonhomogeneous 

equation (1) provided the functions C, and C, satisfy the system 
of equations (8) and (9); that is, if

Ciyx -j- C2yt =  0, Ciyt -)- Ctyt = f (x).
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Since the determinant of this system is the Wronskian for the 
linearly independent functions yx and */2, it is not equal to zero. 
Hence, in solving the system we will find C[ and C'2 as definite 
functions of x:

=  £  =  <P,(*)-
Integrating, we obtain

c i =  [ <P, (*) d x  +  Ct; C , =  J 9 , (*) d x  +  C2,
where C, and C, are constants of integration.

Substituting the expressions obtained of C, and C, into (7), we 
find an integral that is dependent on the two arbitrary constants 
C, and C,; that is, we find the general solution of the nonhomo- 
geneous equation*).

Example. Find the general solution of the equation

Solution. Let us find the general solution of the homogeneous equation

= 0.
. X

Since
—  =  — we have In y' =  In x-\~ In C; u'=Cx;  y x * *

and so
y =  Clx2-\-Ct .

For the latter expression to be a solution of the given equation, we have 
to define C, and Ca as functions of x from the system

C[x2 +  C' • 1 = 0 , 2C[x +  C' • 0 =  X.

Solving this system, we find

whence, after integration, we get

C,=f+C,. ct — x~ + c t.
Putting the functions obtained into the formula y =  Cxx2+ C 2l we get the 

general solution of the nonhomogeneous equation
_ _ y ̂ x2

-  -  X 2 -  -
or y =  Clx2 +  C2 +  - £ , where Cx and C2 are arbitrary constants.

*) If we put C1 =  C2= 0 , we get a particular solution of equation (I).
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When seeking particular solutions, it is useful the take advan
tage of the results of the following theorem.

Theorem 2. Let the nonhomogeneous equation
y“ +  a\\i +  aty = f1(x) + fi (x) (10)

be such that the right side is a sum of two functions, ft (x) and f2 (x). 
If y i is a particular solution of the equation

tf  + a y  + aty = fl (x), (11)

and y2 is a particular solution of the equation
y" +  axy' + a ty = f2(x), (12)

then y, + yt is a particular solution*) of equation (10).
Proof. Substituting the expression yl + yi into (10), we get

(yx +  y2Y + ax (yx+ y2Y +  °2 (yx+ y2)= fx (*)+ f2 (x)
or

(yx +  axy'x +  a .y j +  (y\ +  aty ’2 +  a2(/,) -= ft (x) +  f2 {x). (13)
From equations (11) and (12) it follows that equality (13) is an 

identity. And the theorem is proved.

SEC. 24. NONHOMOGENEOUS SECOND-ORDER LINEAR 
EQUATIONS WITH CONSTANT COEFFICIENTS

Suppose we have the equation
y“+py' + qy=f (x)  (l)

where p and q are real numbers.
A general method for finding the solution of a nonhomogeneous 

equation was given in the preceding section. In the case of an 
equation with constant coefficients, it. is sometimes easier to find 
a particular solution without resorting to integration. Let us consi
der several such possibilities for equation (1).

I. Let the right side of (1) be the product of an exponential 
function by a polynomial; that is, of the form

/(*) =  P„(*)e°*, (2)

where Pn(x) is a polynomial of degree n. Then the following par
ticular cases are possible:

*) Obviously, the appropriate theorem remains true for any number of 
terms on the right side.

1 8 - 3 3 8 8
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a) The number a is not a root of the auxiliary equation
ti ̂  ~|“ pk "I- Q =  0.

In this case, the particular solution must be sought for in the 
form

y* =  ( V "  +  A *""’ +  • • • +  An) e'x =  Qn (*) (3)
Indeed, substituting y* into equation (1) and cancelling ea*out 

of all terms, we will have
Qn(-0 +  (2a +  p) Qn(x)-)-(at -}-pa-\-q)Qn(x) = Pn (x). (4)

Q„(x) is a polynomial of degree n, Qn(x) is a polynomial of de
gree n — 1, and Qn(x) is a polynomial of degree n—2. Thus, 
n-degree polynomials are found on the left and right of the equa
lity sign. Equating the coefficients of the same degrees of x (the 
number of unknown coefficients is n-\-1), we get a system of n - f l  
equations for determining the unknown coefficients A„, A,, 
K ........A„. -

b) The number a is a simple (single) root of the auxiliary equa
tion.

If in this case we should seek the particular solution in the 
form (3), then on the left side of (4) we would have a polynomial 
of degree n— 1, since the coefficient of Q„(x), that is, af + pa + q 
is equal to zero, and the polynomials Qn(x) and Qn(x) have deg
rees less than n. Hence, (4) would not be an identity, no matter 
what the A„, A t, . . . , A n. For this reason, the particular solution 
in this case has to be taken in the form of a polynomial of degree 
n + l ,  but without the absolute term (since the absolute term of 
this polynomial vanishes upon differentiation)*):

y* = xQn (x)eax.
c) The number a is a double root of the auxiliary equation. 

Then, as a result of the substitution of the function Qn (x) e** into 
the differential equation, the degree of the polynomial is diminished 
by two units. Indeed, if a is the root of the auxiliary equation, 
then a2 +  pa +  q =  0; moreover, since a is a double root, it follows 
that 2a =  — p (since by a familiar theorem of elementary algebra, 
the sum of the roots of a reduced quadratic equation is equal to 
the coefficient of the unknown in the first degree with sign rever
sed). i4nd so 2a +  p =  0.

*) We remark that all the results given above also hold for the case
when a is a complex number (this follows from the rules of differentiation of 
the function emx, where m Is any complex number; see Sec. 4. Ch. VII).
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Consequently, on the left side of (4) there remains Qn(Jt), that 
is, a polynomial of degree n —2. To obtain a polynomial of 
degree n as a result of substitution, one should seek the particular 
solution in the form of a product of eax by the (n4-2)rtd degree 
polynomial. Then the absolute term of this polynomial and the 
first-degree term will vanish upon differentiation; for this reason, 
they need not be included in the particular solution.

Thus, when a is a double root of the auxiliary equation, the 
particular solution may be taken in the form

y* =  x2Qn (x)eax.
Example 1. Find the general solution of the equation

y" +  4y' + 3 y  =  x.

Solution. The general solution of the corresponding homogeneous equation is

Since the right-hand side of the given nonhomogeneous equation is of the 
form xe0X [that is, of the form PA(x)eox]t and 0 is not a root of the auxiliary 
equation k2 +.46 +  3 =  0, it follows that we should seek the particular solution 
in the form y* =  Q, (x) eox; in other words, we put

y* =  Aex +  Al.

Substituting this expression into the given equation, we will have
4A0 +  3 (A0x +  i4j) =  x.

Equating the coefficients of identical degrees of x t we get 
3i40=  1, 4i4o-f-3>41 =  0I

whence

Consequently,

The general solution of y =  y-\-y* will be

Example 2. Find the general solution of the equation 
y" +  9y=:{x2+ l ) e * x.

Solution. The general solution of the homogeneous equation is readily 
found:

~y =  Cl cos 3x +  C2 sin 3x.

The .right side of the given equation (*2-f-l)e3* has the form
Pz(x)e*x.

18*
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Since the coefficient 3 in the exponent is not a root of the auxiliary equa
tion, we seek the particular solution in the form

y* =  Q2 (x)e2X or y* =  (Ax2+  Bx — C) elx.

Substituting this expression in the differential equation, we will have
[9 (4 * 2 +  B* +  C) +  6 (24* +  B) +  2A +  9 (Ax2 + B x  +  C)] =  (x2 +  1) etx.

Cancelling out eix and equating the coefficients of identical degrees of *, we 
obtain

184 =  1, 124 +  18B =  0, 24 +  6 B +  18C = l,
1 1 5  

whence 4  =  jg ; B =  — ^ \  ^ =  8 1 ’ Consequently, the particular solution is

y*= {r&x'- ? 7 x+ £ i)e'x
and the general solution is

y =  Ct cos3* +  C ,s ln 3 .c - |-^ jc l —gfX +  g f j  e,x.

Example 3. To solve the equation
y* — 7yf ~\-§y=(x  — 2) ex.

Solution. Here, the right side is of the form P l (x)e'x and the coefficient 1 
in the exponent is a simple root of the auxiliary polynomial. Hence, we seek 
the particular solution in the form y* =  xQ1(x)ex or

y* =  x (Ax +  B) ex\

putting this expression in the equation, we get
[(Ax2 +  Bx) +  (44* +  2B) +  24 —7 (Ax2 +  B*)—7 (24* +  B) +

+  6 (Ax2 +  Bx)) ex =  (x —2) e*
or

( _  104*—5B +  24) ex =  (*— 2) ex.

Equating the coefficients of identical degrees of *, we get 
— 104 =  1, —5B +  24 =  — 2,

1 9whence 4 =  — 77:, B =  ^ ..  Consequently, the particular solution is 1U 2d

y '==x{ -T o x+ i ) e*
and the general solution is

g- C s ” + C S  + x ( - K *  + % ) *

II. Let the right side have the form
•/ (x ) — P {x)  e*x cos $ x  +  Q (x ) elx sin Pjc, (5)

where P(x) and Q(x) are polynomials.
This case may be considered by the technique used in the pre

ceding case, if we pass from trigonometric functions to exponential
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functions. Replacing cospx and sin Pa: by exponential functions 
using Euler’s formulas~(see Sec. 5, Ch. VII), we obtain

tl , D, , + . n /  , *x eiPl—e-‘9*f(x) = P (x) e*x--- X------------+ Q {x)ex  ^ -’
or
f ( x ) =  [ - iR (x) +  - Q ( x ) j  ^ +,P>*+ [ | P W - - Q W ]  (6 )

Here, the square brackets contain polynomials whose degrees are 
equal to the highest degree of the polynomials P (x) and Q (x). 
We have thus obtained the right side of the form considered in 
Case I.

It is proved (we omit the proof) that it is possible to find par
ticular solutions which do not contain complex numbers.

Thus, if the right side of equation (1) is of the form
/ (x) =  P (x) e*x cos Px +  Q (x) e*x sin px, (7)

where P(x) and Q(x) are polynomials in x, then the form of the 
particular solution is determined as follows: 

a) if the number a + ip  is not a root of the auxiliary equation, 
then the particular solution of equation (1) should be soughtirithe 
form

</* =  t/ (x) e*x cos px +  V (x) e*x sin Px, (8)
where U (x). and V (x) are polynomials of degree equal to the high
est degree of the polynomials P (x) and Q (x);

b) if the number a +  ip is a root of the auxiliary equation, 
we then write the particular solution in the form

y* =  x [U (x) e*x cos px +  V (x) e*x sin px]. (9)
Here, in order to avoid mistakes we must note that these forms 

of particular solutions, (8) and (9), are obviously retained when 
one of the polynomials P{x) and Q(x) on the right side Of equa
tion (1) is identically zero; that is, when the right side is of the 
form

P(x)£°*cospx or Q (x)e“vsinPx.
Let us further consider an important special case. Let the right 

side of a second-order linear equation have the form
f{x) = M cos Px +  N sin, Px, (7')

where M and N are constants.
a) If pi is not a root of the auxiliary equation, the particular 

solution should be sought in the form
y* — A cos Px +  B sin Px. (8')
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b) If pi is a root of the auxiliary equation, then the particular 
solution should be sought in the form

y* = x(A  cospx + B sinpjt). (9')
We remark that the function (7') is a special case of the func

tion (7) [P(x) = M i (Q)x = Nt a =  0]; the functions (8') and (9') 
are special cases of the functions (8) and (9).

Example 4. Find the complete integral of the nonhomogeneous linear equa
tion

y +  2^' +  5y =  2 cos x.

Solution. The auxiliary equation fc2 +  26 +  5 =  0 has roots fc ,= — 1+2*; 
kt — — \ —2i. Therefore, the complete integral of the corresponding homoge
neous equation is __

y =  e (Cj cos 2jc +  Ct sin 2x).

We seek the particular solution of the nonhomogeneous equation in the form
y* =  A cos x +  B sin jc,

where A and B are constant coefficients to be determined.
Putting y* into the given equation, we will have
— A cos jc — 8  sinjc +  2 ( — A sin x +  B cos jc) +  5 (4  cos x +  B sin jc) =  2 cos x.

Equating the coefficients of cosjc and sinjc, we get two equations for de
termining A and B:

— A + 2 B  +  5A =  2\ —B—2A +  55 =  0,

whence A =  ^-\  £  =  — .o 1U
The general solution of the given equation is y=y-\ -y*>  that is,

y =  e~* (CA cos 2jc +  C2 sin 2jc) +  cos x +  sin jc.b lU
Example 5. To solve the equation

*/" +  4*/ =  cos 2jc.

Solution. The auxiliary equation has roots kl =  2i, kt =  — 2i; therefore, 
the general solution of the homogeneous equation is of the form

y =  Cj cos 2jc +  Ct sin 2jc.

We seek the particular solution of the nonhomogeneous equation in the form
y* = x  (A cos 2jc +  B sin 2jc).

Then
y*f =  2jc (— A sin 2jc +  5 cos 2jc) +  (A cos 2jc +  B sin 2jc), 
y*n =  — 4jc (— A cos 2jc—5 sin 2jc) +  4 (— A sin 2jc +  B cos 2jc).

Putting these expressions of the derivatives into the given equation and 
equating the coefficients of cos 2 jc and sin2jc, we get a system of equations 
for determining A and B:

4 5  =  1; — 4.4 =  0,
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whence A =  0 and B = ~ .  Thus, the complete integral of the given equation is

y — Cx cos 2* +  C2 sin 2* -f- * sin 2*.
Example 6 . To solve the equation

y"—y =  3e2X cosx.

Solution. The right side of the equation has the form
/ (*) =  e2X (M cos x +  N sin x),

and M = 3 , N =  0 . The auxiliary equation k2— \ = 0  has roots kx =  1, £ 2 =  — 1. 
The general solution of the homogeneous equation is

y =  Cxex +
Since the number a-H P  = 2-j-t • 1 is not a root of the auxiliary equation, we 
seek the particular solution in the form

y* =  e2X (A cos x +  B sin x).

Putting this expression into the equation, we get (after collecting like terms)
(2A +  4B) e2x cos x -f- (— 4 A +  2B) e2* sin x =  cos x.

Equating the coefficients of cos* and sin*, we obtain
2 A + 4 B  =  3, — 4 A + 2 B  =  0.

3 3Whence and B =  ~ .  Consequently, the particular solution is

y * = e 2X ^  cos * +  —- sin *  ̂ , 

and the general solution is

y =  Clex +  C2e~x +  e2x ^  cos* +  -|- sin*^ .

SEC. 25. HIGHER-ORDER NONHOMOGENEOUS LINEAR EQUATIONS

Let us consider the equation
y{n) +  axy(n- 1) +  .. . +  any =  f (x), (1)

where ax> a2i ...»  an, f(x) are continuous functions of x (or con
stants).

Suppose we know the general solution

y ==Clyl + Czy1 +  • • • + ^ nyn (2)
of the corresponding homogeneous equation

? n) +  a/ " 11 +  aiy<n-*' + . . . + a ny = 0. (3)
As in the case of a second-order equation, the following asser

tion holds for equation (1).
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Theorem. If y is the general solution of> the homogeneous equa
tion (3) and y* is a particular solution of the nonhomogeneous 
equation ( 1), then

Y = y + y*
is the general solution of the nonhomogeneous equation.

Thus, the problem of integrating equation (1), as in the case 
of a second-order equation, reduces to finding a particular solution 
of the nonhomogeneous equation.

As in the case of a second-order equation, the particular solution 
of equation (1) may be found by the method of variation of para
meters, considering Cl% C2, . Cn in expression (2) as functions 
of x.

We form the system of equations (cf. Sec. 23):
C\yx +  C2y2 +  • .. +  Cny n = 0,
C\gi +  C2y2 -f-. . .  -f- Cnyn =  0,

.................................................................  (4)
C\ y\n- 2) +C'ty[n- 2) + . . . +  c W r 2) =  0,
C tl/\n ,, +  C2t/jfl +  . • . +  Cnt/n" ** =  /(x).

This system of equations with the unknown functions C,, C2, . . . .  
Cn has very definite solutions. (The determinant of the coef
ficients of Cu C.......... Cn is the Wronskian formed for the parti
cular solutions y lt yt, yn of a homogeneous equation, and 
since these particular solutions are, by definition, linearly inde
pendent, the Wronskiari is not zero.)

Thus, the system (4) may be solved for the functions C[, Cs.........
C'n. Finding them and integrating, we obtain

C l  ̂Ci dx -f-Cji C2 —  ̂C2 dx "F C 2* • • •* Cn  ̂Cn dx -|- C n,
where C,, C2, . . . ,  C„ are the constants of integration.

We shall prove that in such a case the expression
y* = C1yl -\-Ctyt + . . . + C ny n (5)

is the general solution of the nonhomogeneous equation (1).
Differentiate expression (5) ti times, each time taking into account 

equations (4); this yields
y* = Clyl +Ctyt + C,yt +  . . .  -\-Cj/n, 

y*' — Ctyi + C tyg +£,*/»;+ . . .  -\-C„yn, ,

y*in~ "= c y ln- i)+ c / r i ) + c y r l(, 
y*m = Ciy[n) +  C d n) + . . .  + c ny{nn)+ f(x).
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Multiplying the terms of the first, second, . . .  and, finally, second 
to the last equation by an, an_,, . . . ,  a,, respectively, and adding, 
we get

y*m +  a1t/'*<n- ” +  . . .  + a„y* = f (■*),
since ylt yt, yn are particular solutions of the homogeneous 
equation; for this reason, the sums of the terms obtained in adding 
vertical columns are equal to zero.

Hence, the function y* = C,yt + . . .  + Cnyn [where C,, . . . ,  Cn 
are functions of x determined from equations (4)] is a solution of 
the nonhomogeneous equation (1), and since this solution depends 
on the n arbitrary constants C,, Ct, C„, it is the general 
solution.

The proposition is thus proved.
For the case of a higher-order nonhomogeneous equation with 

constant coefficients (cf. Sec. 24), the particular solutions are found 
more easily, namely:

I. Let there be a function on the right side of the differential 
equation: /  (x) =  P (x) e**, where P (x) is a polynomial in x\ then 
we have to distinguish two cases:

a) if a is not a root of the auxiliary equation, then the parti
cular solution may be sought in the form

y* = Q (*) e1*,
where Q{x) is a polynomial of the same degree as P (x), but with 
undetermined coefficients;

b) if a  is a root of multiplicity p, of the auxiliary equation, 
then the particular solution of the nonhomogeneous equation may 
be sought in the form

where Q(x) is a polynomial of the same degree as P(x).
II. Let the right side of the equation have the form

f(x) = M cos p* +  N sin p*,
where M and N  are constants. Then the form of the particular 
solution will be determined as follows:
■ a) if the number p/ is not a root of the auxiliary equation, then 

the particular solution has the form
y* =  A cos p* +  B sin pje,

where A and B are constant undetermined coefficients;
b) if the number p/ is a root of the auxiliary equation of mul

tiplicity p, then
y* = x•* (/4 cos p x + B  sin p*).
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III. Let
f(x) = P (x) e*x cosp* +  Q (x) eax sin p*,

where P (x) and Q (x) are polynomials in x. Then:
a) if the number a+ $i is not a root of the auxiliary polynomial, 

then we seek the particular solution in the form
y* =U (x) eax cos $x + V (x) eax sin p*,

where U (x) and V (x) are polynomials of degree equal to the high
est degree of the polynomials P (.x) and Q {x)\

b) if the number a +  p* is a root of multiplicity p of the auxiliary 
polynomial, then we seek.the particular solution in the form

r/* =  x* [U (.x) e*x cos fix +  V (x) eax sin fix],

where U (x) and V (x) have the same meaning as in Case a\ 
General remarks on Cases II and III. Even when the right side 

of the equation contains an expression with only cos|Ja: or only 
sin we must seek the solution in the form indicated, that is, 
with sine and cosine. In other words, from the fact that the right 
side does not contain cosp* or sinp*, it does not in the least 
follow that the particular solution of the equation does not contain 
these functions. This was evident when we considered Examples 4, 
5, 6 of the preceding section, and also Example 2 of the present 
section.

Example 1. Find the general solution of the equation

</,v—i/=*5+ i.
Solution. The auxiliary equation k*— 1 =  0 has the roots

== 1» /Zj=““ 1, k j === i , == i.
We find the general solution of the homogeneous equation (see Example 4, 
Sec: 22):

+  C2e ~* +  C3 cos x +  C4 sin x.

We seek the particular solution of the nonhomogeneous equation in the form 
y* =  A0x3 +  A s 2 +  A2x +  Ar

Differentiating y* four times and substituting the expressions obtained 
into .the given equation, we get

— A0x* — Axx2— A2x — At =  x2 +  \.

Equating the coefficients of identical degrees of x% we have 
— ./40 =  1; — y4, =  0; — A2 =  Q\ — A^= 1.

Hence
y* = ~ x 9~  1.
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The complete integral of the nonhomogeneous equation is found from tho 
formula y =  y +  y*:

y =  Clex -\-Cte~x +  cos* +  C4 sinx —jcs — 1.

Example 2. To .solve the equation
IV ty —y — 5 cos*.

Solution. The auxiliary equation k4— 1 = 0  has the roots kx =  \, fc2 =  — 1, 
fc3 =  i\ fc4 = — i. Hence, the general solution of the corresponding homogeneous 
equation is

y  = =  Cxe* +  C2e ~ x  +  Cj  cos x +  C4 sin x.
Further, the right side of the given nonhomogeneous equation has the form

f (x) =  M cos x +  N sin*,
where M =  5 and jV = 0 .

Since i is a simple root of the auxiliary equation, we seek the particular 
solution in the form

y *  =  x (A cos x +  B sin x).
Putting this expression into the equation, we find 

4 A sin x —4B cos x =  5 cos x,
whence

4A =  0, — 4B =  5
5

or 4 = 0 ,  B =  — — . Consequently, the particular solution of the differential 
equation is

and the general solution is
y* =  — — x sin x

y  =  Cxex +  C2e +  Cs cos x -f- C4 sin x —— x sin x.

SEC. 26. THE DIFFERENTIAL EQUATION OF MECHANICAL 
VIBRATIONS

In this and the following sections we shall consider a problem 
in applied mechanics, and investigate and solve it by means of 
linear differential equations.

Let a load of mass Q be at rest on an elastic spring (Fig. 268). 
We denote by y, the deviation of the load from the equilibrium 
position. We shall consider deviation downwards as positive, 
upwards as negative. In the equilibrium position, the force of the 
weight is balanced by the elasticity of the spring. Let us suppose 
that the force that tends to return the load to equilibrium (the 
so-called restoring force) is proportional to the deflection, that is, 
equal to k y , where k is some constant for the given spring (the 
so-called “spring rigidity”)*).

*) Springs whose restoring force is proportional to the deflection are called 
springs with a “linear characteristic”.
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Let us suppose that the motion of the load Q is restricted by 
a resistance force operating in a direction opposite to that of 
motion and proportional to the velocity of motion of the load 
relative to the lower point of the spring; that is, a force — =
=  — where X =  const > 0  (shock absorber). Write the dif
ferential equation of the motion of the load on the spring. By 
Newton’s second law we have

9 0  = - * ! / - ^  <»
(here, k and X are positive numbers). We thus have a homoge
neous linear differential equation of the second order with con
stant coefficients.

Fig. 268. Fig. 269.

This equation may be rewritten as follows:

+  +  w  =  6 ')
where

X . k
P ~  Q ’ °< Q *

Let it further be assumed that the lower point of the spring A 
executes vertical motions under the law z =  q>(/). This will occur, 
for instance, if the lower end of the spring is attached to a rol
ler, which moves over an uneven spot together with the spring 
and the load (Fig. 269).

In this case the restoring force will be equal not to — ky, but 
to — k [</ +  <J>(0]> the force of resistance wi.ll .be —A, [y' +  <p' (/)], 
and in place of equation (1) we will have the equation

Q w + K%r+ky = -  W (0 - w  (0 . (2)
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or
Z F + p ^ + Q y - f iO ,  (2')

where
j  _ _fap (0 +  A.<P' (0

We thus have a nonhomogeneous second-order differential 
equation.

Equation (1') is called an equation of free oscillations, equation(2') 
is an equation of forced oscillations.

SEC. 27. FREE OSCILLATIONS

Let us first consider the equation of free oscillations 

y" +  py' + qy = 0 .
We write the corresponding auxiliary equation

k* pk + q — 0
and find its roots:

* .= — i +  A  = — Y t ~ '
n2

1) Let ^ -> < 7- Then the roots kt and kt are real negative num
bers. The general solution is expressed in terms of exponential 
functions:

y ^ C .e ^ + C ^ 1 (&,<(), kt < 0). (1)

From this formula it follows that the deviation of y for any 
initial conditions approaches zero asymptotically if t —-oo. In the 
given case, there will be no oscillations, since the forces of resist
ance are great compared to the coefficient of rigidity of the 
spring k.

2) Let ^- = q; then the roots kl and kt are equal ^and are

also equal to the negative number —y ') ' Therefore, the general 
solution will be

y =  C,e 1 +Ctle ‘ = (C ,+ C ,()e  . (2)

Here the deviation also approaches zero as t —► oo, but not so 
rapidly as in the preceding case (due to the factor Cl +CMt).



558 Differential Equations

3) Let p =  0 (no resistance). The auxiliary equation is of the 
form

*  + q = 0,
and its roots are £, =  0/; kt = — p/, where p =  j/<7- The general 
solution is

(/ =  C,cosp*+C8sinpL (3)
In the latter formula, we replace the arbitrary constants C, 

and Ct with others. We introduce the constants A and <p0, which 
are connected with C, and Ct by the relations

C, = A sin <p0, Ct =  A cos q>0.
A and <p0 are defined as follows in terms of C, and Ct:

A = j / C ‘ + Cl, <p0 =  arc tan .

Substituting the values of C, and Ct into formula (3), we get 
y = A sin q># cos p/ +  A cos <p0 sin p/

or
i/=  4̂ sin (p/ -t-q>0). (3')

These oscillations are called harmonic. The integral curves are 
sine curves. The time interval T, during which the argument of

the sine varies by 2ji, is 
called the period of oscil
lation; here, T = —■. The
frequency is the number 
of oscillations during time 
2n; here, the frequency is 
P; A is the greatest de
viation from equilibrium 

and is called the amplitude; <p0 is the initial phase. The graph 
of the function (3') is shown in Fig. 270,

4) Let p 0 and ^< iq .
In this case, the roots of the auxiliary equation are complex 

numbers:
*, =  (! +  # ,  kt =  a — ip.

where « = - f < o ,  p =  Y

The complete integral has the form
y = e', {Cl cos p( + Ct sin p/) (4)
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or
y ^ A e *  sin(pf +  <p0). (4')

Here, for the amplitude we have to consider the quantity Aeat 
which depends on the time. Since a < 0 ,  it approaches zero as

t —► oo, which means that here we are dealing wxih damped oscil
lations. The graph of damped oscillations is shown in Fig. 271.

SEC. 28. FORCED OSCILLATIONS

The equation of forced oscillations has the form
y"+py' + q y =f (  0-

Let us consider an important practical case when the disturb
ing external force is periodic and varies under the law

f(t)±=a sin at;
then the equation will have the form

t f  +  py' + qy = a smart. (1)
1) Let us first presume that p=£ 0 and that is, the

roots of the auxiliary equation are the complex numbers a ±  t'p. 
In this case [see formulas (4) and (4'), Sec. 27], the general 
solution of the homogeneous equation has the form

y  =  A e* 1 sin (p/ +q>„). (2 )
We seek a particular solution of the nonhomogeneous equation 
in the form

y* =*M cos -(-fV sin at. (3)
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Putting this expression of y* into the original differential equa
tion, we find the values of M and N:

(q — to2)**— p to a  
(q—<o*)s+ pJa>2 ’ N-. (q — <o2) 2 +  p 2ti> '

Befpre putting these values of M and N into (3), let us introduce 
the new constants A* and tp*, setting

that is
M =  A* sin <p*, N = A* costp*,

a* = Vm*+n* m_____ “_____  tap — ,r‘
Y(q-aV+ W  V ~ N-

on of the nonb 

y* = A* sin tp* cos <0/ +  A* cos tp* sin at = A* sin (cof+ <p*),

Then the particular solution of the nonhomogeneous equation may 
be written in the form

or, finally,
«/* = , sin (at 4- <p*).Y (g—<o2)2+ p2<i>2

The complete integral of equation (1) is y — y + y* or

y = Ae~at sin (P/+q>,)-
Y  (<?— <1)2)2 +  P2(02

sin (at +  cp*).

The first term of the sum on the right side (the solution of the 
homogeneous equation) represents damped oscillations; it dimini
shes with increasing t and, consequently, after some interval of 
time the second term (which determines the forced oscillations) 
will acquire prime importance. The frequency to of these oscilla
tions is equal to the frequency of the external force /(/); the 
amplitude of the forced vibrations is the greater, the less p and 
the closer to2 is to q.

Let us investigate more closely the dependence of the amplitude 
of forced vibrations on the frequency to for various values of p. 
For this, we denote the amplitude of forced vibrations by D(a):

D (a) =  ° ---- .Y(q-~o>2)2+ p2toa

Putting <7= p j (for p — 0, 0, would be equal to its natural frequen
cy), we have

D(a) = _______a______
j / -ip;—to2)2+p2to2
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JP_
p ,

=  Y>

where X is the ratio of the frequency of the disturbing force to 
the frequency of free oscillations of the system, and the constant y 
is independent of the disturbing force, we find that the magnitude 
of the amplitude will be expressed by the formula

D(X) = a (4)

Let us find the maximum of this function. It will obviously be 
for that value of X for which the square of the denominator haj 
a minimum. But the minimum of the function

K ( l - ^ ) 2+ Y ^ ! (5)
is reached when 

and is equal to

V -

Hence, the maximum amplitude is equal to

Dm a x

The graphs of the function D(X) for various values of y are shown 
in Fig. 272 (in constructing the graphs we put a=  1, P ,=  l for 
the sake of definiteness). These curves are called resonance curves.

From formula (5) it follows that for small y the maximum 
value of amplitude is attained for values of X close to unity, that 
is, when the frequency of the external force is close to the fre
quency of free oscillations. If y =  0 (thus, p =  0), that is, if there 
is no resistance to motion, the amplitude of forced vibrations 
increases without bound as X—<-1 or as ra—*-P, =  y r<7:

lim D(X) — oo,
A# —► i
<Y-o)

At (o* = q we have resonance.
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2) Now let us suppose that p =  0; that is, we consider the 
equation of elastic oscillations without resistance but with a 
periodic external force:

y" + qy = a sin cof.

The general solution of the homogeneous equation is
t /= c , cos p r+ c ,  sin pr (P*=<7)-

If p =£ ©t that is, if the frequency of the external force is not 
equal to the natural frequency, then the particular solution of 
the nonhomogeneous equation will have the form

y* = M cosat + N sin corf. (6)
Putting this expression into the original equation, we find

M =  0, N - ^ .
The general solution is

y =  A sin (pt +  <p0) +  sin a t.



Systems of Ordinary Differential Equations 963

Thus, motion results from the superposition of a natural oscilla
tion with frequency p and a forced vibration with frequency o>.

If p =  (o, that is, the natural frequency coincides with the 
frequency of the external force, then function (3) is not a solu
tion of equation (6). In this case, 
in accord with the results of Sec.
24, we have to seek the particular 
solution in the form

y* = t (M cos (at+ N sin (at). (7)
Substituting this expression into 
the equation, we find M and N:

Af =  —2o> ’ W =  0.

Consequently,

y* = — t cos (at.

The general solution will have 
the form

y = As\n  (P<+<p0) — cos pc

The second term on the right 
side shows that in this case the 
amplitude increases without bound 
with the time t. This phenomenon, which occurs when the 
natural frequency of the system coincides with the frequency of 
the external force, is called resonance.

The graph of the function y* is shown in Fig. 273.

SEC. 29. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

In the solution of many problems it is required to find the
functions y,= y,{x), yt = yt {x)......... !/„ =  */„(*)> which satisfy a
system of differential equations containing the argument x, the 
unknown functions yt, y„ . . .  , yn and their derivatives.

Consider the following system of first-order equations:
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where y19 yt, . . .  , yn . are unknown functions and x is the argu
ment.

A system of this kind, where the left sides of the equations 
contain first-order derivatives, while the right sides do not 
contain derivatives, is called normal.

To integrate the system means to determine the functions 
yx, y*> • • • * */„> which satisfy the system of equations (1) and the 
given initial conditions:

( y x)x=x0 =  y l0, ( y 2)x=x0 — y 29> • • • > ( y n)x=x0 = y no- ( 2 )

Integration of a system like (1) is performed as follows. Differen
tiate the first equation of (1) with respect to x:

d ŷ1 =  d[1 , , tfx dyn
dx2 dx ' dyx dx ' * ‘ ’ ' dyn dx

Replacing the derivatives ^ -57 with their ex
pressions ft , . . .  , f n from equations (1), we get the equation

a jr  =  M *» yv  • • •. y»)-
Differentiating this equation and then doing as before, we obtain

§ r= M * . */,» y*.......yn)-
Continuing in the same fashion, we finally get the equation

J $  = f n(x, yx.........y„).
We thus get the following system:

57 =  ft (x, yv . . .  . £/„),

dx* ~  y ^  * • • ’

a yn)-
From the first n — 1 equations we determine (if this is possible) 

yt% y,< • • • . yn and express them in terms of x, yv and the
derivatives -f*. j t 1- • l x  .

dx" - 1

</2=<pt (*. Hi, y\> • • • .  ^ rt_1)).
y t = Vr(x, yv y\.........t/'"- 0 ),

yn = Vn(x, yu y\, . . . ,  y ? -" ) .

(4)
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Putting these expressions into the last of the equations (3), we 
get an nth-order equation for determining yx:

& r  = (t>(x> 4\. y \ .......y[n~ u)- (5)
Solving this equation, we find yx:

*/, = 'M*> c lt c 2........ c„). (6)
Differentiating the latter expression n— 1 times, we find the

derivatives ^  , —1.........as functions of x, C„ C2..................... Cn.
Substituting these functions into equations (4), we determine

/̂j» y*i • • • i t/n*
y% ^  C2, • • • >

yit~tyn(.X> *̂2* • • • * 0 n).
For this solution to satisfy the given initial conditions (2), it 
remains for us to find [from equations (6) and (7)] the appro
priate values of the constants C,, C2, . . .  , Cn (like we did in the 
case of a single differential equation).

Note 1. If the system (1) is linear in the unknown functions, 
then equation (5) is also linear.

Example 1. Integrate the system

^  =  y +  z +  x, ^ = —4y—3 z + 2 x  (a)

with the initial conditions
^)x=o =  l» ( ^ ) x = o ~ - (b) 

Solution. 1) Differentiating the first equation with respect to x, we have

dx2 d x ' d x '

Putting the expressions ^  and —  from equations (a) into this equation, 
we get

- ^ = ( y  +  z +  x) +  ( - 4 y - 3 z  +  2x) +  l
or

i —̂  =  — 3 y — 22 +  3* +  l. (c)

2) From the first equation of system (a) we find

• , (d)
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and put it into the equation just obtained; we get

3 — :« * - * ( £ - » - *  ) + * + ‘

The general solution of this equation is
y =  (Cl +  Ctx)e~x +  S x - 9  (f)

and from (d) we have
z =  (C2 —2C, — 2C2x) <?-* —6* +  14. (g)

Choosing the constants C, and C2 so that the initial conditions (b) are 
satisfied,

(y)x=o= I» (z)x=o = ̂ * 
we get, from equations (f) and (g),

1 = C j—9, 0 =  C2—2 ^  +  14,

whence C, =  10 and C2 =  6 .
Thus, the solution that satisfies the given initial conditions (b) has the 

form
r/= ( 10 +  6* ) e - x +  5*—9, z =  (— 14 — 12*) e“x —6x + 14.

Note 2. In the foregoing we assumed that from the first rt—1 
equations of the system (3) it is possible to determine the 
functions yt% . . .  , yn. It may happen that the variables 
y2t . . .  , yn are eliminated not from n, but from a smaller number 
of equations. Then to determine yx we will have an equation 
of order less than n.

Example 2 . Integrate the system
dx . dy , dz 
i i = y + z ' d t = x + z ;  i t = x + y ■

Solution. Differentiating the first equation with respect to t, we find 
d2x dy . dz . . . . . .  .
dt i = d t + d i - ( x + z ) + ( x + y ) >

~ £ = 2x + y + z .

Eliminating the variables y and z from the equations 
dx . dzx 0 , ,
dr=y+z; di*=2x+y+z'

we get a second-order equation in x:
dlx , dx
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Integrating this equation, we obtain its general solution:
x =  Cle~t +  C2e2tt (a)

Whence we find

—  =  — C1e - t +  2Cie2t and y =  z =  — Cle~t +  2C2e2t—z. (P)

Putting into the third of the given equations the expressions that have been 
found Tor x and y t we get an equation for determining z:

g  + z = 3Cl̂ .

Integrating this equation, we find
z =  C ,e-' +  C2eJ<. (Y)

But then, from equation (P), we get
y =  (Ci "f~ C2) e~l +  C2e2t,

Equations (a), (P), and (y) give the general solution of the given system.

The differential equations of the system can contain higher-order 
derivatives. This then yields a system of differential equations of 
higher order.

For instance, the problem of the motion of a material point under the 
action of a force F reduces to a system of three second-order differential 
equations. Let Fx, Fyy Fz be the projections of the force F on the coordinate 
axes. The position or the point at any instant of time t is determined by 
its coordinates x , y y and 2 . Hence, xt y t 2 are functions of t. The projections
of the velocity vector of the point on the axes will be ^  .at dt  dt

Suppose that the force F and, hence, its projections Fx, Fyt F, depend 
on the time t t the position x, y y 2 of the point, and on the velocity of
motion of the point, that is, on » -jjr 1 •

In this problem the following three functions are the sought-for functions;

* = * ( / ) ,  y  =  y ( t ) ,  e =  2 (0 .

These functions are determined from equations of dynamics (Newton’s law):

d2x „
mw ==F* 1

f .  dx
r  *  *  *’ Tt

dy d z \ \
’ dt ’ d i ) ’

m dt* ~ Fy 1
( .  dx 
[ • x‘ y ' z ' dt '

dy 
* dt ’ d t )  • (8)

d2z ,
mw*=F^

. dx 
( /•  »• 2’ dt '

dy 
1 dt *

dz \  
dt )  ‘

We thus have a system of three second-order differential equations. In the 
case of plane motion, that is, motion in which the trajectory is a plane
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curve (lying, for example, in the j«/-plane)t we get a system of two equations 
for determining the functions x (t) and y (t):

d2x c ,( .  dx dy \
(9)m d F  =  F* 1 x ’ »' dt '■' d t )  ’

II

XJ l*Q
s f dx t, x, y, d( , d y \

' dt ■ (10)

It is possible to solve a system of differential equations of higher order 
by reducing it to a system of first-order equations. Using equations (9) and 
(10) as examples, we shall show how this is done. We introduce the notation

Then

dx
dt~~U'

dji
dt v.

d*x_  du d2y _ d v  
d t2 ~ d t '  d f2~ l i  *

The system of two second-order equations (9) and (10) with two unknown 
functions x (t) and y ( t )  is replaced by a system of four first-order equations 
with four unknown functions x, y, u, v :

dx
dt = u, '

dy
dt

m ^  =  Fx (t, x, y, u, </.),

dv c ,, .w -7-r =  r y ( t t x , (/, a, u).

We remark in conclusion that the general method that we have considered 
of solving the system may, in certain specific cases, be replaced by some 
artificial technique that gets the result faster.’

Example 3. To find the general solution of the following system of 
differential equations:

dh 
dx1= ab

solution. Differentiate, with respect to x, both sides of the first equation 
twice:

d4y _ dh  
W ~dx*'

dzzBut —  =  and so we get a fourth-order equation:
c£y
dx*

Integrating this equation, we obtain its general solution (see Sec. 22, 
Example 4):

y  — Ctex -f“ -f- Cj cos x'-f- C4 sin x•
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d*uFinding from this equation and putting it into the first equation, we 
find z:

z =  Cxex +  C2e~x —C, cos jc— C4 sin x.

SEC. 30. SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS 
WITH CONSTANT COEFFICIENTS

Suppose we have the following system of differential equations:

^T =  a .,*i + a ltxt + . . .  +ciinxn,

~£ = a*lx l + a llx i +  . . . + a 2nxn, I
/ I 1 I

fa ”1“ “f" • • • “f"

where the coefficients a(y are constants. Here, t is the argument, 
and x1(t), x t ( / ) , . . . ,  xn (t) are the unknown functions. The 
system (1) is a system of homogeneous linear differential equations 
with constant coefficients.

As was pointed out in the preceding section, this system may 
be solved by reducing it to a single equation of order n, which 
in the given instance will be linear (this was indicated in Note 
1 of the preceding section). But system (1) may be solved in 
another way, without reducing it to an equation of the nth order. 
This method makes it possible to analyse the character of the 
solutions more clearly.

We seek a particular solution of the system in the following 
form:

x i  =  (2)

It is required to determine the constants a,, a ,.........a„ and k
in such a way that the functions a,ew, atekl, . . .  , anekt should 
satisfy the system of equations (1). Putting them into system (1), 
we get:

katekt — (aua, + a 11o1+  . • • + a ina„)ekt, 
katekl =  (atlu, -fa„a , +  . . .  +  a,„a„) ekt,

ka„ekt =  (ania, +  art8a, +  . . .  +annan)ekl.
(2)
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Cancel out eki. Transposing all terms to one side and collecting 
coefficients of ap a2, . . .  , a,,, we get a system of equations:

( « . , - * ) “ . +  altat +  . . .  +  alua„ =  0,
°Mai +  (fl» — *)<*,+ ••• + asnan =  0.

(3)
+  aniat +  . . .  +  (ann — k)an — 0 .

Choose a,, a,, . . .  , a„ and k such that will satisfy the system (3). 
This is a system of linear algebraic equations in av at, . . .  , an. 
Let us form the determinant of the system (3):

au —k ait .

at t—k • • • a in

fln, ani •• • (a„n—k)

If k is such that the determinant A is different from zero, then 
the system (3) has only trivial solutions a1 = at = . . .  =a„ =  0 
and, hence, formulas (2) yield only trivial solutions:

x\ (0 — xt (t) = . . .  = xtt (t) — 0.
Thus, we obtain nontrivial solutions (2) only for k such that 

the determinant (4) vanishes. We arrive at an equation of order 
n for determining k :

atl- k alt . . • a,„
att—k . • • &2n

ant • • 4 &nn k
This equation is called the characteristic equation of the system (1), 
and its roots are the roots of the characteristic equation.

Let us consider a few cases.
I. The roots of the characteristic equation are real and distinct.

Denote by kv kt, , kn the roots of the characteristic equation. 
For each root k{ write the system (3) and determine the 
coefficients

rr(i) nrU) nd)» * * * > U/l *
It may be shown that one of them is arbitrary; it may be 
considered equal to unity. Thus we obtain:

for the root kx the following solution of the system (1)
=  a[')ek‘t , jĉ l) = a< 1>e*>t, . . .  ,
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for the root kt the solution of the system (1) 
*<*>'=aWe**4, . . .  ,

for the root kn the solution of the system (1)
x =  aSn êknt, jdn> =  a,('n êknt......... =  a(a)e*n,.i i 7 2 2 9 * n n

By direct substitution into the equations we see that the system 
of functions

j c , =  C 1a<1, > e * 't  +  C , a (l4>e V +  . . .  - \ - C n a [ n ) e k « ‘ , '  

xt =  C, a*1 ><?*■* +  Ct a<2>eV Cna[n)ek<'1,

xn =  C,a£ ><?*>' +  Cla'£'>ek*t +  . . .  +  C„c ^ W , ,

where Cv C2, . . .  , Cn are arbitrary constants, is likewise a 
solution of the system of differential equations (1). This is the 
general solution of system (1). It may readily be shown that one 
can find values of the constants such that the solution will 
satisfy the given initial conditions.

Example 1. Find the general solution of the system of equations 

—  =  2*1+ 2 x 2, —  =  xl +  3xz.

Solution. Form the characteristic equation
2—ft 2 

1 3— ft =  0

or ft* —5/t+  4 =  0. Find its roots:
ft, =  l, ft2 =  4.

Seek the solution, of the system in the form
rO)=  a(11V ,  x\'l =  a\

and
x[2) =  aj2) ext, x[2) =  â 2) ext.

Form the system (3) for the root ft, =  l and determine aj1* and 

(2 - l ) a < I, +  2a<,> =  0 . 1 

3— 1) a ^ = 0  /la (,0 +  (3-
or

a (') +  2a(,)= 0 . 

a(,) +  2a<,) = 0 ,
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whence a | 1) =  “ | a [ 1). Putting =  I, we get a!^ =  — — . Thus, we obtain 

the solution of the system:

Now form the system (3) for the root k2—A and determine a (t2) and a*2): 

- 2a<2) +  2a<2) =  0 , 

a<2) - 2a<2> =  0 ,

whence a[2) = a * 2) and a{2) = l ,  a<2)= l .  We obtain the second solution of 
the system:

The general solution of the system will be [see (6 )]

x| = C- f -  C2e*\
*. =  -  yC,e‘ +  C / .

II. The roots of the characteristic equation are distinct, but 
include complex roots. Among the roots of the characteristic equa
tion let there be two complex conjugate roots:

fc, =  a-t-t'P, kt = <x — ip.

To these roots will correspond the solutions

*/’> =  ct/0 e(a+,P,( ( ;= 1 , 2, . . .  ,n), (7)
x f  = a f} ( / - l .  2.........n). (8)

The coefficients ay0 and a f} are determined from the system of 
„ equations (3). :

Just as in Sec. 21, it may be shown that the real and imagi
nary parts of the complex solution are also solutions. We thus
obtain two particular solutions:

(Xj*> cos p* +  X<!) sin pxj, ) 
x f ] =  eat (Xy° sin §x -f cos p*), /

where Xy'\ Xys) are real numbers determined in terms
of a,-1’ and a}s).

Appropriate combinations of functions (9) will enter into the 
general solution of the system.
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Example 2 . Find the general solution of the system

d- h  =  - 7 K 4-x 
dt rl+AJ’

dx2
I t -— 2xj — 5x2.

Solution. Form the characteristic equation
— 7— k 1 

— 2 — 5— k =  0

or'fcl +  \2k +  37 =  0 and find its roots:
*! =  — 6 +  i, k2 — — 6— I. 

Substituting kx = — 6 - f t  into the system (3), we find
tO) =  1 , = 1 +t-

We write the solution (7):
x:( i ) = = I e ( - « + / ) ( i ^ ( ' ) = ( i + t) e

Putting fct =  — 6 — i into system (3), we find

=  1. a<’> =  l — I.

We get a second system of solutions (8):

=(! —  (■)

(-• + «>*.

Rewrite the solution (7'):

xj,) =  e“ #r (cos t +  i sin /),

*£l, =  (l +  i) e~9t (cos t +  i sin t)
or

xj1* =  *""•* cos t +  ie~9i sin /,

x ^  =  e~9t (cos / — sin /) +  (cos / +  sin /).

Rewrite the solution (8 '):

=  cos t — l e - 9t sin /,

x{2) =  e~ 91 (cos / — sin /) — fe” 8* (cos / +  sin /).

For systems of particular solutions we can take the real parts and 
nary parts separately:

x\l) =  e~9tcos t, ~x{2l) =  e - 9t (cos / — sin /), 1

x(,*} =  e - 9t sin /, lc{2) =  e - 18/ (cos / +  sin /), /

The general solution of the system is
xx =  Cxe~ 9tcos / +  C2e ” 81 sin /,
x1 =  Cle~9t (cos / — sin (cos / +  sin /).

(7')

(8')

the imagi-

(90



574 Differential Equations

By a similar method it is possible to find the solution of a system 
of linear differential equations of higher order with constant coef
ficients.

For instance, in mechanics and electric-circuit theory a study 
is made of the solution of a system of second-order differential 
equations:

dF = aiS  + alty,
d2udF = a„x + at,y.

( 10)

Again we seek the solution in the form
x = <xekt, y —

Putting these expressions into system (10) and cancelling out ekt 
we get a system of equations for determining a, p and k:

(flu — *1) « + flI;P*=o, \  ..
«„«+(«„—**)P = o. I { }

Nonzero a  and p are determined only when the determinant of 
the system is equal to zero:

a21
( 12)

This is the characteristic equation of system (10); it is a fourth- 
order equation in k. Let kt, k t, k t, and kt be its roots (we assume 
that the roots are distinct). For each root k{ of system (11) we 
find the values of a  and p. The general solution, like (6), will 
have the form

a; =  C ,a (V . ‘ +  C2a ,?>eV +  C , a< +  C4a w>e*.

y =  C.p" >«*.* +  C,p< +  C,p< V * ‘ +

If there are complex roots, then to each pair of complex roots 
in the general solution there will correspond expressions of the 
form (9).

Example 3. Find the general solution of the following system 
differential equations

d2x
w = x~ "J'
£y
dt* = —*+y-

of
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Solution. Write the characteristic equation (12) and find its roots:

\ — k2 — 4
— 1 1 — k2 =  0,

k, =  i, kt =  — i, k , =  V  3, kx =  — V s .

We shall seek the solution in the form

*(1> =  a(,) e'(, 
jc*1* =  a(z| e - '*,

*<s> =  a(,> e ^ * ,
x(i)=aw e-v r tf

,,<■> = P«>crt,
,/<*> =  e-«
4,W =  p<»

£<«> =  p<‘>e ~v r t -

From system (11) we find a (̂  and p(̂ >:

o‘» =  l. P(" = y -  

a<i» =  l. P(t, =  y .  

a«» =  l, p ' " = - i  

a(«, =  li p<‘> = - i .

We write out the complex solutions:

x(1)= e “ lt =  cos t +  i sin t, #(,)= y  (cos t +  i sin t)t

x(2) = e ~ lt =  cos t — i sin /, y {2) =-^-( cos t — i sin t).

The real and imaginary parts separately form the solution!

#(x>=  cos t , t/(1) =  - c o s ( ,

x{2) =  sin t, y {2) =  — sin t.

We can. now write the general solution:

x =  Cx cos t +  Ct sin t +  C3 eV* 1 + C 4e“ 1/̂ "*, 
y =  Ct - -  cos t +  1  C, sin t - C ,  -  /* " ' -  Ct l  e~V r t.

Note. In this section we did not consider the case of multiple 
roots of the characteristic equation. This question is dealt with in 
detail in “Lectures on the Theory of Ordinary Differential Equations” 
by I. G. Petrovsky.
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SEC. 31. ON LYAPUNOVA THEORY OF STABILITY

Since the solutions of most differential equations and systems 
of equations are not expressible in terms of elementary functions 
or quadratures, use is made (in these cases when solving concrete 
differential equations) of approximate methods of integration. The 
elements of these methods were given in Sec. 3; in addition, some 
of these methods will be considered in Secs. 32 through 34 and in 
Chapter XVI.

The drawback of these methods lies in the fact that they yield 
only one particular solution; to obtain other particular solutions, 
one has to carry out all the calculations again. Knowing one par
ticular solution does not permit us to draw conclusions about the 
character of the other solutions.

In many problems of mechanics and engineering it is sometimes 
important to know not the specific values of a solution for some 
concrete value of the argument, but the type of behaviour for 
changes in the argument and, in particular, for a boundless increase 
of the argument. For example, it is sometimes important to know 
whether the solutions that satisfy the given initial conditions are 
periodic, whether they approach some known function asymptoti
cally, etc. These are the questions with which the qualitative theory 
of differential equations deals.

One of the basic problems of the qualitative theory is that of 
the stability of the solution or of the stability of motion; this 
problem was investigated in detail by the noted Russian mathe
matician A. M. Lyapunov (1857-1918).

Let there be given a system of differential equations:

Let x = x(t) and y = y{t) be the solutions of this system that 
satisfy the initial conditions

Further, let x = x(t) and y =y ( t )  be the solutions of equation 
(1) that satisfy the initial conditions

•£=/.(*. y)<

x> y)•
( i )

O ')

O ')
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Definition. The solutions x =  x( t )  and y  — y( t )  that satisfy the 
equations (1) and the initial conditions (T) are called Lyapunov’s 
sta b le  as t —* oo if for every arbitrarily small e > 0  there i s a 6 > 0  
such that for all values / > 0  the following inequalities will be 
fulfilled:

I* (0 —■*(*)!<«. J
It/ (0—y (0 1 < e- 1 (2)

if the initial data satisfy the in
equalities

If, — * ,l< &
It/,—t/ , l< 6

Let us figure out̂  the meaning 
-  inequali-

4

i )

Or*-

(3)

y=(y0-f)e-f+1 J e

yB y-i

Fig. 274.

of this definition. From 
ties (2) and (3) it follow's that for small variations in the initial 
conditions, the corresponding solutions differ but little for all positive 
values of t .  If the system of differential equations is a system that 
describes some motion, then in the case of stability of solutions, 
the nature of the motions changes but slightly for small changes 
in the initial data.

Let us analyse an example of a first-order equation.
Let there be given a differential equation:

w =z~ y+L  (a)
The general solution of this equation is the function

y =  Ce~l (b)

Find- a particular solution that satisfies the initial condition
(c)

It is obvious that this solution y — I results when C =  0 (Fig. 274). Then find 
the particular solution that satisfies the initial condition

h=o = yo-
Find the value of C from equation (b):

= C +1,
whence

c= y*—l
Putting this value of C into equation (b), we get

y =  6 o - l ) e - *  +  l.

The solution y =  l is obviously stable.

1 9 -  3 3 8 8
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Indeed,
» - » = ! t e « - l ) H  +  l ] - l  =  t o - l ) r U o

when t -*-00 .
Hence, inequality (3) will be fulfilled for an arbitrary e if the following 

inequality is fulfilled:
(y0— \) =  6 < e .

Let us further consider the system of equations
dx . ^w  = cx + gy,

j f ^ a x + b y , (4)

assuming that the coefficients a, fe, c, g are constant and g=£0.
Let us find out what conditions the coefficients must satisfy 

so that the solution x = 0, /̂ =  0 of system (4) should be stable.
Differentiating the first equation and eliminating y , we get a 

second-order equation:
d*x dx t du dx . , , , v dx , , , /  cfjc \
dM==c57 +  Sr5f =  c 37-t'^ (ajc +  ^  =  c dr +  a^ + 6

or
S - ( 6  +  c ) - - ( a s - ^ ) *  =  (). ; (5)

Its auxiliary equation is of the form
Xt— (b + c)X— (ag— bc) — 0. (6)

Let us denote the, roots of the auxiliary equation by A., and Xt. 
The following cases are possible.

1. The roots of the auxiliary equation are real, negative and 
distinct:

Xt < 0 ,  Xt <  0, X, Xt.
Then

x =  C / . ‘ +  Cf*V, 

y= \C ,(X ,-c )  eK>’ +  C, (X,-  c) eV} j .

The solution that satisfies the initial conditions

*l< = 0 *0’ f/|< = 0 Vv
will be

C X o + g y o  —  X„X,  „ M  , > . t
x ^ T ,  e +  e •

y = — ^  c)c*-' i x^ ' ~ cx«~y^
£ L A,,—A,, * — A,,

(7)
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From the latter formulas it follows that for any e > 0  it is 
possible to choose xa and y0 so small that for all t > 0  we will have

|x ( / ) |< e ,  | t / ( 0 l < e since ^ '‘< 1  and e V < ( .
Hence, in this case the solution x =  0, y = 0 is stable.

2. Let X.j =  0, X2< 0 . Then
x = Ct -\- Ctek̂ ,

and the solution, as in the preceding case, proves stable.
3. Let A., =  A.2< 0 .  Then

x — (Cl + Ctt)ef~'t,

y = j  [C, (X, - c) +  C2 (1 +  \ t ~ c t )  1.

Since
leklt—<-0 and ekf —>-0 when t —>- oo,

it follows that for sufficiently small C, and C2 (that is, for suffi
ciently small and y0) we will have |jc ( /) |< e  and |^ ( / ) |< c  
for any f > 0 .  The solution is stable.

4. Let Xl = XJ = 0. Then

x =  Cl +  Ctt.

y = l [ - c C l + Ct - c C t( 1.

We see that for an arbitrarily small C2=̂ =0 both x and y approach 
infinity (as / —►oo), which means that the solution in this case 
is unstable.

5. Let at least one of the roots and Xa be positive; for 
instance, X ,>0.

From formula (7) it follows that no matter how small x0 and
y* 'f

"F §y<> ^  o>
that is, if C1=£0, then |a:(/) | —► oo as / —>oo.

Hence, in this case too the solution is unstable.
6. The roots of the auxiliary equation are complex with nega

tive real part:
X, = o + ip, \
* ,» « - / ? ,  ; a < 0 -

19*
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In this case,
x — Ceat sin (0/ +  5),
y = Y  Ceat [(a—c) sin (0f +  8) +  0 cos (0/ +  6)]. (8)

It is obvious that for any e > 0  it is possible to choose x„ and y0 
such that we will have |C |< e a n d  — < 6 and, conse
quently,

/jc( / ) |< e and |« /(0 |< e .
The solution is stable.
7. The roots of the auxiliary equation are pure imaginaries:

*, =  0'. K =  — 0̂ -
In this case,

x = C sin (0f +8),
y =  - C i p  cos (0f + 6 )— c sin (0f -f 8)1

which means that x(t) and y{i) are periodic functions of t. As 
in the preceding case, we verify the solution and find it stable.

8. The roots of the auxiliary equation are complex with 
positive real part (a > 0 ).

From formulas (8) it follows that here for arbitrarily small x9 
and t/0 (that is, for arbitrarily small C=£0) and for increasing I 
the quantities |x (/) | and |y(OI can take on arbitrarily large
values, since e —>-oo as t —<-oo. The solution is unstable.

To give a general criterion of the stability of solution of the 
system (1), we do as follows.

We write the roots of the auxiliary equation in the torm of com
plex numbers:

=  -̂1 tkl ,

Xt =  -|- iXj

(in the case of real roots, A.*’ =  0 and A,r =  0).
Let us take the plane of a complex variable X*X** and display 

the roots of the auxiliary equation by points in this plane. Then, 
on the basis of the eight cases that have been considered, the 
condition of stability of solution of the system (4) may be for
mulated as follows.

If not a single one of the roots Xlt Xt of the auxiliary equation
(6) lies to the right of the axis of imaginaries, and at least one 
root is nonzero, then the solution is stable; if at least one root
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lies to the right of the axis of imaginaries, or both roots are equal 
to zero, then the solution is unstable.

Let us now consider a more general system of equations:

But for exceptional cases, the solution of this system is not expres
sible in terms of elementary functions and quadratures.

To establish whether the solutions of this system are stable or 
unstable, the system is compared with the solutions of a linear 
system. Suppose that for x —►O and y —► (}, the functions P (x} y) 
and Q (x, y) also approach zero and approach it faster than q , 

where q =  ] / x* +  yx\ in other words,

Then it may be proved that, save for the exceptional case, the 
solution of the system (4') will be stable when the solution of 
the system

is stable, and unstable when the solution of the system (4) is 
unstable. The exception is that case when both roots of the auxil
iary equation lie on the axis of imaginaries; in this case, the 
question of the stability or instability of solution of the system 
(4') is considerably more involved.

Lyapunov*) investigated the question of the stability of solutions 
of systems of equations for rather general assumptions concerning 
the form of these equations.

SEC. 32. EULER’S METHOD OF APPROXIMATE SOLUTION 
OF FIRST-ORDER DIFFERENTIAL EQUATIONS

We shall consider two methods of numerical solution of a first- 
order differential equation. In this section, we consider Euler's 
method.

*) A. M. Lyapunov, The General Problem of Stability of Motion, ONTI, 
1935 (Russian edition),

+ gy + P(x, y), |  

+  by -+• Q (x, y). j (4 ')

lim =  0; =
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Find (approximately) the solution of the equation

! - / < * .  y) (i)
on the interval [jt#, 6] that satisfies the initial condition at x = x„ 
y = y„. Divide the interval [jc0, b] by the points xt, x2, . . xn = b 
into n equal parts (here * ,,< * , < * , < .  . .<*„). Denotes,—x0 = 
= xt —xJ= . . .  — b—xn_x — Ax — h\ hence,

/i = 6 -£ j
n

Let y = y(x) be some approximate solution of equation (1) and 
y. =  V (*•). Vx =  <P • • •. yn =  <P (*»)•

Denote
A = byt = y%—yl>. . . .  kyn_x=yn—

At each of the points xQy x lt . . .  , xn in equation (1) we.replace 
the derivative with the ratio of finite differences:

| f = /(*, y), (2)
A y= f(x , yj Ax. (2')

When x = x0 we have

=  /(*.*/„). Ai/, =  /(*„ y0) Ax
or

y ,— yo=f(*<» y*)h~
In this equation, xQ, y0, h are known; thus we find

*/.=#<>+/(*«. y«)h-
When x = xt, equation (2') takes the form

A</, = /(* ,. yx)h
or

yt— yt = f(x 1, y,)h, 
y ,= y l + f (x l, y t)h.

Here, yt, h are known and yt is determined.
Similarly, we find

y,*=y*+f(Xf yt) h>

0*+. =  £* +  /(**. Vh)h*

& =  Vn- ,)/»•
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We have thus found the approximate values of the solution at 
the points xQJ x lt . . .  , xn. Connecting, in a coordinate plane, the 
points (*0, i/„), (*„ y j  , (xn, yn) by 
straight-line segments, we get a broken 
line—an approximate integral curve (Fig.
275). This broken line is called Euler’s 
broken line.

Note. We denote by y =  <pA (x) an approx
imate solution of equation (1), which 
corresponds to Euler’s broken line when 
Ax = h. It may be proved*) that if there 
exists a unique solution y = y*(x) of equa
tion (1) that satisfies the initial condi
tions and is defined on the interval [xt, 
b\, then lim|(pA(*) — tp*(x:)| =  0 for any x of the interval [*„, b],

h -> o

Example. Find the approximate value (for x = \ )  of the solution of the 
equation

y  =  '/ +  *
that satisfies the initial condition y0= l  tor *0 =  0.

Solution. Divide the interval [0, 1] into 10 parts by the points *0 =  0, 
0.1, 0.2, , 1.0. Hence, /i=0.1. We seek the values y u y t , . . .  , y n by for
mula (2'):

A 0* =  (0* +  **) * 
or y k + \ = z y k + ( y k Jr xk ) h -
We thus get =  1+  (1+0).0.1 =  1+0.1 =  1.1,

r/2= l . l  +  ( l . 1 + 0 .1 ) .0 .1  =  1.22,

Tabulating the results as we solve, we get:

Uk y k  +  xit & y i t = ( y k + x i t )  *

x0 = 0 1.000 1.000 0.100
x , = 0 .1 1.100 1.200 0.120
x2 = 0 .2 1.220 1.420 0.142
x3 = 0 .3 1.362 1.620 0.162
x 4 = 0 .4 1.524 1.924 0.1924
xs = 0 .5 1.7164 2.2164 0.2216
xa = 0 .6 1.9380 2.5380 0.2538
x7 = 0 .7 2.1918 2.8918 0.2812
*8 = 0 .8 2.4730 3.2730 0.3273

= 0 .9 2.8003 3.7003 0.3700
x i o ~~ 1.0 3.1703

*) For the proof see, for example, 1. G. Petrovsky’s “Lectures on the 
Theory of Ordinary Differential Equations”.
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We have found the approximate value y\x=:l =  3.1703. The exact solution 
of this equation that satisfies the indicated initial conditions is

y =  2ex —x — l.
Hence,

y\x=, = 2(e — l) = 3.4365.
0

The absolute error is 0.2662; the relative error is = =  0.077 8 %.o.4ooo

SEC. 33. A DIFFERENCE METHOD FOR APPROXIMATE 
SOLUTION OF DIFFERENTIAL EQUATIONS BASED 

ON TAYLOR’S FORMULA. ADAMS METHOD

We once again seek the solution of the equation
y' = f(x, y) (l)

on the interval [*„, b], which solution satisfies the initial condi
tion y = y„ when x = x0. We introduce notation that will be needed 
later on. The approximate values of the solution at the points

will be
Xq»X, , X̂ t

y» y2>
The first differences, or differences of the first order, are

At/0 =  i/,—y„. ^ 1/, =  ̂ —yv . . . ,  Ayn_ , = y „—

The second differences, or differences of the second order, are
A1' y„ =  Ay, — A y, =  yt — 2y, + y , , 
A *yx =  At/2 — Ay, = yi— 2yl +  y„

A2t/n- t =  At/„_, — Ayn. t = y„ — 2yn_, +
Differences of the second differences are called differences of the 
third order, and so forth. We denote by i/0, yu . . .  , yn the approx
imate values of the derivatives, and by y0, yu ■ • • , y"n the 
approximate values of the second derivatives, etc. Similarly we 
determine the first differences of the derivatives:

ky\ = y\— y», Ayl = y2— yl, . . . ,  At/„_, =  
the second differences of the derivatives:

A1y„ = Ayi — Ay„, a V ,=  Ayt— Ayu . . .  ,Atyn- i = Ayn-, — Ay'n- 2, 
and so on.
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Write Taylor’s formula for solving an equation in the neigh* 
bourhood of the point x = xlt [Ch. IV, Sec. 6, formula (6)]:

y = y  o (*—*o)* 
1-2 y» + • • • (*-*0)OT

l - 2 . . . m u(m)y o (2)

In this formula yv is known, and the values of y0, yt, . . .  of the 
derivatives are found from equation (1) as follows. Putting the 
initial values xa and into the right side of equation (1), we 
find y„:

y!> =  /(*„, </„)•
Differentiating the terms of (1) with respect to we get

y"=Tx+Fy y'- (3)

Substituting into the right side the values x0, t/„, ya, we find

,=,o.
Once more differentiating (3) with respect to x and substituting 
the values x0, t/0, y0, yl, we find t/„ .Continuing in this fashion,*, 
we can find the values of the derivatives of any order for x — x0) 
All terms are known, except the remainder R m on the right side 
of (2). Thus, neglecting the remainder, we can obtain an approx
imation of the solution for any value of x\ their accuracy will 
depend upon the quantity \x—x„\ and the number of terms in 
the expansion.

In the method given below, we determine by formula (2) only 
the first few values of y when \x—jcJ is small. We determine 
the values t/, and yt for xt ~ x 0-\-h and for x2 = xn-\-2h, taking 
four terms of the expansion (y„ is known from the initial data):

, h h* - , h* •"
=  +  +  > (4)

, 2ft ■
yt =yo + j y o (2 h)‘ 

1-2
(2 ft)’ 

3 I y’o (4')

We thus consider known three values**) of the function: ya, 
yt, yv On the basis of these values and using equation (1),

*) From now on we shall assume that the function /(* , //) is differentiable 
with respect to x and y as many times as is required by the reasoning.

**) If we were to seek the solution with greater accuracy, we would have 
to compute more than the first three values of //. This is dealt with in 
detail by Ya. S. Bezikovich in “Approximate Calculations” (Gostekhizdat, 
1949) (Russian edition).
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we find
y'o = f(x9, y*), y'i = f(x it «/,), y't = f(x2, yt).

Knowing y*, yu y'*, it is possible to determine Ay*, Ayu A*y* • 
Tabulate the results of the computations:

X V y ' Af/' A V

x o y o y \

Ay'*

xt = x 0 +  h y \ y \ A 2y 0

A y \

x2 =  x0+ 2h y * V t

... ... • •• ...
xk- t = x *  +  (k —  2) ft M1s

y k - i
>

 
«&• 

' 
1 M

*A-i =  *o +  (* — 1)A V k - X ? k - i > ^ 
> 

1 M

: A0*_,

xk =  x0 +  kh y u y k

Now suppose that we know the values of the solution
y*, */,. yt ......... yk-

From these values we can compute [using equation (1)] the values 
of the derivatives

and, hence, 

and

yo> yi» y*, • • • , yk

Ay'*, Ay\.........Ay'k-i

A*y*, Aty\, , Aty'k. 1.
Let us determine the value of yk+l from Taylor’s formula (see 
Ch. V, Sec. 6), setting a = xk, x = xk+1 — xk+h:

, h , , h‘ » , fts , , hm n
yk+i= y k+ r  y»+ r 2 ^ + r 2^ yk +  w ' + R m-
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In our case we shall confine ourselves to four terms of the 
expansion:

. h , , h* „ , h3 ,,, /r ,
y k + i ^ y n + j +  • (5)

The unknowns in this formula are y"k and which we shall 
try to determine by using the known first-order and second-order 
differences.

First, represent yk_x in Taylor’s formula, putting a = xk> 
x — a = — h:

+  ̂  1.2 Vk » (®)
and ^ _ 2, putting a = xk, x — a= — 2h:

, , , ( — 2/1) „ . (—2h)2
i Hk~\~ i-2 *

From (6) we find

% */*-i =  A */*-i =  T ^  F 2  ^  •

Subtracting the terms of (7) from those of (6), we get 
/ / a / /i « 3/t* ,,,

i/*-! !Jk-% = t y / t - i - T  y*— TVk • 
From (8) and (9) we obtain
! A ^ 1- A y ; . i =  A V ;.a- W #
or

(7)

(8)

(9)

( 10)

Putting the expression y'^’ into (8), we get
. . A</(._, , A1!/*., 
yk ~  h ■+■ 2/i ‘ ( 11)

Thus, i/j and y"' have been found. Putting expressions (10) 
and (11) into the expansion (5), we obtain

-  u> +  f  * ; + 1  v . . . + n  A X -,- (>2)
This is the so-called Adams formula with four terms. Formula 
(12) enables one to compute yk+l when yk, £/*_,, are known. 
Thus, knowing y„, y, and yt we can find y, and, further, «/4, t /„ ...

Note 1. We state without proof that if there exists a unique 
solution of equation (1) on the interval [*„, b], which solution 
satisfies the initial conditions, then the error of the approximate
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values determined from formula (12) do not exceed, in absolute 
value, Mft4, where M is a constant dependent on the length of 
the interval and the form of the function/(x, y) and independent 
of the magnitude of ft.

Note 2. If we want to obtain greater accuracy in our computa
tions, we must take more terms than in expansion (5), and for
mula (12) will change accordingly. For instance, if in place of 
formula (5) we take a formula containing five terms to the right, 
that is, if we complete it with a term of order ft4, then in place 
of formula (12) we, in similar fashion, get the formula

. h , , h A , , 5/i a s / , 3 h A. ,
yk+ t =  yk +  j i / k + Y  + 1 2 A + i r A i w

Here, yk+l is determined by means of the values yk, yk^ x, yk_t 
and */*_,. Thus, in order to begin computation using this formula 
we must know the first four values of the solution: yoi r/,, yz, yy 
When calculating these values from formulas of type (4), one 
should take five terms of the expansion.

Example 1. Approximate the solution of the equation
y ' = y  +  x

that satisfies the initial condition
y0 =  1 when * 0 =  0 .

Determine the values of the solution for * =  0.1, 0.2, 0.3, 0.4.
Solution. First we find //, and y2 using formulas (4) and (4'). From the 

equation and the initial data we get

y0 — (1/ + *)*=<> = 00 + 0=1+0=1.
Differentiating the given equation, we have

0" = 0' + 1.
Hence,

0o = (0/ + 1)*=o=l+ 1 = 2.
Differentiating once again, we get

Hence,
y " = y -

yT=y<,=2-
Substituting into (4) the values y„, y0, y„ and A =  0.1, we get

. , 0.1 t/i= 1 + ~ , (Q-iy
^  i- •2 + (Ol)8

1-2-3 2=1.1103.

Similarly, for A =  0 .2  we have

H- (0- 2)* 
1-2 2 + (0 . 2)» 

1-2-3 ■ 2=1.2426.
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Knowing y„, yv y2, we find (on the basis of the equation)
Ho — 0 » +  O =  l,
y [ =  yx + 0 .1  =1.1103 +  0.1 =  1.2103, 

yt =  yt +  0 .2  =  1.2426 +  0.2 =  1.4426. 

Ay’„ =  0.2103,

Ay[ =0.2323,

A ^'=0.0220.
Tabulating the values obtained, we have

X u y’ Ay' A't/

*0 =  0 y> =  1.0000 £/o = 1

A*/„ =  0.2103

*, = 0.1 I/, =  1.1103 y\ =  1.2103 A ^  = 0 .0 2 2 0

A^ =0.2323

* 2 =  0 .2 */, =  1.2426 *r' =  1.4426 A %  =0.0228

A y '2 =0.2551

*, =  0.3 / / ,=  1.3977 (/; =  1.6977

II o y4=  1.5812

From formula (12) we find //,:

y , =  1 .2426  +  ^  • 1 . 4 4 2 6 + — - • 0 .2 3 2 3  +  ^ ^  . 0 .0 2 2 0 = 1 .3 9 7 7 .

We then find the values of yv  Ay'2, A*yv  Again using formula (12) we find #4;

^ =  1.3977 +  —*•1.6977 +  ̂ -0 .2 5 5 1 + ^ -0 .1 -0 .0 2 2 8 =  1.5812.

The exact expression of the solution of the given equation is
y =  2ex —* — 1.
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Hence, yx=oA — ̂ e°’4—0.4 — 1 =  1.5836. The absolute error is 0.0024; the rela
tive error, =  0.0015 0.15°/o. (In Euler's method, the absolute error
of yA is 0,06, the relative error, 0.038=^3.8°/-.)

Example 2 . Approximate the solution of the equation
y ' = y 2 + * 2

that satisfies the initial condition y0 =  0 for * 0 =  0. Determine the values of 
the solution for * =  0.1, 0.2, 0.3, 0.4.

Solution. We find
i/o = 02 + 02 = 0,

</,=o= &yy’ + 2*)*=»= o. 

y ’xLo= ( 2*/'‘ + * y y " + 2) * = .= 2 .
By formulas (4) and (4') we have

=  .2 =  0.0003, ^ = ^ 1 . 2 -  0.0026.

From the equation we find
^ = ,0 , ^  =  0.0100, y'z =  0.0400.

Using these data, we construct the first rows of the table, and then deter
mine the values of y3 and y4 from formula (12).

X y V AV

*o =  0

0u

5
s s II 0

A#, =  0.0100

d11 y t =  0.0003 * / '= 0.0100 A*j/o= 0 .0200

A y't =0.0300

* 2 =  0 .2 y t  =  0.0026 y % =  0.0400 A*#," =  0.0201

A*/2 =  0.0501

COdII•9 ^ ,  =  0.0089 V; =  0.0901

*4= 0 .4 1 /4 = 0 .0 2 0 4
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Thus,
y, =  0.0026 +  y  -0.0400 +  —  • 0.0300 +  ̂  • 0.1 -0.0200 =  0.0089,

# 4 =  0.0089+  y - -0.0901 +5J.-0.0501 +^-0.1-0 .0201=0.0204 .

We note that the first four correct decimals in y t are y4 =  0.0213. (This 
may be obtained by'other, more accurate, methods with error evaluation.)

SEC. 34. AN APPROXIMATE METHOD FOR INTEGRATING 
SYSTEMS OF FIRST-ORDER DIFFERENTIAL EQUATIONS

The methods of approximate integration of differential equa
tions considered in Secs. 32 and 33 are also applicable for solving 
systems of first-order differential equations. Here, we consider the 
difference method for solving systems of equations. Our reasoning 
will deal with systems of two equations in two unknown functions.

It is required to find the solutions of a system of equations

Yx = f i ( x’ y< z)< (0

y> z) (2)
that satisfy the initial conditions y = ya,.z = z„ when x = xt .

We determine the values of the function y and z for values of 
the argument x0, xt, xt , . , . ,  xk, xk+t........ xn. Once more, let

xk+i—xk = Ax = h (k =  0, 1 ,2 .........n — 1). (3)
We denote the approximate values of the function as

and
z0, z,, . . . .  zk, z k+x, . . . ,  zn.

Write the recurrence formulas of type (12), Sec. 33:

i/a+i—y*+ f  +  j  Ay^-i +  12^  yk-t, 

z k+x = 2* + y  Az'k-i + ^ / lA * 2ft_*.

(4)

15)
To begin computations using these formulas we must know yx, yx, 
2,, Zj in addition to t/0 and z#; we find these values from formu
las of type (4) and (4'), Sec. 32:

h ' . h‘ * . A*
y, = t/o+T yo +  2' yi,+ 3f^ ’

(2/t)»
31

///
yo ,
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h f h2 * . h*
Z i  =  z 0 +  T  Z ° ' 2 "  Z o 3 ]  z o »1

2h (2h)2 " (2h)*
Z 2 Z o i  z o “ f "  2  z o~\~ 0 j Z o  -

To apply these formulas one has to know y0, y0, y0",z'0, 
which we shall now determine. From (1) and (2) we find

y'o=fAx0- y*> zo).
* = / . ( * . .  */„< *„)•

Differentiating (1) and (2) and substituting the values of xt, y„, z„, 
y'n and z'Q, we find

y»=(*/")*=*„ =  (Sr+ Tyy’+ If *' ) *=x/

**= (2'%=*» = ( ^  + t i/' + ^ '  )*=*,'
Differentiating once again, we find y'0" and z„"• Knowingt/,, yt, 
zt, zs, we find from the given equations (1) and (2),

y[, y>, z'u z'i. At/., Ay[, Aty'a, Azo, Az,', A‘zi, 
after which we can fill in the first five rows of the table:

X // &ir AV 2 2* A 2''

*0 y 0 Zo
/

*0

Ay'0 A?,

*1 y* A V *1
/^1 A’z'o

Ay', Az,

*2 y%
/

y  2 a v ; 22
/

*2 A‘z[

Ay'2 Az't

*3 y  3 y  3 *3
/

*3
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From formulas (4) and (5) we find y, and z,, and from equations 
(1) and (2) we find y[ and x3. Computing Ay't, Aiy[, Azt, A2z[, 
we find yt and ys, etc., by applying formulas (4) and (5) once 
again.

Example. Approximate the solutions of the system
/ / '= z ,  z'=y

with initial conditions y« =  0 and z0=  1 for x =  0. Compute the values of the 
solutions for x =  0, 0.1, 0.2, 0.3, 0.4.

Solution. From the given equations, we find

£/o =  z x = o  —

Zo=yx=o=°-
Differentiating the given equations, we find

yo~(y )x=o= )x=o = o» 
z o “  ) x = o  =  ( y  ) x = o =  ^ »

y'0 "  =  ( y " ' ) x = o = ( 4 =0= i .
^ ,, =  (2,")x=o=(//^=o=o.

Using formulas of type (4) and (5), we find

y ,= o + ~  1 + ^ j ^ - o + ^ l - i = o . i o o 2 .

-0.20.6.

? .=  ! + — - 0=1.0050.

^ = l + ^ - 0  +  * ~ - i + ^ - 0=1.0200.

Using the given equations, we find 

y\ =  1.0050, 

z[ = 0.1002, 

A ^ =  0.0050, 

&y[ =  0.0150,

AVo =  0.0100,

y's= 1.0200, 
z' =  0.2016, 

Aẑ  = 0.1002, 

Azl =  0.1014, 

A*z' =0.0012.
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Filling in the first five rows of the table, we have

X y &y' A V

*.=o ono y 'o = i

Ay'„ =  0 .0050

* , =  0.1 j/, =  0.1002 y[ =  1.0050 =  0.0100

A y \ = 0 .0 1 5 0

*2 =  0.2 y t =  0 .2016 y [ =  1.0200 A 2/ / ' = 0 .0 1 0 9

&y'2 =  0 .0259

*3 =  0 .3 ^3 =  0 .3049 //' =  1.0459

*4 =  0.4 ^  =  0.4117

X 2 z' Az' Aaz '

*0 =  0 Z° = l ^  =  0

A * ^  0.1002

* , =  0.1 2, =  1.0050 z | =  0.1002 A * z '=  0 .0012

Az,' = 0 .1 0 1 4

II p to z , =  1.0200 z '= 0 .2 0 1 6 A 'zJ = 0 .0 0 1 9

A z '= 0 .1 0 3 3

* , =  0 .3 z , =  1.0459 z ' =  0.3049

oII* 24=  1.0817
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From formulas (4) and (5) we find

i/, =  0.2016 +  — 1.0200 +  ̂ -0 .0 1 5 0  + —-0.1 -0.0100 =  0.3043,

? ,=  1.0200 +  — • ■ 1.2016+ ̂ 5--0.1014+ ~  0.1 -0.0012= 1.0459 

and similarly

y4=0.3049 +  ̂ - l . 0459 +  ̂ -0 .0 2 5 9  +  ̂ -0.1-0.0109 =  0.4117,

e4=1.0459 +  — --0 .3 0 4 9 + ^ - -0 .1 0 3 3 + ~ 0 .1-0.0019= 1.0817.

It is obvious that the exact solutions of the system of equations (the so
lutions satisfying the initial conditions) will be

y = j ( e x —e~x), z = ~ ( e x + e ~ x).

And so, solutions correct to the fourth decimal place are

(e°'*—e-0-4) =  0.4107, z4= - i  (e»-‘ + e-» -4) =  1.0811.

Note. Since equations of higher order and systems of equations of higher 
order in many cases reduce to a system of first-order equations, the method 
given above is applicable to the solution of such problems.

Functions 
— sin*

Exercises on Chapter XIII

Show that the indicated functions, which depend on arbitrary constants, satis
fy the corresponding differential equations:

Differential Equations
du 1
j i  +  y cos* = ~ 2  sin2*.

d'y 3 d *y _
dx5'*' x dx*

d*y 2 dy
dx2 x dx

1. i/ =  sin jc — 1 +C e

2 . // =  C* +  C — C2.

3. y2 =  2Cx +  C2.

4. y* =  Cx*- ' l + C *

5. y =  C,x +  -£■ +  C,.

6. y = (Cl + Ctx)e’tx + 'J£
,a arc sin jc7. y — C}e

8. y = ^  + c2.

+ Cze
(k - \ )2' 
- a  arc sin*
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Integrate the differential equations with variables separable 
9. y dx—x d y  =  0. Ans. y =  Cx. 10. (1 -f  u) v du +  (1— v ) u d v — 0. Ans. In uv +  

-u — v =  C. 11. (1 -f-y) d x — (1 — x) dy =  0. Ans. ( 1 + # ) ( 1 —x) =  C
12. (t2—x t2) - - \ ~ x 2+ t x 2 =  0. Ans. ~ ^  +  ln y -= C . 13. —a) dx +  x2 dy =  0 .

-L * t —a
Ans. {y—a) — Cex . 14. z d t — (t2—a2)dz  =  0. Ans. z2a =  C , .t CL

=  r 4 ~ v  • Ans. x =  f  . 16. ( l + s 2) ^ / — Y  t ds =  0 . i4/is.
1+*/ 1 — Cy

— arc tan s =  C. 17. dQ +  q tan 0 cf0 =  0. Ans. q =  C cos 0. 18. sin0cosqpd0—
— cos 0 sin qp dqp =  0. Ans. cos qp =  C cos 0. 19. sec2 0 tan qp d0 +  sec2qp tan 0 dtp =  0 .
Ans. tan0tanqp =  C. 20 . sec20 tan qp dqp +  sec2 q) tan 0 d0 =  O. Ans. sin2 0-f- 
+  sin2<p =  C. 21. (1 + x 2) d y — Y \  — y 2dx =  0 . Ans. arc sin y — arc tan x — C. 
22. V ' \ ~ Z 2d y — V"V^y2dx =  ̂ . Ans. y Y T ^ x 2—* ] / T Z p == C. 23. 3^  tan y x  
Xdx  +  (1 — ex) sec2 y dy  =  0. Ans. tan y =  C ( \ —^*)3. 24. (x—y 2x)dx  +
+  (y—^ ) d y  =  0. y4/is. * 2 +  j/ 2 =  * V - f  C.

Problems in Forming Differential Equations

25. Prove that a curve having the slope of the tangent to any point pro
portional to the abscissa of the point of tangency is a parabola. Ans. 
y =  ax2-{~C.

26. Find a curve passing through the point (0, — 2) such that the slope of 
the tangent at any point oT it is equal to the ordinate of this point increased 
by three units. Ans. y =  ex —3.

27. Find a curve passing through the point (1, 1) so that the slope of the 
tangent to the curve at any point is proportional to the square of the ordi
nate of this point. Ans. k (x — 1) y —y +  1 = 0 .

28. Find a curve for which the slope of the tangent at any point is n 
times the slope of a straight line connecting this point with the origin. Ans. 
y =  Cxn.

29. Through the point (2, 1) draw a curve for which the tangent at any 
point coincides with the direction of the radius vector drawn from the origin
to the same point. Ans. y — — x.

30. In polar coordinates, find the equation of a curve at each point of 
which the tangent of the angle between the radius vector and the tangent 
line is equal to the reciprocal of the radius vector with sign reversed. Ans. 
r(0 +  C ) = l .

31. In polar coordinates, find the equation of a curve at each point of 
which the tangent of the angle formed by the radius vector and the tangent 
line is equal to the square of the radius vector. Ans. r2= 2 (0  +  C).

32. Prove that a curve with the property that all its normals pass through 
a constant point is a circle.

33. Find a curve such that at each point of it the length of the subtan
gent is equal to the doubled abscissa. Ans. y =  C Y  x.

34. Find a curve for which the radius vector is equal to the length of the 
tangent between the point of tangency and the x-axis.

Solution. By hypothesis, ] / j Y x 2-}-y2, whence —  =  ±  ^  . In-
 ̂ Q

tegrating, we get two families of curves: y =  Cx and y — ~  •

dx
,5-
2 V  t -
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35. By Newton's law, the rate of cooling of some body in air is propor
tional to the difference between the temperature of the body and the tempe
rature of the air. If the temperature of the air is 20° C and the body cools 
for 20 minutes from 100° to 60° C, how long will it take for its temperature 
to drop to 30° C?

dTSolution. The differential equation of the problem is —  =  k ( T —20). In
tegrating we find: T —20 =  Ce*/; T =  100 when / =  0; T =  60 when f =  20; there

fore, C =  80; 40 =  Ce20ft, e * = ^ y ^ 20; consequently, T =  20 +  80 • As-*
suming T =  30, we find t =  60 min.

36. During what time T will the water flow out of an opening 0.5 cm2 at 
the bottom of a conic funnel 10 cm high with the vertex angle d =  60°?

Solution. In two ways we calculate the volume of water that will flow out 
during the time between the instants t and t +  At- Given a constant rate r, 
during 1 sec a cylinder of water with base 0.5 cm2 and altitude h flows out, 
and during time At the outflow is the volume of water dv  equal to

— dv =  — 0.5 u dt =  — 0.3 f 2 g h d t S )

On the other hand, due to the outflow, the height of the water receives a 
negative "increment” dht and the differential of the volume of water outflow 
is

—dv =  nrz dh =  —  (h +  0.7)* dh.o
Thus,

— (A +  0.7)2dA =  - 0 . 3  V 2ghdt ,

whence

< =  0.0315(10“'’— /i'/’) +  0.0732(10“/’—A*'’) +  0.078 ( 1 0 -  V ~ h).

Setting h — 0, we get the time of outflow T =  12.5 sec.
37. The retarding action of friction on a disk rotating in a liquid is pro

portional to the angular velocity of rotation co. Find the dependence of this 
angular velocity on the time if it is known that the disk begins rotating at 
100 revolutions per minute and, after the elapse of one minute, rotates at 60
revolutions per minute. Ans. (o =  10 0 ^ y ^  rpm.

38. Suppose that in a vertical column of air their pressure at each level 
is due to the pressure of the above-lying layers. Find the dependence of the 
pressure on the height if it is known that at sea level this pressure is 1 kg 
per cm2, while at 500 m above sea level, 0.92 kg per cm2.

Hint. Take advantage of the Boyle-Mariotte law, by virtue of which, the 
density of the gas is proportional to the pressure. The differential equation of 
the problem is dp =  — kp d h t whence p =  e " 0,00017/,1 Ans. p =  e~°'milh.

*) The rate of outflow v of water from an opening a distance h from the 
free surface is given by the formula i / = 0 .6  V~2ght where g is the acceleration 
of gravity.
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Integrate the following homogeneous differential equations:
39. (y — x) dx-\-(y +  x) dy =  0. Ans. y2 +  2xy—x2 =  C. 40. (x +  y) dx +  x dtj =  0. 
Ans. jc2 +  2xy =  C. 41. (x +  y) dx-\-(y—x)d y  =  0. Ans. In (x2 y 2)1 ̂ —
— arc t a n =  C. 42. x d y —y d x =  Y  x2-\-y2 dx. Ans. 1 + 2  Cy—C2x2 =  0. 

43.(8y +  10*) dx +  (5y +  lx) dy  =  0. Ans. (x +  y)2(2x +  y)s =  C. 44. (2 ^ ~ s ) x
~\f — C

Xdt-\- t  ds =  0. Ans. te* * = C  or s =  / In2—  . 45. ( /—s)d/ +  fds — 0. Ans.

JL c  3 / -----------
/ ^ = C  or s =  Mn j  . 46. xy2 dy =  (x9 +  y*) dx. Ans. y =  x y 3 \ n C x .

47. x c o s (y dx-{-x dy) =  y s i n ( x  d y —y dx). Ans. x yc o s— =  C.
Integrate the differential equations that lead to homogeneous equations:

48. (3f/—7* +  7) dx—(3x — 7y — 3) dy =  0. Ans. (x +  y — l )5 (x — y — 1)2 =  C.
49. (x +  2y-{- l )dx — (2* +  4# +  3) dy=?0. Ans. In (4* +  8// +  5) +  fy —4* =  C.
50. (* +  2*/ +  l) dx — (2x—3) dy =  0. Ans. In (2x— 3) — =  C.2x — 3'

51. Determine the curve whose subnormal is the arithmetical mean between 
the abscissa and the ordinate. Ans. (x—y)2(x+2y)  =  C.

52. Determine the curve in which the ratio of the segment cut off by a 
tangent on the y-axis to the radius vector is equal to a constant.

_  dy
. y Xdx , (  x \ m f C \ m 2y

Solution. By hypothesis, y = — == =  m. whence J

53. Determine the curve in which the ratio of the segment cut off by the 
normal on the jc-axis to the radius Vector is equal to a constant.

x + y Tx
Solution. It is given that r - ... =m , whence x2 +  y 2 =  m2 (x—C)2.

V x2-\-y2
54. Determine the curve in which the segment cul off by a tangent on the 

(/-axis is equal to a sec 0 , where 0 is the angle between the radius vector and 
the jc-axis.

Solution. Since tan 0 =  — x and by hypothesis

y =  a sec 0,

we obtain

y—x
dy
dx = a V^+y*

X

whence

55. Determine the curve for which the segment cut off on the y-axis by 
a normal drawn to some point of the curve is equal to the distance of this 
point from the origin.
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Solution. The segment cut off by the normal onthe*/-axis is !! +  —/> there* 
fore, by hypothesis, we have

y + j 7 = V x ‘ +y*.

whence
x* =  C(2y +  C).

56. Find the shape of a mirror such that all rays emerging from a single 
point 0  would be reflected parallel to the given direction.

Solution. For the *-axis we take the given direction, and 0  as the origin. 
Let OM be the incident ray, MP the reflected ray, and MQ the normal io 
the desired curve.

a =  p; OM =  OQ, N M = y t 

NQ =  NO +  OQ =  - x +  V ^ + V ‘ =  y  cot p =  y  g  ,

whence

y d y  =  (—x +  V x * + y z) dx;

integrating, we have
y*=C*+2Cx.

Integrate the following linear differential equations:

57. » ' - 7 X T  =  ( * + 1)’' Ans- 2</ =  (̂  +  l )4 +  C(* +  l)‘. 5 8 . j , ' - a 4 = —  . x “f* i x x

Ans. y =  Cxa + j - _ 59‘ (x—&)y'  +  (2xt — l ) y —ax* =  0. Ans. y =

—ax +  C x I ^ l —x*. 60. ^  cos < +  s sin t =  1. Ans. s =  sln t +  C cos t. 61.a t . at

+  scos <=-g-sin2<. 4̂ns. s =  sin< — 1 + C e -Sin<. 62. y' — — y = e xxn. Ans. 

y =  xn (e*+C).  63. y' +  - j y = p i .  Ans. x"y=ax  +  C. 64. y' +  y = ^ . Ans.

e* y= x  +  C. 65. y' +  J f * y — 1 = 0 . Ans. y = x ‘ ^1 +  Cex  ̂ .

Integrate the Bernoulli equations:

66. y' + x y = x ,y \  Ans. y ‘ (jc* + 1  +  Ce*’) =  1. 67. ( \ —x*)y'—xy—axy*=0.
Ans. (C Y \ — x2— a ) y = l .  68. 3y*y’ —ay*— x — 1 = 0 . Ans. a Y = C e ax—

T 1- o ( x + l ) - l .  69. y ' ( x Y + x y ) = l .  Ans. x 1(2—y‘) e 2 + C j  = e 2 .
70. (jy \ n x —2 ) y d x = x d y . Ans. y (Cx +  \n x-\-\) =  \. 71. y —y' cosx—y*cosxX 

tan x + sec  x
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Integrate the following exact differential equations:

72. (x2-f-y) dx +  (x—2y) d y = 0 .  Ans 
— (4y —x ) d y = 0. Ans. 2y2—xy-\-x'

— 3x2) dx — 
4 xy +  C.

S. +  yx— i /* = c j  . 73. (y—3x*)
3 =  C. 74. (y3—x ) y ' = y .  Ans. y* =  4xt

75. \-r—— — -1  d x +  i 1 dy =  0. Ans. In — ----------- =  C.L (x—y )2 x ]  L y (x—y )2 J *  x —y
76. 2 (3Jtp2 +  2*8) d* +  3 (2*2// +  //2) d//—0. Ans. x*-\-3x2tj2 + y 3 =  C.
„  x dx +  (2x +  y) dy A A , . , v * „  _Q /  1 , 3r/2\  , 2y dy
77- 7 ;+y)/ ; ' - q- i» (* + « - r r r c ,7 i
Ans. x2 +  y 2 — Cx3. 79.

y d x —x dy

x2dy — y 2 dx 
(x—y )2

=  0. Ans. xy
x—y=  C. 80. x d x  +  y d y  =

Ans. x2 +  y 2— 2 arc ta n — =  C.
yx2 +  y2

81. Determine the curve that has the property that the product of the 
square of the distance of any point of it from the origin into the segment 
cut off on the jt-axis by the normal at this point is equal to the cube of the 
abscissa of this point.
Ans. y 2 ( 2 a; 2 +  y 2) =  C.

82. Find the envelope of the following families of lines: a) y =  Cx +  C2.
Ans. x2-j-4y =  0. b) r /= — |-C2. Ans. 27*2= 4 y3. c) ——  —  =  2 . Ans.
27y — x3. d) C2x +  Cy — 1 =  0. Ans. y2+ 4* =  0. e) (x— C)* +  (//—C)2 =  C2. Ans. 
x =0; y*= 0. f) (x—C)2 +  y 2 =  4C. Ans. y 2 =  4 * +  4. g) (x —C)2 +  (y— C)2 =  4. 
Ans. (x—y )2 =  8 . h) Cx2 +  C2y =  1. Ans. jc4 -f-4// =  0.

83. A straight line is in motion so that the sum of the segments it cuts 
off on the axes is a constant a. Form the equation of the envelope of all 
positions of the straight line. Ans. x'l* y'l* = a 11* (parabola).

84. Find the envelope of a family of straight lines on which the coordi-
2 2 2

nate axes cut off a segment of constant length a. Ans. jk9 + y 3 = 0 * •
85. Find the envelope of a family of circles whose diameters are the

doubled ordinates of the parabola y2 =  2px. Ans. y 2 =  2p  ̂  ̂ .
8 6 . Find the envelope of a family of circles whose centres lie on the pa

rabola y 2 — 2px\ all the circles of the family pass through the vertex of this 
parabola. Ans. The cissoid x3 -\-y2 (x -\-2p) =  0.

87. Find the envelope of a family of circles whose diameters are chords
x2of the ellipse b2xz-\-a2y 2= a 2b2 perpendicular to the jc-axis. Ans. ^2- -̂ -p , -f-

8 8 . Find the evolute of the ellipse b2x2 +  a2y 2= a2b2 as the envelope of its 
2 2 2

normals. Ans. (ax) 3 + ( b y ) 3 = ( a 2— b2) 3 .

Integrate the following equations (Lagrange equations):
Q O OC__n9 '

89. y =  2xt /  +y'*.  Ans. x = ^ - 2 — -^ p\ y = — 16p ' 90, +  Ans-

y — (V~x- \ - 1 -j-C)2. Singular solution: y =  0 . 91. y =  x (1 + //')  +  (y')z- Ans. 
x — Ce~p —2p-f2; y =  C (p +  1) p2 +  2 . 92. y =  y y fi +  2xy\  Ans .
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4 Cjc =  4 C2—y 2. 9 3 . Find a curve with constant normal. Ans. (x—C)2-\-y2 =  a2. 
Singular solution: y — ± a .

Integrate the given Clairaut equations:
9 4 . y —xy' -\-y —y'2. Ans. y =  Cx-\-C— C2. Singular solution: 4y =  (x +  l)2.
95. y — xy' +  Y 1 —yT%- Ans. y =  C x +  1^1 — C2. Singular solution: y2—x2 =
=  1. 96. y =  xy, -\-y'. Ans. y — Cx +  C. 97. y — xy '-\—^ . Ans. y =  Cx~\-~ .

i y i ^
Singular solution: y2 =  4x. 98. u =  xyf -----. Ans. y =  Cx — 7r1 . Singular

y  ^
solution: y* =  — x2.

99. The area of a triangle formed by the tangent to the sought-for curve 
and the coordinate axes is a constant. Find the curve. Ans. The equilateral 
hyperbola 4x y = ± a 2. Also, any straight line of the family y =  Cx ±  a V̂ C~.

100. Find a curve such that the segment of its tangent between the coor
dinate axes is of constant length a. Ans. y =  Cx ±   Singular solution:

71 , 21 21 r l “t“C
x '* +  y '* — a

101. Find a curve the tangents to which form, on the axes, segments
2 aCwhose sum is 2a. Ans. y — Cx- 1 —C . Singular solution: (y—x —2a)2 =  8ajt.

102. Find curves for which the product of the distance of any tangent line 
to two given points is constant. Ans. Ellipses and hyperbolas. (Orthogonal 
and isogonal trajectories.)

103. Find the orthogonal trajectories of the family of curves y =  axn. 
Ans. x2 +  ny2 =  C.

104. Find the orthogonal trajectories of the family of parabolas y 2= 2 p  (x—a)

(a is the parameter of the family). Ans. y =  Ce p .
105. Find the orthogonal trajectories of the family of curves x2—y 2 =  a

C{a is the parameter). Ans. y =  — .
106. Find the orthogonal trajectories of the family of circles x2-\~y2 =  2ax. 

Ans. Circles: y =  C (x2 +  y 2).
107. Find the orthogonal trajectories of equal parabolas tangent at the 

vertex of the given straight line. Ans. If 2p is the parameter of the parabo
las. and the given straight line is on the y-axis, then the equation of the___s

r> /  O

trajectory will be y-\-C = ^ i A .3 V p
108. Find the orthogonal trajectories of the cissoids y 2 2 a —x Ans.

(x2-{-y2)2 =  C (y2 +  2x2).
109. Find the orthogonal trajectories of the lemniscates { x 2 y 2)2 =  (x2—y2) a2. 

Ans. (*2-f y 2)2 =  Cxy. __
110. Find the isogonal trajectories of the family of curves: x2 =  2a (y—x y 3 ), 

where a is a variable parameter if the constant angle formed by the trajec
tories and the lines of the family is co =  60°.

Solution. We find the differential equation of the family y' =  — ““ ^ "3"
y’ —tan co 

1 -\-y' tan co If 10 =  60°, thenand for y' substitute the expression q



602 Differential Equations

q =  —---- Jr==J~— and we get the differential equation —-----^ r — — V  % .
1 + / 3  y' 1 + «/' Y 3 *

The complete integral y 2 — C (x—y yields the desired family of trajec
tories.

111. Find the isogonal trajectories of the family of parabolas y2 =  4Cx
e . 2y — xarc tan -■■ ■

when cd =  45°. Ans. y 2—xy-\-2x2 — CeVl x Y l  .
112. Find the isogonal trajectories of the family of straight lines y =  Cx for

( 2 V s  arc tan — 
x2 u2 =  e x

2 arc tan —  
x2-\-y2 — e x .

1 1 3 .  y=z Cxex -\-C2e~x . Eliminate C, and Ct . Ans. t/' — y =  0.
114. Write the differential equation of all circles lying in one plane. i4ns. 

(1 + y fi) y”' —3y'y"* =  0.
115. Write the differential equation of all second-order central curves 

whose principal axes coincide with the x- and r/-axes. Ans. x (yy" +  y ,%)—y'y =  0.
116. Given the differential equation y,n — 2*/" — y' +  2i/ =  0 and its general 

solution «/ =  C1ex +  C8e”x +  C3c2X.
It is required to: 1) verify that the given family of curves is indeed the 

general solution; 2) find a particular solution if for x =  0 we have y =  1,
^ '= 0 , /  =  — 1. j4ns. (9e*+<r*— 4e“ ).117. Given the differential equation Y  =  2^  and its general solution

y =  ±  -g- ( x  +  C,) * +  Cj.
it is required to: 1) verify that the given family of curves is indeed the 

general solution; 2) find the integral curve passing through the point (1, 2) 
if the tangent at this point forms with the positive ^-direction an angle of

45°. Ans. y  =  Y  I ^  +  y -

Integrate some of the simpler types of differential equations of the second 
order that lead to first-order equations.

118. xy*'=  2. Ans. y =  x2 \nx-\-Cxx2 +  Ctx-\-C2\ pick out a particular ^solu
tion that satisfies the following initial conditions: x = \ \  y =  1; y' =  1; y — 3.

119. y ^ = x m. Ans. y = ^ — - +  Clxn~i + . . . + C n. 1x +  Cn. 120. f = a * t , .

Ans. ax =  \n(ay-\- Î  a2y2 +  Cx)-\-Ct or y =  Cxeax -\-C2e~ax. 121. i/" =  p .  Ans.
(C1x-\-Ci)2 =  Cxy2—a.

In Nos. 122-125 pick out a particular solution that satisfies the following 
initial conditions: x =  0 , y =  — 1; y ' =  0. 122. xy‘—y , = x 2ex . Ans. y=.
=  ex (x — \)-\-Cxx2~\-C2. Particular solution: y =  ex (x— 1). 123. yyF-—.(&')* +
- } - (*/')8 =  0. Ans. y-\-Cx \ny =  x~\-C2. Particular solution: */= — 1.
124. y" +  y' tan x =  sin 2,v. Ans. y =  C2 +  C, sin x —x — sin 2a:. Particular
solution: y =  2 sin a: — sin x cos x —x — 1. 125. (*/")* + (I/')2 Ans. y =  C2— 
— a cos (x +  Cx) . Particular solutions! y =  a — 1 — a cosjc; y =  a cos x —(a +  1).
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(Hint. Parametric form: t/' =  acost ,  y f = a s i n t ) .  126. =  Ans. y =
*y

=  ± ^ ( x  +  Cl) li +  Ct . 127. y" '=y"\  Ans. y =  (Cl - x )  [In (C ,-x )  — 11 +  C,* +
-f  Cs. 128. y'y"'—3y‘* =  0. Ans. x =  Cly* +  C1y +  Cr

Integrate the following linear differential equations with constant coeffi
cients:
129. y" =  9y. Ans. y — Cxe2x-\- C2e~zx. 130. y'-\-y — 0. Ans. y =  Azosx- \ -  
-f-fisin*. 131. yn — y ' =  0 . Ans. y =  Cl +  Ciex. 132. y " I 2 y  =  7y'. Ans. 
y — CleiX -f- C2e4X. 133. yn — 4|/'-f4«/ =  0 . Ans. y =  (C, +  C2x) e2X. 134. yn -f- 
+  2y ’ +  10  ̂=  0. Ans. y =  ex (A cos 3x 4 -  B sin 3*). 135. tf  +  Sy'—2y =  0. Ans. 

-  8 + V iT -  3 — Vl7

y =  Cle 2 -j-Cte 2 . 136. 4 y" — 12i/'-f9# =  0. Ans. y=*

=  {Cl +  Cix )e ’llX. 137. t/’ +  y ’ +  y =  0. Ans. y =  e 2 X | 4  cos +

+ Bs,fl( ir -  *)]•
138. Two identical loads are suspended from the end of a spring. Find 

the motion imparted to one load if the other breaks loose. Ans. x =

=  a  cos ( m  , where a  is the increase in length of the spring under 
the action of one load at rest.

139. A material point of mass m is attracted by each of two centres with 
a force proportional to the distance. The factor of proportionality is k. The 
distance between the centres is 2c. At the initial instant the point lies on 
the line connecting the centres at a distance a from the middle. The initial

velocity is zero.‘Find the law of motion of the point. Ans. x — a cos ^ " j /  ^  t ĵ . 
. . I V  e . / M  a . . ___n  a . . ___ r  aX  i r  ~ - x  i r  *>2x  i r  * —rx140. y lv — 5t/' +  4t/ =  0. Ans. y =  C1ex -\-C2e~x +  Cie2X +  Cie~ 141.

— 2y"—y' +  2f/ =  0. Ans. y =  Cxe2X-\-C2ex +  Cse“x. 142. t/"—3ay" +  3a2y' —
— a2y =  0. Ans. y =  (Cl +  Cix +  Cix2) e ax. 143. yw — 4y'" =  0. Ans. y =  Cx-*c 
+  Cix +  Cix*+ Cie*x +  Cie - ‘*._144. y lV +  2jT +  9i/ =  0. Ans. </ =  (C1cos>/ 2  ̂+  
+  CjSin / 2 * ) e - *  +  (C,cos V^x +  C^sin Vr 2x)e*. 145. y l v —8y* +  16  ̂=  0. 
,4ns.  ̂=  C,ei* +  Cle- ! '* +  Csxe2JC +  C4« -4*. 146. y lv + y  =  0. Ans. y ~

VT ( n x , ^ • x =  e cos 7 7 =  +  Ct sin Yt ( C’ - 7 T -------y ? .
147. y I V — a*y =  0. Find the general solution and pick out a particular 

solution that satisfies the initial conditions for jc0 =  0 , y =  1, y ' =  0 , y" =  — a2, 
y r — 0. A/is. General solution: y  =  Cxeax -\-Cte~ax 4 -Cs cos o jc  4- C4 sin ax. Par
ticular solution: y 0 =  c o s ax .

Integrate the following nonhomogeneous linear differential equations (find 
the general solution):
148. y”—l y ’ \1y—x. ,4ns. (/= C 1e2Jf +  Cie « + ^ t Z  . 149. s ' - a 2s =  / + 1 .

150. y” +  y ' —2i/ =  8sin2x. Ans. y^C^e3*-^

J -{- e ^r2 ^ C, cos _4" ̂ 4 sin -

Ans. s =  C1ea( +  C2e -a< ^ 4 “ •
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+  C2e **— ]r (6 sin 2jc +  2 cos 2x). 151. i f —y =  5x +  2 . A n s .y  =  Clex +  Cie~x — 

— 5x — 2 . 152. s* — 2as' +  a2s =  el (a & 1). Ans. s — Cxeal +  C2teal +  .

153. +  f y  + 5 y  =  e2X. Ans. y =  Cle~x -\-C2e~lx - \ - ^ e lx. 154. yn +  9y =  6e8*.

i4/is. y  =  Cj cos 3* +  C2 sin3* +  y  &**• 155. t f —3p'= 2 —6x. Ans. y =  Cl +

+  C2e*x +  x2. 156. y"—2y ’ -j-3p =  £“* cos x. Ans. y =  ex (A cos j /T *  +
+  B sin Y  2 * ) +  (5 cos x —4 sin*). 157. */r-|-4p =  2 sin 2*. Ans. y =

=  A sin 2x-\-B cos 2x—-y cos 2a:. 158. p*'— 4p" +  5p'—2p =  2*-{-3. Ans. p =

=  (Cj +  C2x) ex +  Ctf*3*—x —4. 159. p IV—a4y =  5a4eax sinax. Ans. y  =  (Cl —
— sinajc) eax +  Cte~ax +  Ct cosajc +  C4 sin a*. 160. y iw+  2a2y"+  a4y =  & cosax.

x̂
Ans. y =  (Cj +  C2x) cos ax +  (C, +  Cxx) sinax——2 cos ax.

161. Find the integral curve of the equation y* +  k*y =  0 that passes through 
the point M (*0, y0) and is tangent at the point of the curve y =  ax.
Ans. p =  p0 cos & (*—*0) +  ^-sin & (*—*0).

162. Find a solution of the equation yn-\-2hy' -\-n2y =  0 that satisfies the 
conditions y = a , y ‘ = C when * =  0. Ans. For h < n  y =  e~hx ^a cos Y n2—h*x +

Y n 2—h2x \ ; for h — n y = e ~ hx [(C +  ah) x +  a]\ for h >  n 
V n2—h2 J
C -fa(/i -f  Y h 2 — n2 ' - (h~Vh*-n')  x C -f  a (h — Y h 2—n2) g-(fi+Vh*-n2)x 

y ~  2 V n !—n2 2 Vh* —n*
163. Find solutions of the equation y +  n2y — h sin px (p ^  n) that satisfy 

the conditions: y =  a, y' = C  for * =  0. Ans. y =  acos nx +
C {n2—p2) —hp . , h2-1—  , , ' -  sin nx -f- -=----- , sin px.r  n (n2—p2) n2—p2 H
164. A load weighing 4 kg is suspended from a spring and increases its 

length by I cm. Find the law of motion of this load if we assume that the 
upper end of the spring performs harmonic oscillations under the law 
p =  sin ^ 1 0 0g/, where y  is measured vertically.

Solution. Denoting by x the vertical coordinate of the load reckoned from 
the position of rest, we have

4 d 2x .
j w — k l x - y ■[).

where / Is the length of the spring in the free state and £= 400 , as is evi
dent from the initial conditions. Whence ^  -f- lOOg* =  lOOg sin Y 100 gt  +  100 Ig. 
We must seek the particular integral of this equation in the form 

*(CjCos |^100g/ +  C2 sin KlOOgO+g,
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since the first term on the right enters into the solution of the homogeneous 
equation.

165. In Problem 139, the initial velocity is o0 and the direction is per
pendicular to the straight line connecting the centres. Find the trajectories. 

Solution. If for the origin we take the mid-point between the centres, the
d2xdifferential equations of motion will be x) — fc(C +  * ) = — 2kx t

d 2um — =  — 2 ku. The initial data for / = 0  are dt2 *
x =  a; dx

di °; ^ = 0;
Integrating, we find

* = «  cos V - V ' Y l k ^ i Y l h 1) '

Whence ^ -{ - ^ -^  =  1 (ellipse). 
a mvl

166. A horizontal tube is in rotation about a vertical axis with constant 
angular velocity co. A sphere inside the tube slides along it without friction. 
Find the law of motion of the sphere if at the initial instant it lies on the 
axis of rotation and has velocity v0 (along the tube).

d2r
Hint. The differential equation of motion is —  =  co2r. The initial datadt*

are: r =  0, — =  u0 for / = 0 .  Integrating, we find

r = £ le“t+ e"'“‘i-
Applying the method of variation of parameters, integrate the following 

differential equations:
167. y’ —ly'  +  §y =  smx. Arts, y  -  C,e« +  C2e>x +  5 sln x +  7 CQS* . 168. y" +  y =
=  secx. Ans. */ =  C, cosjc +  C2 sinjc +  x sinx-f-cos* In cos x. 169. y '  +  y = .

= --------- y .-------. . Ans. y — C, cos x -f- C2 sin x — Yzos2x.
cos 2x V cos 2x 

Integrate the following systems of equations:
170. -  =  y-j -l ,  —  =  *-+-1. Pick out the particular solutions that

satisfy the initial conditions * =  — 2 , y =  0 for / = 0 .  Ans. // =  C, c o s /- f  C, sinr, 
* =  (C, +  C8) cos/+ (C 2 — CJ sin/. Particular solution: x* =  cos / — sin t, y*=cost .

171. —  =  x — 2y, —  =  * —#. Pick out the particular solutions that
satisfy the initial conditions: * = l ,  y =  1 for / = 0 . Ans. y =  C, cos t +  C2sin t, 
x =  (Ci -j-Cj) cos t + (C 2—C js in /. Particular solution: x * = c o s / — sin/,
y* =  COS t.

172.
f  4§ - df t + 'ix=slat'

I Ti +  y =  cost.

Ans, x =  Cle~t + C ie~,t ,
y =  Cle~t +  3Cte~, ‘ +  cos I.
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173.

174.

Ans. x =  Cxel +  C2e “ ^ C j  cos t -j-C4 sin t% 
y =  Cxei -\-C2e~i —C, cos / — C4 sin t .

( d 2x , du , ,
j  !P + £ + x= e ' 
I dx■ ^ —■l d*+ d*2

i4ns. ^ C . + C j l  +  C,!2 — 4 - / , +  et,

y = C 4- ( C ,  +  2CJ) < - 2 (C2 — 1) /*—

- T c- ' '+ 2i

175.

176.

177.

Ans. y =  (Cl +  Ctx)e~*x,
z =  (Ct —Cl —Cix ) e - i*.

dy
rx =z- y'
dz o
T x = - y - 3z-
dy  , A i4/is. y =  Cxe2X-\-C2e~2X, 
df +  2 =  0> 2 = - 2 ( C ,e « - C ie - t*).

S  + 4̂  = °-

-|+2i/ + 2 = sln a:.

dZ „ O2 ^ — 4y— 2z =  cos x.

Ans. |/ =  C,+CjJn; +  2 sin je,
z =  —2Cj—C2 (2jc -j-1) —3 sin x —2 cos x.

( dx
T t = y + Z ’

178.

179.

180.

Ans. x =  Cxe“ t +  Cieit, 
y =  Cie - t +  C2eit, 
U - ^ + C J e - '  + Cs*.

Ans. z =  C2ec 'x,

y=x+ cfit e~ClX• 
2

Ans. —  =  C„

zy*— ^x*=C2.

Integrate the following different types of equations:

181. ,82.
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Ans. =  C. 183. y =  xy,2-{- y'2. Ans. y =  ( V^x- \ - 1 -fC )2. Singular solutions:
y =  Q; j c - f l = 0 . 184. y" -f- y  == sec x. Ans. y — C1 cos x -f- C2 sin x -f- x sin x -{- 
-f- cos x In cos x. 185. (1 -\-x2) y ' —x y —a — 0. Ans. y =  ax -f- C ]/~l -f- x2.

v du v s i n  —
186. x cos *— =  y cos *—— x. Ans. xe x = C .  187. y"—4y =  e2X sin2a:.x ax x
Ans. y =  Cle~2X +  Cie2X-~ — (sin 2 * +  2 cos 2x). 188. xy' -{-y—y*\n * =  0.
Ans. (In *-f*1 +  Cx) y — 1. 189. (2x-\-2y— 1) dx +  (x-\-y—2) dy =  0. Ans. 2x-\- 
-\-y— 3 )n (* + y-\- lj =  C. 190. 3e* tan y dx- \- ( \—ex) sec2y dy =  0. Ans. tan y =  
=  C( \ —exy.

Investigate and determine whether the solution * =  0, # =  0 is stable for 
the following systems of differential equations:

191.

192.

193.

dx
dt~~ 2a: - 3  y,

—  =3
dt  5=3

5a* -j-* 6 y.

dx
dt  ~

— 4* — 10//,

dy
dt

1 to

S
r

l&
-

II 12a :+  18//,

II — 8a:— 12 y.

Ans. Unstable.

Ans. Stable.

Ans. Unstable.

194. Approximate the solution of the equation y' =  t/2 +  x that satisfies 
the initial condition y =  1 when x =  0. Find the values of the solution for x 
equal to 0.1, 0.2, 0.3, 0.4, 0.5. Ans.  yx=o s =  2.114.

195. Approximate the value of yxxslA of a solution of the equation

y =  ex  that satisfies the initial conditions y=* 1 when x =  l. Compare
the result obtained with the exact solution.

196. Find the approximate values of xtstl 4 and ytc l  4 of the solutions of a

a system of equations =  —3i/ that satisfy the initial con
ditions x =  0, y =  1 when t  =  1. Compare the values obtained with the exact 
values.



C H A P T E R  XIV 

MULTIPLE INTEGRALS

SEC. 1. DOUBLE INTEGRALS

In an xy-plane we consider a closed *) region D bounded by a 
line L.

In this region D let there be given a continuous function

« =  /(*. y)-
Using arbitrary lines we divide the region D into n parts 

As,, As,, As,, . . .  , As„

(Fig. 276) which we shall call subregions. So as not to introduce 
new symbols we will denote by As,, . . . ,  A s„ both the subregions 
and their areas. In each subregion As,- (it is immaterial whether 
in the interior or on the boundary) take a point P,-; we will then 
have n points:

P P Pr  i» r  2 > • • •> 1 n*

We denote by f (Pt), f (Pt), . . . ,  f(P„) the values of the func
tions at the chosen points and then form the sum of the products 
f  (P /) As,-:

n

( l )l/„ =  f (P.)As, +  / (P,) As, +  . . .  +  f  (Pn)ksn =  2  f (PJAsi.
i = l

This is the integral sum of the function / (x, y) in the region D.
If /3 s0  in D, then each term /(P,-)As,- may be represented 

geometrically as the volume of a small cylinder with base As,- 
and altitude /(P,-).

The sum V„ is the sum of the volumes of the indicated ele
mentary cylinders, that is, the volume of a certain “step-like” 
solid (Fig. 277).

Consider an arbitraiy sequence of integral sums formed by 
means of the function / (x, y) for the given region D,

V Vn,> n,> V (2)

*) A region D is called closed if if is bounded by a closed line, and the 
points lying on the boundary are considered as belonging to the region D.



Double Integrals 609

ky

for different ways of partitioning D into subregions As,.. We shall 
assume that the maximum diameter of the subregions As£ ap
proaches zero as nh—^oo, and the following 
proposition, which we give without proof, 
holds true.

Theorem 1. If a function f(x,y) is continu
ous in a closed region D , then there is a 
limit of the sequence (2) of integral sums (1) if 
the maximum diameter of the subregions Ast 
approaches zero as n —^oo. This limit is the 
same for any sequence of type (2), that isy 
it is independent either of the way the region 
D is partitioned into subregions Ast- or of 
the choice of the point PL inside the subre
gion As,-.

This limit is called the double integral of the 
over the region D and is denoted by

Fig. 276. 

function f(xt y)

that is,

S S » p ) *  or ^ f ( x ,  y)dxdy.

lim 2j f ( p i) As/ — U  f(x, y)dxdy.
d i a m  A s / -► o /  =  i  * y )J

This region D is called the domain (region) of integration.
If f(x> y ) ^  0, then the double integral of f (xy y) over D is 

equal to the volume of the solid Q bounded by a surface z =  f(x , y),

the plane 2 =  0, and a cylindrical surface whose generators are 
parallel to the 2 -axis, while the directrix is the boundary of the 
region D (Fig. 278).
20— 3 3 8 8
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Now consider the following theorems about the double integral. 
Theorem 2. The double integral of a sum of two functions 

<P(*> y) + ty(x> y) over the region D is equal to the sum of the 
double integrals over D of each of the functions taken separately:

U) +  ^ (x, y ) ] d s = ^ y { x ,  y ) d s + ^ ^ ( x ,  y)ds.
D D D

Theorem 3. A constant factor may be taken outside the double 
integral sign: 

if a-const, then

ssD acp(A:, y)ds =  a
D

(p (x, y)ds .

The proof of both theorems is exactly the same as that of the 
corresponding theorems for the definite integral (see. Sec. 3, Ch. XI).

Theorem 4. If a region D is divided into two regions D, and Dt 
without common interior points, and the function f(x, y) is 
continuous at all points of D, then

$ $ /(* , y ) d x d y = ^ f ( x ,  y ) d x d y + ^ f ( x ,  y)dxdy.
D D, D,

(3)

Proof. The integral sum over D may be given in the form 
(Fig. 279)

2 / (Pi) As<- = S f (pi) +  2 f (Pi)As.-. (4)D D | Dj

where the first sum contains terms that correspond to the subre
gions of Dj, the second, those corresponding to the subregions of 
Dt. Indeed, since the double integral does not depend on the 
manner of partition, we divide the region D so that the common 
boundary of the regions D, and D2 is a boundary of the subre
gions As,. Passing to the limit in (4) as As,—►(), we get (3). 
This theorem is obviously true for any number of terms.

SEC. 2. CALCULATING DOUBLE INTEGRALS

Let a region D lying in the xy-plane be such that any straight 
line parallel to one of the coordinate axes (for example, the 
//-axis) and passing through an interior*) point of the region, 
cuts the boundary of the region at two points Nv and Nt (Fig. 280).

*) An interior point of a region is one that does not lie on the boun
dary of the region.
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In this case we assume that the region D is bounded by the 
lines: y =  % (x)t y =  y 2(x), x =  a , x =  b and that

<P, (*X <P«M . a < t >

while the functions (p, (jc) and cp2(x) are continuous on the interval 
[a, b]. We shall call such a region regular in the tj-diredion. The 
definition is similar for a region regular in the x-diredion.

A region that is regular in both x- and ^-directions we shall 
simply call a regular region. In Fig. 280 we have a regular 
region D.

Let the function f (x, y) be continuous in D.
Consider the expression

b (p2 (x)

/ d = $ (  J f(x, y)dy)dx
a <pt (x )

which we shall call an iterated integral of f(xt y) over D. In this 
expression we first calculate the integral in the parentheses (the 
integration is performed with respect to y) while x is considered 
to be constant. The integration yields a continuous *) function of x:

q)a (x)

$  (x) =  J f (x, y) dy.
<Pl (x)

We integrate this function with respect to x from a to b:
b

/ D =  $
a

This yields a certain constant.

*) We do not here prove that the function O ( jc) is continuous.

20*
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Example 1. To calculate the iterated integral

1 X*(S (x' +  y ^ d y ' j d x .

Solution. First calculate the inner integral (in brackets):

o

Integrating the function obtained from 0 to 1, we find

i_ _ l_  , J___26  
o~~ 5 + 21“ 105'

Determine the region D. Here, D is considered the region bounded by the 
lines (Fig. 281)

It may happen that the region D is such that one of the func
tions y = cpl (x), y = cp2(jc) cannot be represented by a single

analytic expression over the entire range of a; (from x = a to x = b). 
For example, let a < c < b ,  and

(p1 (jc) = a|) (x) on the interval [a, c], 
cpx (jc) =  ^ (jc) on the interval [c, b].

where ^ (a:) and xW  are analytic functions (Fig. 282). Then the

y = 0, * = 0, y = x2, x = \ .

M y=<P2(x)

Fig. 28J. Fig. 282.
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iterated integral will be written as follows:
b  <Pa ( X )

S [  J fix, y )dy\dx  =
a <pt (x)

=  $ [  $ fix,  y) dy] dx +  J [ J f  (x, y) dy] dx =
a (Pi (x) c cp, (x)

c q>2 (x) u \*i

=  $ [  $ fix,  y)dy]djc +  J [  J f ix,  y)dy]dx,
a tyf*)

b <p2 (x)

SC s
c  X ( X )

The first of these equations is written on the basis of a familiar 
property of the definite integral, the second, due to the fact that 
on the interval [a, c) we have <p, (jc) =  \|) (jc), and on the interval 
lc, b] we have <p, (jc) =  % (jc ) .

We would also have a similar notation for the iterated integral 
if the function (Pj(jc) were defined by different analytic expres
sions on different subintervals of the interval la, b\.

Let us establish some properties of an iterated integral.
Property I. If a regular y-direction region D is divided into two 

regions D, and D2 by a straight line parallel to the y-axis or the 
x axis, then the iterated integral ID over D will be equal to the 
sum of such integrals over D, and Dt; that is,

' D = ' D| +  ' d,- (1)

Proof, a) Let the straight line x = c ( a < c < b )  divide the 
region D into two regular y-direction regions*) D, and Dt. Then

b q)2(x) b c b

ID =  J ( j  f (x; y) dy ĵ dx  =  J <I> (,v) dx — J <X> (jc) dx J O (jc) dx =
a (Pi(x) a a c

c (p2{x) b <p2U)

=  $ (  $ f ix,  y ) d y ) d * + J (  J f ix,  y)dy) dx =  / Dl +
a qM*) c <pt(x)

*) The fact that a part of the boundary of the region (and of D2) is a 
portion of the vertical straight line does not stop this region from being reg
ular in the ^-direction: for a region to be regular, it is only necessary that 
any vertical straight line passing through an interior point of the region 
should have no more than two common points with the boundary (see foot
note on page 610).
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b) Let the straight line y =  h divide the region D into 
two regular (/-direction regions D, and D2 as shown in Fig. 283. 
Denote by M, and M2 the points of intersection of the straight 
line y = h with the boundary L of D. Denote the abscissas of these

points by a, and bx.
The region Dx is bounded by con

tinuous lines:
1) </ =  cp, (*);
2) the curve 4̂,714, jW2B, whose 

equation we shall conditionally write 
in the form

y = y \  (*).

having in view that (jc) =  q>2 (a:)
___ when a x ^  a, and when fr, C *  C  fr
b x and that

Fig. 283. cp* (jc) =  h when ax <  x ^  bx\

3) by the straight lines x = a, x = b. 
The region D2 is bounded by the lines

y = %(x)> t/ =  q>2(a:), where a1^ x ^ b l

We write the identity by applying to the inner integral the 
theorem for partitioning the interval of integration:

b  q ) 2 ( x )

iD= $ ( J /(*. y)dy) dx=
a  q>,U)

*

b  ^lCx) (p3 ( X)

[ $ K*’ y )dy + $ /(■*. y)dy ] d*=

b b q>a (jc)

=  $ ( I '  t ( x ,  y ) d y ' ) d x  +  ^ (  J f ( x ,  y ) d y ^ d x .
a <pt ix) a y*(x)

We break up the latter integral into three integrals and apply 
to the outer integral the theorem for dividing the interval of
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integration:
f> <f2 <*) a, (x)
$ ( $ /(*> y) dy') dx =  ̂ J f(x, y)dy^dx +  
a <p' ( x )  a  <p* U )

b I < P i (x) b ( P i  {x)

+  $ (  $ f ix,  y )dy}dx + ^ (  J f(x, y)dty'}dx\
a ’ <P*(*) bx q>*(x)

since <p* (x) =  <p2 (x) on the interval [a, ax] and on [blt 6], it 
follows that the first and third integrals are identically zero. 
Therefore,

b V i W  bx <p2 (x)

/o = j (  $ f(x> y)dy) dx+  J J f(x, y)dy^dx.
a *»<*> “■ * ;w

Here, the first integral is an iterated integral over Dp the second, 
over D2. Consequently,

I  D =  I D i +

The proof will be similar for any position of the cutting straight 
line M^M2. If M1Mi divides D into three or a larger number of 
regions, we get a relation similar to (1), in the first part of 
which we will have the appropriate 
number of terms.

Corollary. We can again divide 
each of the regions obtained (using 
a straight line parallel to the y-axis 
or jc-axis) into regular (/-direction 
regions, and we can apply to them 
equation (2). Thus, D may be divided 
by straight lines parallel to the 
coordinate axes into any number of 
regular regions

D,, D2, D s> . . . ,  D ft
and the assertion that the iterated 
integral over D is equal to the sum of iterated integrals over 
subregions holds; that is (Fig. 284),

Id “  I dx +  Id2 +  I d* +  • • • +  lot* (2)

Property 2 (Evaluation of an iterated integral). Let m and M
be the least and greatest values of the function f(x,  y) in the
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region D. Denote by S the area of D. Then we have the relation
b <pa (x)

mS ^  J J f{*> y) dfi) dx <  AfS. (3)
a  q>, [x )

Proof. Evaluate the inner integral denoting it by ®(x):
«*>»(*) <Pa(*)

<D(*) =  J fix, y)dys£, J M d y = M  [q>, (*) — cp, (*)].
<Pi {x) q>! (x)

We then have
b  q>a (x) b

/ o = $ (  J fix, y)dy' )dx^^M[q>, (x)—<f1{x)]dx =  MS,
a  q>, ( * )

that is,

Similarly

<&(*)= J fix, y)dy7> "J mdx = m [<}>,(*) — q>, (*)],
<Pi <*>

l D ^ M S .

tp2 \x)

O ' )

<Pt (X) 
b

<Pi (x)

ID =  J ® ( X )  dx ^  J m  [q>2 ( * )  — ( * ) ]  dx =  mS,
a a

that is,
/ 0 > m S . .  (3")

From the inequalities (3') and (3") follows the relation (3):

m S / D s£  M S.

In the next section we will determine the geometric meaning of 
this theorem.

Property 3. (Mean-Value Theorem). An iterated integral 1D of 
a continuous function f(x,  y) over a region D with area S is  equal 
to the product of the area S by the value of the function at some 
point P in the region D; that is,

b q>a (X)
5 ( 5  f ( x’ y)dy')dx = f{P)S.
a  q>, (*1

Proof. From (3) we obtain

( 4 )
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The number — 1D lies between the greatest and least values of 
f (xy y) in D. Due to the continuity of the function f{x, y)y at 
some point P of D it takes on a value equal to the number -- lD\ 
that is,

whence
/0 =  /(P)S. (5)

SEC. 3. CALCULATING DOUBLE INTEGRALS 
(CONTINUED)

Theorem. The double integral of a continuous function f (x ,  y) 
over a regular region D is equal to the iterated integral of this 
I unction over D; that is,*)

b tPa (x)
$ $ f (X, y)  dx  d y  =  J J f (x . y )  dy' j  dx.

D a t p, (x )

Proof. Partition the region D with straight lines parallel to the 
coordinate axes into n regular (rectangular) subregions:

As,, As...........As„.
By Property 1 [formula (2)] of the preceding section we have

lo~I&h +  • • • '•4- =  2 ( 0
i = 1

Each of the terms oh the right we transform by the mean- 
value theorem for an iterated integral:

W = / ( p .) As,..
Then (1) takes the form

ID= f { P t)Ast + f  (Pt) As, +  . . . + /  (P„) As„ =  ±  f (P ,) As,-, (2)
! = 1

where P, is some point of the subregion As,. On the right is the 
integral sum of the function f(x, y) over the region D. From the 
existence theorem of a double integral it follows that the limit 
of this sum, as n -* oo and as the greatest diameter of the sub- 
regions As, approach zero, exists and is equal to the double 
integral of f{x, y) over D. The value of the double integral /Don

*) Here, we again assume that the region D is regular in the ^-direction 
and bounded by the lines y =  <p,(x), y =  <p2(.v), x =  a, x =  b.
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the right side of (2) does not depend on n. Thus, passing to the 
limit in (2), we obtain

or

ID= lim 2 f ( p /)Asi=  y)dxdy
d l a m  A $ i - * o

$$/(*, y) dx dy= ID. (3)

Writing out in full the expression of the iterated integral ID, 
we finally get

ft (Pa (x)
^ H x ,  y)dxdy = J f(x, y)dy~jdx. (4)
D a (Pi(x)

Note t. For the case when f(x, t/)Ss 0, formula (4) has a pic
torial geometric interpretation. Consider a solid bounded by the 
surface z =  /(x, y), the plane z =  0, and a cylindrical surface 
whose generators are parallel to the z-axis and the directrix of

which is the boundary of the 
z~f(x,y) region D (Fig. 285). Calculate

the volume of this solid V. 
It has already been shown 
that the volume of this solid 
is equal to the double integral 
of the function f(x, y) over 
the region D:

F =  y)dxdy.  (5)
D

Now let us calculate the
volume of this solid using
the results of Sec. 4, Ch. 
XII, on the evaluation of
the volume of a solid from 

the areas of parallel sections (slices). Draw the plane x =  const 
( a < * < 6 )  that cuts the solid. Calculate the area S(x) of the 
figure obtained' by cutting x = const. This figure is a curvilinear 
trapezoid bounded by the lines z = f (x , y) (x =  const), z = Q,y = cp̂ *), 
U = (f>2 (*)• Hence, this area can be expressed by the integral

Fig. 285.

(Pa (*)

s (*)= 5 'f(x, y)dy. (6)
<Pl ( x)

Knowing the areas of parallel sections, it is easy to; find the
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volume of the solid:
b

V =  ^S(x) dx\
a

or, substituting expression (6), we get for the area S(x)
b  9,  (x)

i/ = $[ $ ^ x ’ y)dy ] dx- (?)
a q>i (x)

In formulas (5) and (7) the left sides are equal; and so the right 
sides are equal too:

b  <p2 (x)

$$/(*> y ) d x d y = ^ [  J f(x, y)dy~]dx.
D a a-i (x )

It is now easy to figure out the geometric meaning of the evalu
ation theorem of an iterated integral (Property 2, Sec. 2): the 
volume V of a solid bounded by the surface z = f (x , y), the

plane z =  0, and a cylindrical surface whose directrix is the 
boundary of the region D, exceeds the volume of a cylinder with 
base area S and altitude m, but is less than the volume of a 
cylinder with base area S and altitude M [where m and M are 
the least and greatest values of the function z = f (x , y) in the 
region £>(Fig. 286)]. This follows from the fact that iterated in
tegral ID is equal to the volume V of this solid.
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Example 1. Evaluate the double integral ^  (4 — x2— y*)dxdy  if the region
D

3
D is bounded by the straight lines x =  0, x =  l, y =  0t and y =  -— .

Solution. By the formula
■/, 1 8/a

v =  j  (4 —x2 — y 2) dx^dy =  ^ 4 x - y * x  — * dx =
0 0 0

0 0
Example 2. Evaluate the double integral of the function f (x, y) =  \ + x  +  y 

over a region bounded by the lines y =  — x, x =  ^~y, y =  2, 2 =  0 (Fig. 287). 
Solution.

v  =  j  0+*+»/)<*•« j  d y  =  J  j^  +  Jcy +  ̂ j-j =
0 —1/ 0

= I  [ ( ^ y + y  ^ y + | - )  — ( —.y — dy=
0

= I  + T + y  y " y —1 " ] ^ =

Note 2. Let a regular ^-direction region D be bounded by the 
lines

x  =  ty,  (t/), J c = = ^ ,( t/) , y = c ,  y — d ,

and let t|), ( j ) < («/) (Fig- 288).
In this case, obviously,

d  (y )

${[(* . y ) d x d y = ^  J f ( x ,  y ) d x ' ) d y .  (8)
D c \|>, w)

To evaluate the double integral we must represent it as an 
iterated integral. As we have already seen, this may be done in 
two different ways: either by formula (4) or by formula (8). 
Depending upon the type of the region D or the integrand in each 
specific case, we choose one of the formulas to calculate the 
double integral.
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Example 3. Change the order of integration in the integral
i VT

/(* . y) dy^ax.
0  X

Solution. The region of integration is bounded by the straight line y — x 
and the parabola / /=  ^  x. (Fig. 289).

Every straight line parallel to the x-axis cuts the boundary of the region 
at no more than two points; hence, we can compute the integral by formula 
(8), setting

'i>z{y)=y> o < y < i ;
then

i u

/ = S ( I  ̂(*’ y) dX) dy'
o y1
y

Example 4. Evaluate 

the straight lines y =  x ,

i y

J J e* ds if the region D is a 
D
y =  0, and jc =  1 (Fig. 290).

triangle bounded by

Solution. Replace this double integral by an iterated Integral using for
mula (4). [If we used formula (8), we would have to integrate the function

_y_
e x with respect to x\ but this integral is not expressible in terms of elemen
tary functions]:

SS*‘ d x = i l  ]> =
D o o  o

=  j * ( e - l ) d *  =  ( e - l ) | - ’ j = ~
0 0

= 0 ,8 5 9 ...
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Note 3. If the region D is not regular either in the ^-direction 
or the ^-direction (that is, there exist vertical and horizontal 
straight lines which, while passing through interior points of the 
region, cut the boundary of the region at more than two points), 
then we cannot represent the double integral over this region in

the form of an iterated integral. If we manage to partition the 
irregular region D into a finite number of regular ^-direction or
^-direction regions D,, Dt......... Dn, then, by evaluating the double
integral over each of these subregions by means of the iterated 
integral and adding the results obtained, we get the sought-for 
integral over D.

Fig. 291 is an example of how an irregular region D may be 
divided into two regular subregions £), and! Dt.

Example S. Evaluate the double integral

$ J ex+y ds 
D

over the region D which lies between two squares w’ith centre at the origin 
and with sides parallel to the axes of coordinates, if each side of the inner 
square is equal to 2 and that of the outer square is 4 (Fig. 292).

Solution. The region D is irregular. However, the straight lines j c =  —  1 
and x =  1 divide it into four regular subregions D,, Dit DSl D4. Therefore,
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Representing each of these integrals in the form of an iterated integral, 
we find

— 1 2  1 2

11 e*+y ds ~  $ [  $ e*+y J J e*+y dy\ +
D - 2 - 2  - 1  1

1 —1 2 2
+   ̂  ̂gX+y ^  J d* +   ̂ J ex+y dy J dx =

— 1 — 2 1 —2 
=  (e2—e~2) (e” 1—e~ 2) +  (e2—e) (a—e~l) +  (e~I — e~z) (e—£“*) +

-f (e2—e~2) (e2—e) =  (e3—e~s) (e —e~l) =  4 sinh3 sinh 1,

Note 4. From now on, when writing the iterated integral
b <pa (*)

/ 0 = $ [  S Hx’ y)dy]dx>
a <p, (x)

we will drop the brackets containing the inner integral and will 
wr>te h „ ,,,b cp2 (X)

/ D= J  5 f(x> y ) d y d*■
a <p, (x)

Here, just as in the case when we have brackets, we will consider 
that the first integration is performed with respect to the variable 
whose differential is written first, and then with respect to the variable 
whose differential is written second. [We note, however, that this 
is not the generally accepted practice; in some books the reverse 
is done: integration is performed first with respect to the variable 
whose differential is last.510]

SEC. 4. CALCULATING AREAS AND VOLUMES 
BY MEANS OF DOUBLE INTEGRALS

1. Volume. As we saw in Sec. 1, the volume V of a solid 
bounded by the surface z =  /(x, y), where /(* , y) is a nonne
gative function, by the plane z =  0 and by a cylindrical surface 
whose directrix is the boundary of the region D and the generators 
are parallel to the z-axis, is equal to the double integral of the 
function f(x, y) over the region D:

y =  $$/(*, y)ds.
D

The following notation is also sometimes used:
b q>2 b cpa

>d =  $ [  $ f ^ x < . y ^ d y  \ d x —  (*• y )  d y •
a <Pi a ^
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Example I. Calculate the volume of a solid bounded by the surfaces * =  0, 
y =  0, x +  y +  z = \ ,  2 =  0 (Fig. 293).

Solution.

5 5 (1— X—y)dy dx, 
D

where D is (in Fig. 293) the shaded triangular region in the xy-plane bounded 
by the straight lines * =  0, y — 0, and x +  y =  1. Putting the limits in the 
double integral, we calculate the volume:

i i -jt i i
V =  J  J  (1 — x— y) dy d x =  J  £ (l — x) y — y j   ̂ * dx =  ^ --(1  —x)2dx =  ̂ r .

0 0 0 0

Thus. V =  4- cubic units, o

Note 1. If a solid, the volume of which is being sought, is 
bounded above by the surface z = (t>t {x , y ) . ^ s Q ,  and below by the 
surface z =  CD, (x, y)5* 0, and the region D 
is the projection of both surfaces on the i z  z-<P2(x,y) 
x y - plane, then the volume V  of this solid '

r ^ y

Fig. 293. Fig. 294.

is equal to the difference between the volumes of the two “cylindrical” 
bodies; the first of these cylindrical bodies has the region D as 
its lower base, and the surface z = <bt (x, y) for its upper base; 
the second body also has D as its lower base, and the surface 
z = <f>x(x, y) for its upper base (Fig. 294).

Therefore, the volume V is equal to the difference between the 
two double integrals

=  5$ ‘M * ’ ds~ 55®'  <'X’ y d̂s'

J5 [$,(*. y)—®Ax> y))ds-
or

( i )
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Further, it is easy to prove that formula (1) holds true not 
only for the case when 0,(jc, y) and®t (A:, y) are nonnegative, but 
also when O, (x, y) and Os( ,̂ y) are any continuous functions 
that satisfy the relationship

y)^*®Ax> y)•
Note 2. If in the region D the function f{x, y) changes sign, 

then we divide the region into two parts: 1) the subregion D, 
where f(x, y)^s  0; 2) the subregion Dt where f  (x, t/)«S 0. Suppose 
the subregions D, and Dt are such that the double integrals over 
them exist. Then the integral over D, will be positive and equal 
to the volume of the solid lying above the xi/-plane. The integral 
over DjWill be negative and equal, in absolute value, to the volume of 
the solid lying below the xt/-plane. Thus, the integral over D will 
be expressed as the difference between the corresponding volumes.

2. Calculating the area of a plane region. If we form the inte
gral sum of the function f(x, t/)==l over the region D, then this 
sum will be equal to the area S,

S =  2  1' As;>i=i

foi any method of partition. Passing to the limit on the right 
side of the equation, we get

S =
D

If D is regular (see, for instance, Fig. 280), then the area will 
be expressed by the double integral

b (pa (X)

s = $ [  $ dy]dx.
a cp, (x)

Performing the integration in the brackets, we obviously have
b

S =  J [<p, (*) — <p, (x)]dx

(cf. Sec. 1, Ch. XII).
Example 2. Calculate the area of a region bounded by the curves

y =  2—x2, y =  x.

Solution. Determine the points of intersection of the given curves (Fig. 295). 
At the point of intersection the ordinates are equal; that is,

x =  2 —x2.
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whence
*2 +  x —2 =  0,

* , = - 2  
x, =  l.

We get two points of intersection: /Vl,(— 2, — 2), Af,(l. IV Hence, the 
required area is

S= H I dy) dX= •
- 2  X - 2

SEC. 5. THE DOUBLE INTEGRAL IN POLAR COORDINATES

Suppose that in a polar coordinate system 0, q, a region D is 
given such that each ray*) passing through an interior point of 
the region cuts the boundary of D at no more than two points.

Suppose that the region D is bounded by the curves q =  0 1 (0), 
Q =  (D2(0)and the rays 0 =  aand 0 =  p, where O, (0) (0) and
a < p  (Fig. 296). Again we shall call such a region regular.

In the region D let there be given a continuous function of the 
coordinates 0 and q :

z = F(Q, q) .

We divide D in some way into subregions Ast, Ast, . . . ,  As„.

*) A ray is any half-line issuing from the coordinate origin, that is, from 
the pole P.
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Form the integral sum

V „ = 2 W A s ft, (1)
k  = 1

where Pk is some point in the subregion Ask.
From the existence theorem of a double integral it follows that 

as the greatest diameter of the subregion Ask approaches zero, 
there exists a limit V of the integral sum (1). By definition, 
this limit V is the double integral of the function F(b, q) over 
the region D:

V=l \F(Q, Q)ds .  (2)
D

Let us now evaluate this double integral.
Since the limit of the sum is independent of the manner of 

partitioning D into subregions AsA, we can divide the region in 
a way that is most convenient. This most convenient (for purposes 
of calculation) manner will be to partition the region by means
of the rays 0 =  0O, 0 =  6,, 0 =  02.......... 0 =  0„ (where 0o =  a, 0„ =  p,
0O< 0 1, < 0 2< . . . < 0 „ )  and the concentric circles q =  q„, e =  e,. 
. . . ,  q  =  q „  (where q0 is equal to the least value of the function
O, (0), and Qm, to the greatest value of the function d>2 (0) in
the interval a < 0 s £ p ,  Q0< e ,  < • .  • < e j -

Denote by Asik the subregion bounded by the lines Q =  e,-i>
6 =  0/, 0 =  8 * - ,.  9 =  e ft-

The subregions Asik will be of three kinds:
1) those that are not cut by the boundary and lie in D\
2) those that are not cut by the boundary and lie outside D\
3) those that are cut by the boundary of D.
The sum of the terms corresponding to the cut subregions have 

zero as their limit when A0*—*0 and Aq;—>0 and for this reason 
these terms will be disregarded. The subregions Asik that lie 
outside D do not interest us since they do not enter into the sum. 
Thus, the integral sum may be written as follows:

Vtt= i [ 2 F ( P ik) bs ik],
k = l i

where Pik is an arbitrary point of the subregion As,*.
The double summation sign here should be understood as 

meaning that we first perform the summation with respect to 
the index /, holding k fast (that is, we pick out all terms that 
correspond to the subregions lying between two adjacent rays *).

*) We note that in summing over the index i this index will not run 
through all values from 1 to m, because not all of the subregions lying 
between the rays 0 =  0* and 0 =  0A+l, belong to D.
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The outer summation sign signifies that we take together all the 
sums obtained in the first summation (that is, we sum with 
respect to the index k).

Let us find the expression of the area of the subregion Asik 
that is not cut by the boundary of the region. It will be equal 
to the difference of the areas of the two sectors:

As,-*=4(q,- +  Aq,.)1 A0*—ye<A0*=(e,- +  Ap) aq.-aq,

or Aslk =  qJAq,A0*. where e,- <  0* <  0; +  Aq,-
Thus, the integral sum will have the form*)

^ = 2  [ 2  F(el, e;) e;AeiA0j,
k =  \ i

where P(0j, qJ) is a point of the subregion Asik.
Now take the factor A0* outside the sign of the inner sum 

(this is permissible since it is a common factor for all the terms 
of this sum):

v/n=2[2F(0;(> ;)Q ;A Q I.jA0ft.
fr =1 i

Suppose that Ao,^-<-0 and A0* remains constant. Then the 
expression in the brackets will tend to the integral

( »Z)
5 F (0*. e) e <2q«
( •* )

Now, assuming that A0*—►O, we finally get**)
3 <Dj (8)

V =  l (  J F ( 0 ,  Q)QdQ)dQ.  (3)
a (0,6)

*) We can consider the integral sum in this form because the limit of the 
sum does not depend on the position of the point inside the subregion.

**) Our derivation of formula (3) is not rigorous; in deriving this formula 
we first let AQ/ approach zero, leaving A0* constant, and only then made A0* 
approach zero. This does not exactly correspond to the definition of a double 
integral, which we regard as the limit of an integral sum as the diameters 
of the subregions approach zero (i. e., in the simultaneous approach to zero 
of A0* and AQ/). However, though the proof lacks rigour, the result is true 
|i. e., formula (3) is true]. This formula could be rigorously derived by the 
same method used when considering the double integral in rectangular 
coordinates. We also note that this formula will be derived once again in 
Sec. 6 with different reasoning (as a particular case of the more general 
formula for transforming coordinates in the double integral).
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Formula (3) is used to compute double integrals in polar 
coordinates.

If the first integration is performed over 0 and the second one 
over q, then we get the formula (Fig. 297)

Qa <*2 (Q)
v  =  $( S F ( 0 ,  Q ) d Q ) Q d Q .  (3')

0, ©1 (0)
Let it be required to compute the double 

integral of a function f  (*, y )  over a region 
D given in rectangular coordinates:

$$/(•*> y ) d x d y .
D

If D is regular in the polar coordinates 0, 
e then the computation of the given integral 
can be reduced to computing the iterated integral in polar 
coordinates.

Indeed, since
x =  q c o s 0 , */ =  (>sin0 ,

/(*. y ) = f l q c o s Q ,  q  sin 0] =  F (0, e),
it follows that

p CM0)

$$ /(* , y ) d x d y = \ ( $ f l q c o s Q ,  gsin 0 ] Q d q ) d Q .  (4 )
D  a <D, (9)

Example 1. Compute the volume V of a solid bounded by the 
surface

an- the cylinder
x2 +  y2 +  z* =  4a*

+  — 2ar/=0.

spherical

Solution. For the region of integration here we can take the base of the 
cylinder x2-\-y2— 2ay =  0 , that is, a circle with centre at (0, a) and radius a. 
The equation of this circle may be written in the form x2-\-(y— a)2= a 2 
(Fig. 298).

We calculate of the required volume V, namely that part which is
situated in the first octant. Then for the region of integration we will have 
to take the semicircle whose boundaries are defined by the equations

x =  cpi {y) =  0, x =  <p2 ((/) =  \ r2ay — y 2,

y = 0, y = 2a.
The integrand is

2 =  / (x , y) — V 4a2 — x2— y2.
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Consequently,
ta Vzay - y*

=   ̂ V i a * —x*— y* dx ĵ dy.

Transform the integral obtained to the polar coordinates 0, q:
x =  q cos 0, # =  Qsin0.

Determine the limits of integration. To do so, write the equation of the
given circle in polar coordinates; 
since

x* +  y 2 =  Q*t
y =  Q sin 0,

Fig. 299.

it follows that 

or
q2—2flQ sin 0 =  0 

q =  2a sin 0.
Hence, in polar coordinates (Fig. 299), the boundaries of the region are 
defined by the equations

q =  Q1(0) =  O, q =  (D2 (0) =  2a sin 0, a = 0 ,  P = — ,
and the integrand has the form

F (0, q )=  Y 4a2—q4.
Thus, we have

n ji
2 2Q sin Q 2 ,

i .  J (  j
o o  o

Jl
2

=  - y  J  [(4a*— 4al sins0)*/* — (la*)’1*] d0 =
0

n
2

8a* f  4
=  —  \ (1— cOs*0)d0 =  -Q a8 (3ji—4).
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Example 2. Evaluate the Poisson integral

S e ~ x ' d x ■
-  00

Solution. First evaluate the integral I e ~ xt - yi  dx dy,  where the region
D

of integration D is the circle
** +  0*=/?*

(Fig. 300).
Passing to the polar coordinates 0, q, we obtain

2JI R 2JI R

//?= $  ( J e - ' >,e d o ) d 0 = - 4 - J e-p2| d e = I t (1- e ).

Now, if we increase the radius R without bound (that is, if we expand 
without limit the region of integration), we get the so-called improper 
iterated integral:

2JI 00 tJl

^  e “ paQ d g )  d0  =  lim ^  ^  dQ ĵ dQ= \im j t ( l — e ^*) =  jt.

We shall show that the integral e~xt~yi( x̂ dy approaches the limit jt
D

if the region D’ of arbitrary form expands in such manner that finally any 
point of the plane gets into D' and remains there (we shall conditionally 
indicate such an expansion of D' by the relationship D ' —►oo).

Let /?! and Rt be the least and greatest distances of the boundary of D' 
from the origin (Fig. 301).

Since the function e~x*~y* is everywhere greater than zero, the following 
inequalities hold:

d x d y ^ l
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or

j i ^ I — e ^  e -x * -ya dx dy  ^  it ^ 1—e .
D'

Since for D '—  ̂ oo it is obvious that Rt —► oo and /? .— ► oo, it follows 
that the extreme parts of the inequality tend to one and tne same limit jt. 
Hence, the median term also approaches this limit; that is,

lim J S e~x*~y *dx dy =  n. ( ro )

As a particular instance, let D' be a square with side 2a and centre at 
the origin; then

a a

^ e - x l-y‘ dxdy=  $ J e-xt-y*dxdy =
U  - a  - a

a a a a

=  5 5  e-x,e~y,dxdy=  J [ J dx^dy.
- a  - a  - a  - a

Now take the factor e~y2 outside the sign of the inner integral (this is per
missible since e~y% does not depend on the variable of integration x). Then

a a

S S e ~X%~y% dx d y — J e ~y% [  J e~x*dx^dy.  
D’ - a - a

Set J e~x% dx =  Ba. This is a constant (dependent only on a); therefore,
- a

a a

S 5 e~x*“y*dx d y ~  J e~y2Ba dy =  Ba J e“yi dy.
D* -a -a

a

But the latter integral Is likewise equal to Ba (^because J e-** ax =

-  l
thus,

55 e-x,-y, dxdy=BaB„  = B:
D'

We pass to the limit in this equation, by making a approach infinity (in the 
process, D' expands without limit):

a + oo

lim [ [ e~x2- y2 dx d y =  lim B2a =  lim [" f e “*ad jc l2 =  [" [ e~x* dx 1 .
£ ) ' _ * g q J J  a  —► oo a  oo L J  J  L J  J

D' - a  — oo
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But, as has been proved |see (5)],

lim [  [  dx dy — jx .
D '  —► oo

Hence,

[  S e-x* d* Y = n’
— OD

or
GO

J e~x% d x = V h i .
-  CO

This integral is frequently encountered in probability theory and in statistics. 
We remark that we would not be able to compute this integral directly (by 
means of an indefinite integral) because the derivative of e ~x2 is not expres
sible in terms of elementary functions.

SEC. 6. CHANGING VARIABLES IN A DOUBLE INTEGRAL 
(GENERAL CASE)

In the jey-plane let there be a region D bounded by the 
line L. Suppose that the coordinates x and y are functions of 
new variables u and y:

x = y(u, v), y = q{u, v)\ (1)
let the functions q>(u, v) and ^(ti, u) be single-valued and con
tinuous, and let them have continuous derivatives in some region D', 
which will be defined later on. Then by formulas (1) to each 
pair of values u and v there corresponds a unique pair of values

x and y. Further, suppose that the functions cp and ip are such 
that if we give x and y definite values in D, then by formulas (1) 
we will find definite values of u and v.

Consider a rectangular coordinate system Ouv (Fig. 302). From 
the foregoing it follows that with each point P (x, y) in the
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xy-plane (Fig. 303) there is uniquely associated a point P'(w, it) 
in the uu-plane with coordinates u, v , which are determined by 
formulas (1). The numbers u and v are called curvilinear coordi
nates of the point P.

If in the xy-plane a point describes a closed line L bounding 
the region D, then in the uv-plane a corresponding point will 
trace out a closed line L' bounding a certain region D'\ and to 
each point of D' there will correspond a point of D.

Thus, the formulas (1) establish a one-to-one correspondence 
between the points of the regions D and D', or, the mapping, by 
formulas (1), of the region D onto region D' is said to be one-to-one.

In the region D' let us consider a linew =  const. By formulas (1) 
we find that in the ja/-plane there will, generally speaking,, be a 
certain curve that will correspond to it. In exactly the same way, 
to each straight line v = const of the uv-plane there will correspond 
some line in the xy-plane.

Let us divide the region D' (using the straight lines u = const 
and v = const) into rectangular subregions (we shall disregard 
subregions that overlap the boundary of the region D'). Using 
suitable curved lines, divide D into certain curvilinear quadran
gles (Fig. 303).

Consider, in the wu-plane, the rectangular subregion As' bounded 
by the straight lines u — const, u-\- Au =  const, u =  const, u +  Au =  
=const, and consider also the curvilinear subregion As corresponding 
to it in the xy-plane. We denote the areas of these subregions 
by As' and As, respectively. Then, obviously,

As' =  Au Au.
Generally speaking, the areas As and As' are different.

In the region D, let there be a continuous function
z = f(x, y).

To each value of the function z = f(x, y) in the region D there 
corresponds the very same value of the function z — F(u, v) in 
the region D‘, where

F(u, v) = f[(p(u, v), iMu, 0)1-
Consider the integral sums of the function z over D. It is obvious 

that we have the following equation:
2 /(* . y)As = '2,F(u;v)As.  (2)

Let us. compute As, which is the area of the curvilinear quad
rangle PlPlP,Pi in the xy-plane (see Fig: 303).’ /,
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We determine the coordinates of its vertices:

P, (*,> y,)> *, =  <p(«. »). i/, =  i))(u, y),
Pt (Xt , y t ), X ,  =  cp (m +  Au, v), y i =  ty{u +  Am, v ),
p, (x„ y,), x„ =  (f (u +  Au, y +  Ai>), ya =  ty(u +  &u, h +  4p), 
P4 ( X t , y t), xt =  <p(u,v +  Au), ^ («, W +  Au).

When computing the area of the curvilinear quadrangle Pt, Pt, 
P,, P4 we shall consider the lines P,P,, PtP*. P3P4, P4P, as 
parallel in pairs; we shall also replace the increments of the functions 
by corresponding differentials. We shall thus ignore infinitesi
mals of order higher than the infinitesimals Am, An. Then formu
las (3) will have the form

x, =  cp (m, v),

x, =  cp(M, ») +  J am +  ^ A u,

y, =  ^(u, v),

»/, =  '!’ («. u) +  ^ - A m,

«/, =  *!>(«, o) +  S A« +  ^ A o ,
(3')

x4 =  9 ( m, +  0  An, </4 =  iH h, An.

With these assumptions, the curvilinear quadrangle P,PjP,P4 
may be ragarded as a parallelogram. Its area As is approximately 
equal to the doubled area of the triangle P,PtP, and is found by 
the following formula of analytic geometry:

As «  | (yt—y t) — (* ,—xt) («/, — !/,) | =

Am +  -|^ Audv ' (
dq> dl|) 
du dv A u A^ — f ^ A u A udo du

d(p di|) dq) d\|)
du dv dv du Au Ay =

dq> dq> 
du dv 
dt|) dap 
du , dv

Au Ay. **

*) The doubled Tines in the determinant indicate that the absolute value 
of the determinant is taken.
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We introduce the notation

Thus,

d<p d(p 
du dv

du dv

=  / .

As » | / | As'. (4)
The determinant / is called the functional determinant of the 

functions <p(u, v) and if (u, o). It is also called the Jacobian after 
the German mathematician Jacobi.

The equality (4) is only approximate, because in the process 
of computing the area of As we neglected infinitesimals of higher 
order. However, the smaller the dimensions of the subregions As 
and As', the more exact will this equality be. And it becomes 
absolutely exact in the limit, when the diameters of the subregions 
As and As' approach zero:

K l =  lim
diamA$-»»o

Let us now apply the equation obtained to an evaluation of 
the double integral. From (2) we can write

2 / ( * .  y) A s » 2 f  (“> y)KI  As'
(the integral sum on the right is extended over the region D'). 
Passing to the limit as diam A s '—>-0, we get the exact equation

^ f ( x ,  y ) d x dy= \ j <j>F(u, v ) \ I \ d u d v . (5)
D D'

This is the formula for transformations of coordinates in a double 
integral. It permits reducing the evaluation of a double integral 
over a region D to the computation of a double integral over a 
region D', which may simplify the problem. A rigorous proof of 
this formula was first given by the noted Russian mathematician 
M. V. Ostrogradsky.

Note. The transformation from rectangular coordinates to polar 
coordinates considered in the preceding section is a special case 
of change of variables in a double integral. Here, « =  0, v = q:

x — q cos 0, t/ =  Qsln0.
The curve A B ( q  =  q 1)  in the *y-plane (Fig. 304) is transformed 

into the straight line A'B' in the 0Q-plane (Fig. 305). The 
curve DC(Q = Qt) in the xy-plane is transformed into the straight 
line D'C' in the 0Q-plane.
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The straight lines AD and BC in the xy-plane are transformed 
into the straight lines A'D' and B'C' in the 0Q-plane. The curves 
L, and Lt are transformed into the curves L, and Lt.

Let us calculate the Jacobian of transformation of the Cartesian 
coordinates x and y into the polar coordinates 0 and q:

d x  d x

/ = d0 dp
d y  d y
dQ dQ

Hence, | / | = e and

-q sin 0 cos 0 
q  cos 0 sin 0

=  — q sin*0—q cos*0 = — q.

e («)
$ $ / (*, y) dx dy =  $ ( $ F (0, q) q  dQ) dQ.
D  a O, <«)

This was the formula that we derived in the preceding section. 
Example. Let it be required to compute the double integral

( y —x) dx dy
D

over the region D in the jn/-plane bounded by the straight lines 

y = x  +  \ 9 y = x —3, y =  — +  y  = —y  x+5.

It would be difficult to compute this double integral directly; however, a 
simple change of variables permits reducing this integral to one over a rect
angle whose sides are parallel to the coordinate axes.

Set
. 1u = y —x, v = y  +  — x. (6)
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Then the straight lines y — jc +  1 , y = x  — 3 will 
be transformed, respectively, into the straight 
lines a — 1, a ——3 in the au-plane; and the 

1 7  1v. s  straight lines y =  — - x +  - j  , y = —— xr +  5
will be transformed into the straight lines

Consequently,the given region D is transformed 
into the rectangular region D' shown in 
Fig. 306. It remains to compute the Jacobian 
of transformation. To do this, express x and y 

^  in terms of u and v. Solving the system of 
U equations (6), we obtain

x =  - T u +  T v; ^ = T u + T " -

Consequently,
dx dx 3 3
da dv 4 4
dy dy 1 3
du dv 4 4

and the absolute value of the Jacobian is | / | =  — . Therefore,

J J  (*/-*> dy =  j  j  [ (  + T “ +  T 0 ) “  (  “ T “ + T  y ) ]  T du dv =

3̂
4 a dudv u d u d v = — 18.

7 — 3
3

SEC. 7. COMPUTING THE AREA OF A SURFACE

Let it be required to compute the area of a surface bounded by 
the line T (Fig. 307); the surface is defined by the equation 
2 =/(jt, y), where the function f (x,y)  is continuous and has con
tinuous partial derivatives.

Denote the projection of the line T on the xy~plane by L. 
Denote by D the region on the xy-plane bounded by the line L.

In arbitrary fashion, divide D into n elementary subregions 
Asp As2, . . . ,  As„. In each subregion As, take a point Pl (l lr\i). 
To the point Pt there will correspond, on the surface, a point

M f  [ S , ,  Tfc, fill,  H i)! .
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Through M,- draw a tangent plane to the surface. Its equation 
is of the form

Z— 2/ =  fx (I,-, T],.) (* — h )  +  fy t],) (y— r),.) (1)

(see Sec. 6, Ch. IX). In this plane, pick out a subregion A a. 
which is projected onto the xy-plane in the form of a subregion 
As,-. Consider the sum of all the subregions A a,-:

2  Ac,-.

We shall call the limit a of this sum, when the greatest of the 
diameters of the subregions Aa,. approaches zero, the area of the 
surface; that is, by definition we set

a =  lim 2  Aa,- (2)
diamAaj-*-o j — i

Now let us calculate the area of the surface. Denote by the 
angle between the tangent plane and the ^-plane. Using a fami
liar formula of analytic geometry we can write (Fig. 308)

A s , - A a (. cos Y/
or

h v= -teL -.' (3)
i V/ cos 1

The angle is at the same time the angle between the z-axis 
and the perpendicular to the plane (1). Therefore, by equation
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(1) and the formula of analytic geometry we have 

cosy,- =  -r . ■■■■■ = -r - ..
V tu) + /;* (Ei.ru)

Hence,

AO i = y  1 +f'xt (%, T1 ; )+/*(£/ ,  T]() As,-.
Putting this expression into formula (2), we get

a =  lim 2  j/~l -f /** (£,, nf) f  /** T],-) As,-.
diam Asi->o / = i f

Since the limit of the integral sum on the right side of the last 
equation is, by definition, the double integral

I J  Y  l + {£)‘+{%)‘dxd!>' we fmal|y s' 1

- J J  Y ^ W Y M ) ’^ -  <«>
This is the formula used to compute the area of the surface
z = f(x, y).

If the equation of the surface is given in the form 
jt =  n((/, z) or in the form y = x(x, z),

then the corresponding formulas for calculating the surface are of 
the form

- J j  / ‘ + ( « ) ■ + ( § ) ■ * * .  <3'>

° - l ^ Y l +^£)'+^I)'dxd1’ <3">

where D' and D" are the regions in the j«/-plane and the jcz-plane 
in which the given surface is projected.

Example 1. Compute the surface a of the sphere
x* +  y* +  z* =  Ra.

Solution. Compute the surface of the upper half of the sphere:

z =  Y  R*—x*—y*

dz __ x
die Y  R ' —x' —Y '

(Fig. 309). In this case
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Hence,

dz = _______ y
dy  V  R2—x‘—y*'

R
-y‘ yr Rz—xt—yt‘ 

The region of integration is defined by the condition
x2 + y2<* R2*

Thus, by formula (4) we will have

2 a
R V r * - x* 

- $ , (  -

dx.

To compute the double integral obtained let us make the transformation 
to polar coordinates. In polar coordinates the boundary of the region of 
integration is determined by the equation q =  R . Hence,

271 R 271

~ 2 K I  i n f o 1Ci* 0 i e * M f 1 **'-
0 0  ̂ 0

271

=  2R J RdQ =  4n Rz.

Example 2. Find the area of that part of the surface of the cylinder

x2 +  y2 =  a2 
which is cut out by the cylinder

Fig. 310.

21 —338a

Fig. 309.
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therefore,
dy______* Hi-ft-
dx y  a2—xt ’ dz

/ > + (  l ) '+ ( l ) '  -  / ' Z S  -  T f e - -
The region of integration is a quarter circle, that is, it is determined by 

the conditions
*2 + 22̂ a 2, 2^ 0.

Consequently,
a V  a 2 — x 2 a  V  a 2 — x 2 a

T ° - l (  $ I ‘‘’ — S * - *0 0 0 0 0
<r=8a*.

SEC. 8. THE DENSITY OF DISTRIBUTION OF MATTER 
AND THE DOUBLE INTEGRAL

In a region D, let a certain substance be distributed in such 
manner that there is a definite amount of this substance per unit area 
of D. We shall henceforward speak of the distribution of mass, 
although our reasoning will hold also for the case when speaking 
of the distribution of electric charge, of quantity of heat, and so forth.

We consider an arbitrary subregion As of the region D. Let the 
mass of substance associated with this given subregion be Am.
Then the ratio is called the mean surface density of the sub
stance in the subregion As.

Now let the subregion As decrease and contract to the point
P (.x, y). Consider the limit lim . if this limit exists, then,
generally speaking, it will depend on the position of the point P, 
that is, upon its coordinates x and y, ana will be some function 
f(P) of the point P. We shall call this limit the surface density 
of the substance at the point P:

lim — =  /( /J) =  /(x, i/). (1)
As-»o A s

Thus, the surface density is a function f(x,y)  of the coordi
nates of the point of the region.

Conversely, let there be given, in a region D, the surface den
sity of some substance as some continuous function f(P) = f(x,y)
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and let it be required to determine the total quantity of substance 
M contained in the region D. Divide D into subregions As,- (< => 
=  1,2, . . n) and in each subregion take a point P,-; then /(P,-) 
is the surface density in the point P,.

To within higher-order infinitesimals, the product f(Pi)Asl 
gives us the quantity of substance contained in the subregion As,-, 
and the sum

jkf(P,) As,-/=i
expresses approximately the total quantity of substance distribu
ted in the region D. But this is the integral sum of the function 
f(P) in the region D. The exact value is obtained, in the limit 
as As,- —>■ 0.

Thus, *)

M =  lim 2  /(P,)As,- =  CC/(P)ds =  \ \ f ( x ,  y)dxdy, (2)
i JD D

or the total quantity of substance in the region D is equal to the 
double integral (over D) of the density f(P) = f(x, y) of this sub
stance.

Example. Determine the mass of a circular plate of radius R if the sur
face density f (x> y) of the material of the plate at each point P (xt y) is pro
portional to the distance of the point (jc, y) from the centre of the circle, that 
is, if

f(x, y ) = k  
Solution. By formula (2) we have

M =  J J k V x 2 +  y 2 dxdy,

where the region of integration D is the circle R2.
Passing to polar coordinates, we obtain

zn r r

i = * i ( i eede) d0=*2,ti '  20 0
= ~ k n R i .

SEC. 9. THE MOMENT OF INERTIA OF THE AREA 
OF A PLANE FIGURE

The moment of inertia / of a material point M of mass m re
lative to some point 0  is the product of the mass m by the

*) The relationship As*—►O is to be understood in the sense that the dia
meter of the subregion Aty approaches zero.

21*
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square of its distance r from the point 0 :
1 ~  mr2.

The moment of inertia of a system of material points mv m2, 
. . . .  m„ relative to 0  is the sum of moments of inertia of the

individual points of the system:

/ =  2  "Vi-

Let us determine the moment of inertia 
of a material plane figure D.

Let D be located in an ^-coordinate 
0 \ £,•' x plane. Let us determine the moment of

inertia of this figure relative to the origin, 
Fig. 311. assuming that the surface density is

everywhere equal to unity.
Divide the region D into elementary subregions As,-—► (» =  !, 

2, . . . ,r i)  (Fig. 311). In each subregion take a point P,- with 
coordinates £,-, q,-. Let us call the product of the mass of the 
subregion As,- by the square of the distance +  an ele
mentary moment of inertia A/,- of the subregion As,-:

A/, =  (i; +  r|*)As„ 
and let us form the sum of such moments:

S  (£/+■*!*) As,-.
i= l

This is the integral sum of the function f(x,y)  = x* +  y* over the 
region D.

We define the moment of inertia of the figure D as the limit 
of this integral sum when the diameter of each elementary subre
gion As,- approaches zero:

/„ =  lim S  (S +  I&A*.
d l a m A s { - * o  /  =  i

But the double integral ^  (x2 +  y2) dxdy is the limit of this sum.
D

Thus, the moment of inertia of the figure D relative to the 
origin is

7o= S [{x* + y*)dxdy, (1)
D

where D is a region which coincides with the given plane figure
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The integrals
[y*dxdy, (2)

D

Iyy = ^ x 2dx dy (3)
D

are called, respectively, the moments of inertia of the figure D 
relative to the x-axis and y-axis.

Example 1. Compute the moment of inertia of the area of a circle D of 
radius R relative to the centre 0 .

Solution. By formula (1) we have

j =  $ 5  (•**+£*) dxdy .

To evaluate this integral we transform to the polar coordinates 0, q. The 
equation of the circle in polar coordinates is q =  R.
Therefore 2JI R

5

Note. If the surface density y is not equal to unity, but is some 
function of x and y, i. e., y — y (x , y), then the mass of the sub- 
region AS{, will, to within infinitesimals of higher order, be equal to 
Y(S,-, t),-) As,- and, for this reason, the moment of inertia of the 
plane figure relative to the origin will be

i» = ^ y (x< y)(x*+y*)dxdy- O')
D

Example 2 . Compute the moment of inertia of a plane material figure D 
bounded by the lines y 2— \ — x; x =  0 , y =  0 relative to the y -axis if the sur
face density at each point is equal to |/(Fig. 312).

Solution.

/yy =  J  (  J  y t ' d y }  d X =  | d x = \ §  X‘ (1— X) d x = - % -
0 0 0 0 0

Ellipse of inertia. Let us determine the moment of inertia of 
the area of a plane figure D relative to some axis OL that passes 
through the point 0 , which we shall take as the coordinate ori
gin. Denote by cp the angle formed by the straight line OL with 
the positive *-axis (Fig. 313).

The normal equation of OL is
x sin cp — y coscp =  0.
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The distance r of some point M (x , y) from this line is 
r =  | x sin cp—y cos q> |.

The moment of inertia I of the area of D relative to OL is 
expressed, by definition, by the integral

I =  r* dx dy = ^  (x sin <p — y cos <p)* dx dy =
D D

=  sin*<p f J x*dxdy—2 sinq>cos<p xy dx dy +  cos* <p t/! dxdy.
D D D

Therefore
/ = Iyy sin* <p— 21 xy sin <p cos q> +  l xx cos* <p; (4)

here, Iyy = ^ x * d x d y  is the moment of inertia of the figure
D

relative to the y-axis, Ixx = yi dxdy  is the moment of inertia
D

relative to the jc-axis, and IXy= ^  xydxdy.  Dividing all terms
£>

of the latter equation by /, we get

> - ( v f ) ' - 2,»  ( f t )  ( w ) M w l  <5>
On the line OL take a point A(X,  Y) such that

o a = - 4 = .
Vi

To the various directions of the OL-axis, that is, to various values
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of the angle (p, there correspond different values I and different 
points A . Let us find the locus of the points A . Obviously,

X  =  cos (p, 7  =  — sincp.

By virtue of (5), the quantities X  and Y are connected by the 
relationship

l = IxxX 2- 2 I XyX Y + I yyY2. (6)
Thus, the locus of points A (X , Y) is a second-degree curve (6). 
We shall prove that this curve is an ellipse.

The following inequality established by the Russian mathema
tician Bunyakovsky *) holds true:

d x d y Y <  J x2 J J y*dxdy)
X D '  D D

or
I x x ^ y y  I x y Z >  0 .

*) To prove Bunyakovsky’s (also spelt Buniakowski) inequality, we con
sider the following obvious inequality:

[/(*, y) — Xy(x ,  y)]2d x d y ^ 0,
D

where X is a constant. The equality sign is possible only when /(* , y)-~ 

— Xy(x,  #)e= 0; that is, if f(x, y) =  Xcp (*, y). If we assume that ^  yfr
^  const =  X, then there will always be the inequality sign. Thus, removing 
brackets under the integral sign, we obtain

y ) d x d y —2X ^  f (x t y) q> (*, y )dx  dy +  X2 ^  y 2(x, y ) d x d y >  0.
D D D
Consider the expression on the left as a function of X. This is a second- 

degree polynomial that never vanishes; hence, its roots are complex, and this 
will occur when the discriminant formed of the coefficients of the quadratic 
polynomial is negative, that is,

f # d x d y  $$ f d x d y  <p 2dx dy < 0
D D D

or
(JJ /<p dx dy  ̂2<  ^  f2d x d y  J y 2dxdy<
N D D D

This is Bunyakovsky’s inequality.
XIn our case, f(x, y) =  x, <p(x, y) =  y, — 5̂  const.

Bunyakovsky's inequality is widely used in various fields of mathema
tics. In many textbooks it is incorrectly called Schwarz* inequality. Bunya
kovsky published it (among other important inequalities) in 1859. Schwarz 
published his work 16 years later, in 1875.
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Thus, the discriminant of the curve (6) is positive and, con
sequently, the curve is an ellipse (Fig. 314). This ellipse is called

the ellipse of inertia. The notion of an 
ellipse of inertia is very important in me
chanics.

We note that the lengths of the axes of 
the ellipse of inertia and its position in 
the plane depend on the shape of the 
given plane figure. Since the distance from 
the origin to some point A of the ellipse
is equal to where  ̂ ' s mornent
of inertia of the figure relative to the 
CM-axis, it follows that, after constructing 
the ellipse, we can readily calculate the 
moment of inertia of the figure D relative 

to some straight line passing through the coordinate origin. In 
particular, it is easy to see that the moment of inertia of the figure 
will be least relative to the major axis of the ellipse of inertia 
and greatest relative to the minor axis of this ellipse.

SEC. 10. THE COORDINATES OF THE CENTRE OF GRAVITY 
OF THE AREA OF A PLANE FIGURE

In Sec. 8, Ch. XII, it was stated that the coordinates of the 
centre of gravity of a system of material points P,, Pv ...» Pn 
with masses mv mt, ..., mn are defined by the formulas

( i )

Let us now determine the coordinates of the centre of gravity of 
a plane figure D. Divide this figure into very small elementary 
subregions ASf. If the surface density is taken as equal to unity, 
then the mass of the subregion will be equal to its area. If it is 
approximately considered that the entire mass of an elementary 
subregion AS,- is concentrated in some point of it q,), the
figure D may be regarded as a system of material points. Then, 
by formulas (1), the coordinates of the centre of gravity of this figure 
will be approximately determined by the equations

i = n
S&iAS,;=i
‘v? A St

(=n
2  h/AS,-1=1_____

i - n

2 aS£
i = i
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In the limit, as ASt —>-0, the integral sums in the numerators 
and denominators of the fractions will pass into double integrals, 
and we obtain exact formulas for compu- 
ting the coordinates of the centre of gra- A 
vity of a plane figure:

x*

J J x dx dy 

5 J dxdy
; ye

5 5  y  dxdy

S S dxdy
( 2)

D D a

These formulas, which have been derived Fig. 315.
for a plane figure with surface density 1,
obviously, hold true also for a figure with any other density y 
constant at all points.

If, however, the surface density is variable,
Y =  Y(*. y)>

then the corresponding formulas will have the form
JJ  y (* . y)*dxdy

_ _ D __________________  .

C 5 $ Y (*» y) dx dy

The expressions Afy=  5J Y^i y)xdxdy  and Mx = ^ y ( x , y )
D D

ydxdy  are called static moments of the plane figure D relative 
to the y-axis and *-axis.

The integral JJ Y(*» y)dxdy  expresses the quantity of mass
of the figure in question.

J J y C*. y) y dx dy
j>____________
J J y t*. y ) dx dy

Example. Determine the coordinates of the centre of gravity of a 
quarter of the ellipse (Fig. 315)

assuming that the surface density at all points is equal to 1. 
Solution. By formulas (2) vve have
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a -Va*-x*

I I ydy
yc=~

-r-nab4

4b 
3ji *

SEC. 11. TRIPLE INTEGRALS

Let there be given, in space, a certain region V bounded by 
a closed surface S. Let some continuous function f  (x, y, z), where 
x, y, z are the rectangular coordinates of a point of the region, 
be given in the region V and on its boundary. For clarity, if 
f(x, y, z)3s 0, we can regard this function as the density of dis
tribution of some substance in the region V.

Divide V, in arbitrary fashion, into subregions Av{; the sym
bol Avt will denote not only the region itself, but its volume as 
well. Within the limits of each subregion Avh choose an arbitrary 
point Pt and denote by /(P ;) the value of the function f  at this 
point. Form an integral sum of the type

h f i P i )  At\- (1)
and increase without bound the number of subregions Au,- so that 
the largest diameter of Avt should approach zero.*’ If the function 
f(x, y, z) is continuous, there will be a limit of the integral 
sums of type (1), where the limit of integral sums is to be un
derstood in the same sense as for the definition of the double in
tegral.**) This limit is not dependent either on the manner of par
titioning the region V or on the choice of points P,-; it is desig
nated by the symbol J55 f(P)dv and is called a triple integral.

v
Thus, by definition,

lim 2 f(Pi)Avi = [ [[ f (P )dv
d ia m  A ut*->o J  y

or
5 J5 /(P )A u = $ $ $ /(* , y, z)dxdydz.  (2)

y v
*) The diameter of a subregion Au(- is the maximum distance between 

points lying on the boundary of the subregion.
**) This theorem of the existence of a limit of integral sums (that is, of 

the existence of a triple integral) for any function continuous in a closed 
region V (including the boundary) is accepted without proof.
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If f(x, y, z) is considered the volume density of distribution 
of a substance over the region V, then the integral (2) yields the 
mass of the entire substance contained in V.

Suppose that the spatial (three-dimensional) region V bounded 
by the closed surface S possesses the following properties:

1) every straight line parallel to the z-axis and drawn through 
an interior fthat is. not lving on

2) the entire region V is projected on the xy-plane into a 
regular (two-dimensional) region D\

3) any part of the region V cut off by a plane parallel to any 
one of the coordinate planes (Oxy, Oxz, Oyz) likewise possesses 
Properties 1 and 2.

We shall call the region V that possesses the indicated proper
ties a regular three-dimensional region.

To illustrate, an ellipsoid, a rectangular parallelepiped, a tet
rahedron, and so on are examples of regular three-dimensional 
regions. An instance of an irregular three-dimensional region is given 
in Fig. 316. In this section we will consider only regular regions.

Let the surface bounding the region V below have the equa
tion z — %(x, y), and the surface bounding this region above, the 
equation z = \|>(x, y) (Fig. 317).

We introduce the concept of a threefold iterated integral I r, 
over the region V, of a function of three variables f(x, y, z) 
defined and continuous in V. Suppose that the region D is the 
projection of the region V onto the xy-plane bounded by the

SEC. 12. EVALUATING A TRIPLE INTEGRAL

Fig. 316. Fig. 317.
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lines
y = iP,(*). y = %(x), x = a, y = b.

Then a threefold iterated integral of the function f(x, y, 2) 
over the region V is defined as follows:

b < p , (x)  i|> (x,  y)

i v= S [ $ { S /(*• y> z) dz} dy] dx- ( i )
a <Pi (x) %(x,  y)

We note that as a result of integration with respect to z and 
substitution of limits in the braces (inner brackets) we get a func

tion of x and y. We then compute the 
double integral of this function over the 
region D as has already been done.

The following is an example of the evalua
tion of a threefold iterated integral.

Example 1. Compute the iterated integral of 
the function /(* , y, i ) —xyz over the region V 
bounded by the planes

x =  0 , y  =  0, z =  0 , x +  y +  z =  l.

Solution. This region is regular, it is bounded 
above and below by the planes. z =  0  and z =  
=  1 — x — y and is projected on the xy -plane 

into a regular plane region D, which is a triangle bounded by the straight 
lines * =  0, y =  0, y =  \ —x (Fig, 318). Therefore, the threefold iterated 
integral l v  is computed as follows:

~l—x—y
V-SS 5 xyzdz

D  L 0
do.

Setting up the limits in the twofold iterated integral over the region D, we 
obtain

1 ( l “ X V l “ Xr T y  "1 \ * Z—l - X —y \

j  xyzdz dy \ dx= U  j XJr  I dy ) dx=O V O L O  J / o \ o Z- 0 t
1 pi— X -1 1

=  J  J  xy( l  — x — y)‘ dy dx =  J  ^  (1 — x f  dx =  3^  .
0 L 0

Let us now consider some of the properties of a threefold iterated 
integral.

Property I. If a region V is divided into two regions V1 and 
Vt by a plane parallel to some of the coordinate planes, then the 
ihreefold iterated integral over V is equal to the sum of the three
fold iterated integrals over the regions V1 and Vz.
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The proof of this property is exactly the same as that for 
twofold iterated integrals. We shall not repeat it.

Corollary. For any kind of partition of the region V into a 
finite number of subregions Vt, . . . .  Vn by planes parallel to the 
coordinate planes, we have the equality

I v —l vl + 1v, + ■ ■ • + ^ v
Property 2 (Theorem of the evaluation of a threefold iterated 

integral). If m and M are, respectively, the smallest and largest 
values of the function f{x, y, z) in the region V, we have the 
inequality

m V < l r < M V ,
where V is the volume of the given region and I v is a threefold 
iterated integral of the function f (x, y, z) over the region V. 

Proof. Let us first evaluate the inside integral in the iterated
( x ,  y )

integral /
5

X ( x .
f{x, y, z) dz

y)
da:

* (x, y)
S /(*•

X (X, y)
y,

V(X* y) WX, y)

z)dz <  J Mdz — M J dz =  Mz
X (x. y) y. (x, y)

=  y )—x(x, y)].

't’ ix .  y)  

X (X, y)

Thus, the inside integral does not exceed the expression
M [if>(x:, y)—%{x, */)]• Therefore, by virtue of the theorem of 
Sec. 1 for double integrals, we get (denoting by D the projection 
of the region V on the xy-plane)

r ’t> (x. y) 1
/v= SS S /(*• y> z)dz y )— %{x, y)]da =

D \_X (x, y)  J D

= AfJJ [ Ip (AT, y)—x(x, y)]da.

But the latter iterated integral is equal to the double integral of 
the function ■$(.*:, y) and, consequently, is equal to the
volume of the region which lies between the surface z = %(x, y) 
and z = ty(x, y), that is, to the volume of the region V. There
fore,

I y ^ M V .

It is similarly proved that I v ^ m V .  Property 2 is thus proved.
Property 3 (Mean-Value Theorem). The threefold iterated integ

ral I v of a continuous function f {x, y, z) over a region V is equal 
to the product of its volume V by the value of the function at
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some point P of V; that is,
b |" < P i (x) / i|) (x, y)

/ y = J  S { $ f i x> z) dz } d,J
a L<Pi (X) V X (X, y)

dx — f{P) V. (2)

The proof of this property is carried out in the same way as that 
for a twofold iterated integral [see Sec. 2, Property 3, formula (4)]. 
We can now prove the theorem for evaluating a triple integral.

Theorem. The triple integral of a function f (x, y, z) over a 
regular region V is equal to a threefold iterated integral over the 
same region; that is,

555 f(x, y, z)dv = 5
V a

<p2 w
s

-< P i  (X)

V? (x, y)(x,s
X (x.

f{x, y, z)dz\dy
u)

dx.

Proof. Div-ide the region V by planes parallel to the coordinate 
planes into n regular subregions:

An, +  At), +  . . .  +  At)n. .
As done above,; denote by I v the threefold iterated integral of 
the function f(x, y, z) over the region V, and by /Apj the three
fold iterated integral of this function over the subregion A0i. Then 
by the corollary of Property 1 we can write the equation

/  y =  /  At), +  /  At), +  • • • +  /  Atv (3)
We transform each of the terms on the right by formula (2):

I v= f ( p i) Ad, +  f (P,) At), -f . . .  /  (P„) At)„, (4)
where Pt is some point of the subregion At),-.

On the right side of this equation is an integral sum. It is 
assumed that the function f(x, y, z) is continuous in the region V\ 
and for this rdason the limit of this sum, as the largest diameter 
of At)( approaches zero, exists and is equal to the triple integral 
of the function 7 (*. y, z) over V. Thus, passing to the limit in 
(4), as diam At),-—*-0, we get

/y =  55$ y, z)dv, 
v

or, finally, interchanging the expressions on the right and left,

55J fix, y, z) dv
t>fq>i(x) ($(x,

- j f  $ { $a L<PtOO X̂(*.

V)
fix, y, z)dz>dy dx.

y)
Thus, the theorem is proved.
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Here, z^=%(x, y) and z =‘ y) are the equations of the sur
faces bounding the regular region V below and above. The lines 
y = (p̂ A:), y = q>2 (a:), x = at x = b bound the region D, which is 
the projection of V onto the xy-plane.

Note. Like in the case of the double integral, we can form a 
threefold iterated integral with a different order of integration 
with respect to the variables and with other limits, if, of course, 
the shape of the region V permits this.

Computing the volume of a solid by means of a threefold 
iterated integral. If the integrand f (x f y , z)= 1, then the triple 
integral over the region V expresses 
the volume of the region V: - cVHjW *

V =  J dxdy dz. (5)

Example 2. Compute the volume of 
the ellipsoid

x 2 u2 z2J_---L M— -L -L -l
a2 ^  b2 ^  c2 '

Solution. The ellipsoid (Fig. 319) 
is bounded below by the surface

Fig. 319.

Z — — c "1/ \ — —— and above by (the surface z =  c 1 /  l — —__ .V a2 b2 V a2 b2
The projection of this ellipsoid on the jcy-plane (region D) is an ellipse.

Hence, reducing to a threefold iterated integral, we obtain

When computing the inside integral, x is held constant. Make the substitu
tion:

# =  6 " j / ^ l —  sin f, dy =  b cost dt.

The variable y  varies from — b 1 /  l — —  to b 1 /  l — therefore i
V a2 V a2
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JT Jl
varies from — Putti ng new limits in the integral, we get

t.

4ji abc
~ T ~

i

SEC. 13. CHANGE OF VARIABLES IN A TPIPLE INTEGRAL

1. Triple integral In cylindrical coordinates. In the case of cylin
drical coordinates, the position of a point P in space is determined 
by the three numbers 0, e, z, where 0 and q are polar coordinates 
of the projection of the point P on the Ary-plane and z is the 
z-coordinate of P, that is, the distance of the point to the xy- 
plane—with the plus sign if the point lies above the xy-plane, 
and with the minus sign if below the Ary-plane (Fig. 320).

In this case, we divide the given three-dimensional region V 
into elementary volumes by the coordinate surfaces 0 =  0,-, e =  Q/> 
z = zk (half-planes adjoining the z-axis, circular cylinders whose 
axis coincides with the z-axis, planes perpendicular to the z-axis). 
The curvilinear “prism” shown in Fig. 321 will be a volume ele
ment. The base area of this prism is equal, to within infinitesi
mals of higher order, to qAQAq, the altitude is Az (to simplify 
notation we drop the indices i, j, k). Thus, Ao =  qA0AqAz. Hence, 
the triple integral of the function F (0, e, z) over the region 
V has the form

The limits of integration are determined by the shape of the 
region V.

F (0, q, z)QdQdqdz. 0 )v
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If a triple integral of the function f(x, y, z) is given in 
rectangular coordinates, it can readily be changed to a triple in
tegral in cylindrical coordinates. Indeed, noting that

jc =  q c o s 0; t/ =  Qsin0; z = z,
we have

$$$/(*. y, z )dxdydz=  ^ f ( 0 ,  e> z)QdQdQdz, 
v v

where
f(q cos0, Qsin0, z) = F(Q, q, z).

Example. Determine .the mass M of a hemisphere of radius R with centre 
at the origin, if the density F of its substance at each point (x , y, z) is pro
portional to the distance of this point from the base, that is, F =  kz.

Solution. The equation of the upper part of ithe hemisphere

z =  V  R*—x!— y‘ 
in cylindrical coordinates has the form

Hence,
Z= V~R2-Q*-

M =  W  ̂ kzdz  ]QdQ
v o Lo '  o /

2JI f  F T 2Jt r  R

= S  J t '  i Q dQ dO =  j* l ^ ( R * - Q * ) Q d Q
o Lo o J  o Lo

271
_ k  r  [R* /?*] k R*
^ 2 J 1.2 4 j  <10 2 4 2 ji —

dO--

d0 =

knR* 
4 1



658 M u l t i p l e  I n t e g r a l s

2. A triple integral in spherical coordinates. In spherical coor
dinates, the position of a point P in space is determined by three 
numbers, 0, r, <p, where r is 
the distance of the point from 
the origin, the so-called radius 
vector of the point, <p is the

Fig. 322.

angle between the radius vector and the 2-axis, 0 is the angle between 
the projection of the radius vector on the xy-plane and the x-axis 
reckoned from this axis in a positive sense (counterclockwise) 
(Fig. 322). For any point of space we have

O ^r-C oo ,  O«^0sS 2n.
Divide this region V into volume elements Ao by the coordi

nate surfaces r=const (sphere), q>=const (conic surfaces with vertices 
at origin), 0 =  const (half-planes passing through the 2-axis). To 
within infinitesimals of higher order, the volume element Av may 
be considered a parallelepiped with edges of length Ar, rA<p, 
rsin<pA0. Then the volume element is equal (see Fig. 323) to

At> =  r! sin cp Ar A0 Aq).
The triple integral of a function F(0, r, <p) over the region V 
has the form

7 =  J J J F (0, r, <p)r* sincpdrdOdcp. 
v J

The limits of integration are determined by the shape of 
the region V. From Fig. 322 it is easy to establish the expressi
ons of Cartesian coordinates in terms of spherical coordinates:

x = r sin cpcos0, 
y = r sin <p sin 0, 
z — r cos <p.
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For this reason, the formula for transforming the triple integral 
from Cartesian coordinates to spherical coordinates has the form

y, 2 ) dxdydz  =
V

=  J J J /  [r sin cp cos 0, r sin 9 sin 0, r cos tp] r2 sin (p dr d6 dcp. 
v

3. General change of variables in the triple integral.
Transformations from Cartesian coordinates to cylindrical and 
spherical coordinates in the triple integral represent special cases 
of the general transformation of coordinates in space.

Let the functions
* =  <P («. t, w), 
y = \p(u, i, w), 
z — %(u, t, w)

map, in one-to-one manner, the region V in Cartesian coordi
nates x, y, z onto the region V" in curvilinear coordinates u, t, w. 
Let the volume element Au of the^region V be carried over to the 
volume element At/ of V' and let

l im —  =  | / |  ao'-.Av' 1 1
Then

$ $ $ /(* . y, 2 ) dx dy dz =
V

=  $$$/[<?(“ . «0. t(« . w)> X(«> w)]\I\dudtdw.
V"

As in the case of the double integral, / is called the Jacobian; 
and as in the case of double integrals, it may be proved that 
the Jacobian is numerically equal to a determinant of order three:

dx dx dx 
du dt dw

/ =
dudt dw * 
dz dz dz 
du dt dw

Thus, in the case of cylindrical coordinates we have
* =  q c o s Q ,  y = Q sin 6, z =  z (q  =  w, 0 =  /, z=? w)\ 

cos0 — q sin 0 0
q cos 0 0 =  Q.7 = sin 0 

0 0 1
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In the case of spherical coordinates:
x = r sin cp cosO, y = r sin cp sinO, z =  rcos<p {r = u, cp = t, 0 =  oy);

sin (p cos 0 rcoscpcos0 —rsincpsinO 
/ =  sincp sin0 r coscp sin0 rsincpcosO =  r 2sin<p. 

cos cp —r sin <p 0

SEC. 14. THE MOMENT OF INERTIA AND THp COORDINATES 
OF THE CENTRE OF GRAVITY OF A SOLID

1. The moment of inertia of a solid. The moments of inertia 
of a point M (x , y, z) of mass m relative to the coordinate axes 
Ox, Oy, and Oz (Fig. 324) are express 
respectively, by the formulas

l y y ^ i x '  + z^m, Izz = (x* + y2)m.

The moments of inertia of a solid are expressed by the corre
sponding integrals. For instance, the moment of inertia of a solid 
relative to the e-axis is expressed by the integral Izz =
=  5 S S (*2 +  y2) y ( y> z) dx dy dz, where y (x, y, z) is the den- 

v
sityofthe substance.

Example 1. Compute the moment of inertia of a right circular cylinder 
of altitude 2h and radius R relative to the diameter of its median section, 
considering the density constant and equal to y0.

Solution. Choose a coordinate system as follows: direct the z-axis along 
the axis of the cylinder, and put the origin of coordinates at its centre of 
symmetry (Fig. 325).
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Then the problem reduces to computing the moment of inertia of the 
cylinder relative to the jc-axis:

i x x = $  n  y °  d x  d y  d z 'V

Changing to cylindrical coordinates, we obtain 

** =  Yo J |  J ^  (z2 +  e 2 sin2 6) dzj e dQ |  d0 =
0 v 0 Lo 

2n) / R
=  |  J ^  +  2Aq2 sin2 e j  Q d e j  dd=Yo J | x  T  +  n r  sin’e} de "

= Y .  [— ^ 2 n + ^ n ]  = y 0n h R ‘ [ ~ A 2 +  f ]  .

' 2. The coordinates of the centre of gravity of a solid. Like 
what we had in Sec. 8, Ch. XII for plane figures, the coordinates 
of the centre of gravity of a solid are expressed by the formulas

^ ^ x y ( x ,  y,  z ) d x d y d z  J yy  (x, y, z) dx dy  dz
_JS_______________ ; y = _v_“______________ .
H  5  Y (x, y,  z ) d x d y d z  C C f C y (*> z) dx dy dz
v . J v

s s s  zy{x, y , z ) d x d y d z

5 S S y y* z)dx dy dzV

where y(x , y , z) is the density.

* Example 2. Determine the coordinates of the centre of gravity of the 
upper half of a sphere of radius R with centre at the origin, considering the 
density Yo constant.

Solution. The hemisphere is bounded by the surfaces

2=  V R 2—x*—y\  z = 0.
The ^-coordinate of its centre of gravity is given by the formula

 ̂^ZY ,dx dy dz

S ^  y°dx dy dz
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Changing to spherical coordinates, we get

2JI p 2 / R  

Y° J C J r cos qv2sin (p dr  ) dtp |

ji
2Jt 2

YoJ j" j / j  rJsin<pdr^ d<pj d0
ft n ' ft '

o ** 12j t -----
4 2 -  3 R

Obviously, by virtue of the symmetry of the hemisphere, xc =  yc =  0 .

SEC. 15. COMPUTING INTEGRALS DEPENDENT 
ON A PARAMETER

Consider the integral dependent on the parameter a.
b

1(a) = J  f(x, a) dx.
a

(We examined such integrals in Sec. 10, Ch. XI.) We state with
out proof that if a function f(x, a) is continuous with respect 
to x over the interval [a, b] and with respect to a  over the in
terval [a,, at], then the function

b

I (<*) = § f(x, a) dx
a

is a continuous function on [a,, a,]. Consequently, the function 
1 (a) may be integrated with respect to a on the interval [a1( a,]:

a ,  a ,  b

■ J  / (a) da =  J  £ J  / (*, a) dxJ da.
a , a, a

The expression on the right is an iterated integral of the func
tion f(x, a) with respect to a rectangle situated in the plane xOa. 
We can change the order of integration in this integral:

a* b b a a

J  U* / (*, a) dx j da =  J  / (*, a) daj dx.
a  t a a a .

This formula shows that for integration of an integral depen
dent on a parameter a, it is sufficient to integrate the element 
of integration with respect to the parameter a. This formula is 
also useful when computing definite integrals.
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Example. Compute the integral

o
This integral is not expressible in terms oL elementary functions. To evaluate 
it, we consider another integral that may be readily computed:

J  e~axdx =  -i- (a >  0).
0

Integrating this equation between the limits a =  a and a =  fr, we get

i [ ] e~'Xdx] da=i i r =lni -
a o a

Changing the order of integration in the first integral, we rewrite this equa- 
tion in the following form:

oo b 

o a

whence, computing the inner integral, we get

J x a

Exercises on Chapter XIV

Evaluate

. , 25Ans. In 77-. . 24

the integrals
1 2  4  2

•: 1# J  § ( x i + y * ) dxdy - Ans- y .  2 .
0 1 3 1

xy dx dy. Ans. 15
4

i n  a

<•1 S,o a sin 0

rdrdQ. Ans.

dydx
0* + y)2*

N  L

*) If the integral is written as ^ ^ f (x, y) dx dy then, as has already
M K

been stated, we can consider that the first integration is performed with 
respect to the variable whose differential occupies the first place; that is,

N L N  L

J  §f(x> y) dx dy  =  J / ( * ,  y) dx ĵ dy.
M K M
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a 2 y
_ f* Cxdydx  A Jia , 1  ̂ f  (* . . „ 11a4
5' J J X ^ + P '  Ans■ T ~ a a r c  tan n  • 6- J  J x y d x d y .  Ans. .

0 X
a 
n 

b 2

o y  — a

7* J  J  Q <*0 dg. î ns* ^  Jt&*.
L 0 
2

Determine the limits of integration for the integral J J /(* , y) dx dy  where 

the region of integration is bounded by the lines: 8. x =  2, x =  3, y =  — 1,
3 8 j i  - x a

y = b .  Ans. j* J  f (x, y) dy dx. 9. y =  0, y  =  1 — x2. Ans. ^ ^ f (xt y) dy dx.
2 -1 ___ -1 0

a V a 2- x 2

10. x* +  y t = a t. Ans. J  J  f ( x , y ) d y d x .  II. ^ =  — /4ns.
- a  —■V a * - x 2

1 l+*a a y  + 2a

J  J  /(•*. y ) d y d x .  12. y  =  0 , y  =  a, y  — x, y = x — 2a. Ans. J  J  f ( x , y ) d x d y .
-1 ^ 0 ^

2 4

Change the order of integration in the integrals: 13. ^  f (xt y)dydx.  Ans.

1 3 3 —
4 2 i V ~ x  i y

f (*. y )  dx dy.  14. J  J  f (x, y) dy dx. Ans. J  J  / (*, */) d* d*/.
31 o jc3 o y *

a V  i a y  — y 2 a  ® 1V1 -* a

15‘1  I  f ^  J ' RXt ^  d y  dx' 16# J  J  /(*» y ) ^  d x -
o o 

1 Ki-tfa
0

i i - y
—1 0 

0 V\-X2
/1/is.J J f (x, y) dxdy.  17.  ̂ J f Qx, y) dxdy. Ans.^ J f ( x , y ) d y d x  +  

o _y i o _ y  i — - 1 0
1 1 — X

+  5 J f(* . y)dydx.
0 o
Compute the following integrals by changing to polar coordinates:

_____  TL_
a  y  a 2- x 2 2 a

18.
Q Q 0 Q

3. J  J  V a 2—x2—y 2d y d x . /Ans. J J  Y a2—Q2 q dQ d0 =  ■— a5.
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a V  a 2 — u 2
ji
2 a

19. J  J  {x2-\-y2) dx dy. Ans. ^ Q s dQd0 =  — . 20 . J  e - {xi+?2)dy dx.
0 0 0 0 0 0

j i    n_
2 oo 2a V i a x - x 2 2 2a cos 9

Ans. J  J  e~p* q  dg dQ =  —- . 21 . ^ ^ dy dx. Ans. J  J  QdQd0 =
0 0 0 0 0 0

__ Jt a2 
~~2 '

Transform the double integrals by introducing new variables u and v con-
e p*

nected with x and y by the formulas x =  u —u v f y =  uv: 22 . J J f (x, y) dy dx.
o ax

JL_£_
i + p i - o  c b

Ans. J  ̂ f (u—uvt u v)u du dv .  23. J J /  (x> y) dy dx.
a  u ~ o  

i + a

b c 
b + c i —o

b_ 
i  v

Ans. J J f ( u — uv , '.v)u du dv  +   ̂ uv, u v ) ud u d v .
b  o 

b + c

Calculating Surfaces by Means of Double Integrals

24. Compute the area of a figure bounded by the parabola y 2 =  2x and the 
straight line y = x .  Ans. — .

25. Compute the area of a figure bounded by the lines y 2 =  Aax, x +  y =  3a,
r* A 1 0  2y =  0. Ans. — a2.

j_ i
26. Compute the area of a figure bounded by the lines x 2 -f  y 2 = a 2 9

, a a 2x +  y = a .  Ans. — .
27. Compute the area of a figure bounded by the lines y =  smx, y ~ c o s x 9 

jc =  0 . Ans. Y  2 — 1.
28. Compute the area of a loop of the curve Q =  a sin 2 0 . Ans. .

8
29. Compute the entire area bounded by the lemniscate o2 =  a2 cos2q>. 

Ans. a2.
30. Compute the area of a loop of the curve =  “ r -

a2b2Hint. Change to new variables * =  Qa cos 0 and y =  Qb sin0. Ans. .
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Calculating Volumes

31. Compute the volumes of solids bounded by the following surfaces:
—- +  -^-=1,  * =  0, y — 0, 2 =  0. Ans. — . 32. 2 =  0, x2-\-y2= \ t x +  y +

- |-2  =  3 . Ans. 3jt. 33. (x — 1 )2 +  ( y— 1)2= 1 , xy =  z , 2 =  0. Ans. n. 34. x2-\-y2—
32

— 2ax =  0, 2 =  0, x*-\-y* =  z*. Ans. -5- a*. 35. y =  x‘, x =  y*, z =  0, z = 1 2  +
t . 549

+ y — *  • Ans• ho-
36. Compute the volumes of solids bounded by the coordinate planes, the 

plane 2jc +  3r/ — 12 =  0 and the cylinder z =  ̂ y 2. Ans. 16.
37. Compute the volumes of solids bounded by a circular cylinder of 

radius a, whose axis coincides with the 2-axis, the coordinate planes and the

p'a n e i r + i r = 1 - Ans- “’ ( t - t ) -
38. Compute the volumes of solids bounded by the cylinders x2 +  y2= a 2, 

x2-\-z2—a2. Ans. ^ a 8. 39. y 2 +  z2 — xt x =  y, 2 =  0 . Ans. ~ . 40. x2 +  y 2 +

- f 22= a 2, ;t2 +  #2= # 2, a >  R. Ans. \  Jt [a8 — (]^a2— R2)9]. 41. az =  x2 +  y 2to
3

2 =  0, x2 +  y2 =  2ax. A n s . - ^ n a 9. 42. Q2 =  a2 cos20, x2 + y 2 +  z2= a 2t 2 =  0. 
(Compute the volume that is interior with respect to the cylinder.) Ans.

— as (3jt +  20— 16 0 ) .

Calculating Surface Areas

43. Compute the area of that part of the surface of the cone x2-\-y2 =  z2
which is cut out by the cylinder x2-{- y2 =  2ax. Ans. 2na2 Y  2.

44. Compute the area of that part of the plane x +  y +  z =  2a, which  ̂ lies
in the first octant and is bounded by the cylinder x2-\-y2=  a2. Ans. ~^-]^3.

45. Compute the surface area of a spherical segment (minor) if the radius 
of the sphere is a, while the radius of the base of the segment is b. 
Ans. 2jt (a2—a y~a2— b2).

46. Find the area of that part of the surface of the sphere * 2+ * / 2 +  z2=  a2
x2 y2which is cut out by the surface of the cylinder ^- +  ^2=  1 (a >  6 ). Ans.

4jia2—8a2—arc sin ------------ .a
47. Find the surface area of a solid that is the common part of two 

cylinders x2-\-y2 — a2t y2-\-z2= a 2. Ans. 16a2.
48. Compute the area of that part of the surface of the cylinder 

x2 +  y 2= 2ax, which lies between the plane 2 =  0 and the cone x2 +  y2= z 2. 
Ans. 8a2.

49. Compute the area of that part of the surface of the cylinder x2 +  y2= a 2 
which lies between the plane z=*mx and the plane 2 =  0 . Ans. 2ma2.
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50. Compute the area of that part of the surface of the paraboloid 
y* +  z2 =  2ax, which lies between the parabolic cylinder y 2 =  ax and the plane
x =  a. Ans. -i- Jta2 (3 Y  3 — 1). o

Computing the Mass, the Coordinates of the Centre 
of Gravity, and the Moment of Inertia of Plane Solids

(In Problems 51-64 we consider the surface density constant and equal
to unity.)

51. Determine the mass of a slab in the shape of a circle of radius a, if 
the density at any point P is inversely proportional to the distance of P 
from the axis of the cylinder (the proportionality factor is K). Ans. ztaK.

52. Compute the coordinates of the centre of gravity of an equilateral 
triangle if we take its altitude for the x-axis and the vertex of the triangle

CL V^3for the coordinate origin. Ans. x — — ^— ; y =  0.
53. Find the coordinates of the centre of gravity of a circular sector of 

radius a, taking the bisector of its angle as the x-axis. The angle of spread
of the sector is 2a. Ans. xc =  —̂ —  , yc =  0.

54. Find the coordinates of the centre of gravity of the upper half of the 
circle x2 +  y 2 =  a2. Ans. xc =  0; yc =  ~ - ' .

55. Find the coordinates of the centre of gravity of the area of one arc
5aof the cycloid x =  a(t  — sinf). y =  a ( \ —cost). Ans. xc =  an , yc =  -—,
6

56. Find the coordinates of the centre of gravity of the area bounded by
Jta V ~2a loop of the curve Q2 =  a2 cos 20. Ans. xc =  — -— , yc =  0 .

8
57. Find the coordinates of the centre of gravity of the area of the car-

dioid Q =  a (1 +  cos 0). Ans.’ yc =  0.
58. Compute the moment of inertia of the area of a rectangle bounded by 

the straight lines x =  0 , x — a , y =  0, y =  b relative to the origin. Ans. 
ab{a2-\-b2) * 60 61 62

3 '

x2 v259. Compute the moment of inertia of the ellipse - ^  +  —j = z \ :  a) relative 

to the y-axis; b) relative to the origin. Ans. a) — b) (a*-p 6 2).

60. Compute the moment of inertia of the area of the circle o =  2acos0
3 *

relative to the pole. Ans. y r ta 4-
61. Compute the moment of inertia of the area of the cardioid

Q — a(  1 —cosG) relative to the pole. Ans. . (
62. Compute the moment of inertia of the area of the circle (x—a)2-f* 

+  (i/ — b)2 =  2a2 relative to the y-axis. Ans. 3jia*.
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63. The density at any point of a square slab with side a is a proportion
al to the distance of this point from one of the vertices of the square. 
Compute the moment of inertia of the slab relative to the side passing

through this vertex. Ans. ~  ka* [7 Y  2 +  3 In (Vr~ 2 + 1)] where k is the
proportionality factor.

64. Compute the moment of inertia of the area of a figure, bounded by 
the parabola y2 =  ax and the straight line x =  a, relative to the straight line
y = —a. Ans. -=-a4.o

Triple Integrals

65. [Compute J J J  j dx dy dz
U+y+z+D* if the region of

by the coordinate planes and the plane x + y + z =  1 .

integration is bounded 
. In 2 5

Ans- ~ r ~  -nv
a x y

6 6 . Evaluate ^  ̂j  xyz dz  ̂ dy j dx. Ans. ~  ,

67. Compute the volume of a solid bounded by the sphere x2 y* +  z2 =  4
19and the surface of the paraboloid x2 +  y 2= 3 z .  Ans. -g-Jt.

6 8 .  *) Compute the coordinates of the centre of gravity and the moments
x uof inertia of a pyramid bounded by the planes x =  0 , y =  0 , 2 =  0 ; — + - |-  +

, z . A a b c . a*bc , b*ac . c2ab
+  *■ A n s- x c — ~Z > He — T  ’ zc — T  ’ x — gQ » 7y — “ m "  * z  — "60 60

7o = ̂ ( a*+62 + c2)-
69. Compute the moment of inertia of a circular right cone relative to its

axis. Ans. where h is the altitude and t  is the radius of the base of
the cone.

70. Compute the volume of a solid bounded by a surfac with equation 
(x2 +  y2 +  z2)2 =  a*x. Ans.

71. Compute the moment of inertia of a circular cone relative to the 

diameter of the base. Ans. (2/i2 +  3r2).
72. Compute the coordinates of the centre of gravity of a solid lying 

between a sphere of radius a and a conic surface with angle at the vertex 2a, 
if the vertex of the cone coincides with the centre of the sphere. Ans. xc =  0t3
yc =  0 , zc= -g -a (  1 +  cosa) (the z-axis is the axis of the cone, and the ver
tex lies at the origin).

*) In Problems 6 8 , 69 and 71 to 73 we consider thj density constant and 
equal to unity.
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73. Compute the coordinates of the centre of gravity of a solid bounded 
• by a sphere of radius a and by two planes passing through the centre of the

9 71
sphere and forming an angle of 60°. Ans . q =  — a, 0 =  0 , (P =  "2" line
of intersection of the planes is taken for the e-axis, ihz centre of the 
sphere for the origin; q, 0 , <p are spherical coordinates).00

1 2 C74. Using the equation - 7= = = ——  I e~a3x da  ( a > 0) compute the
V x V n J000 00 ___ _______

. C cos x dx , r  sin x dx M f  n ■, /  Jtintegrals J - y = -  and J - y = -  • Ans. y - y ; \
0 0



C H A P T E R  XV

LINE INTEGRALS AND SURFACE INTEGRALS

SEC. 1. LINE INTEGRALS

Let the point P (x , y) be in motion along some plane line L 
from the point M to the point N. To P is applied a force F

which varies in magnitude and 
direction with the motion of P; 
it is thus some function of the 
coordinates of P:

F = F(P).
Let us compute the work A 

of the force F as the point P is 
translated from M to N (Fig. 326). 
To do this, we divide the curve MN 
into n arbitrary parts by the points
M0 =  M, Af,, M ......... . Mn — N in
the direction from Af to N and we 
denote by As, the vector Af, Af, +1. 
We denote by F, the magnitude of 

the force F at the point M{. Then the scalar product F/As; may 
be regarded as an approximate expression of the work of the
force F along the arc M,Mi+i:

A{ w F,A s,»
Let

F --=X (x, y ) i  + Y(x, y ) j  
where X  (*, y) and Y (x, y) are the projections of the vector F on 
the x- and y-axes. Denoting by Axt and Ayt the increments of the 
coordinates xt and yt when changing from the point Mi to the 
point M/+1, we get

ASi = Ax( / +  Ayt j.
Hence,

F{AS; =  X (x{, y,) Ax, +  Y (xh y,) Ay,.
The approximate value of the work A of the force F over the 

.entire curve MN will be

A & 2  =  2 [A  (*,, y,) Ax, +  Y (X,., y,) Ay,].
/=! 1=1 ( 1)
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Without making any precise statements, we shall say that if 
there exists a limit of the expression on the right as As,.—*0 
(here, obviously, Ax(—>0 and Ay{—*•()), then this limit expresses 
the work of the force F over the curve L from the point M to 
the point N:

A =  lim 2  [X tfi) Axt +  Y  (xf, {/,) Ay, ]. (2)
A Xi - v o  i = i  
A Ui - v  o

The limit*) on the right is called the line integral of X(x,y)  
and Y (x, y) over the curve L and is denoted by

A = $ X(x, y)dx + Y (x, y)dy (3)

A =  ( X (x, y) dx +  Y {x, y) dy. (3')
(Al)

Limits of sums of type (2) frequently occur in mathematics and 
mechanics; here, X (x, y) and Y (x, y) are regarded as functions 
of two variables in some region D.

The letters M and N, which take the place of the limits of 
integration, are in brackets to signify that they are not numbers 
but symbols of the end points of the line over which the line 
integral is taken. The direction of the curve L from M to N is 
called the sense of integration.

If the curve L is a space curve, then the line integral of three 
functions X (x , y, z), Y  (x, y, z), Z (x ,y , z )  is defined similarly:

$ X(x, y, z )d x+ Y  (x, y, z)dy + Z{x, y, z)dz==
L

n

=  lim 2  - *  (**. y„> zh) kxk +  Y  (Xk, yk, z„) Ayk + Z(xk, y k, zk) Azk.
A x g  -v o k  = l 
A i / f c - v  o 
A zic - v  o

The letter L under the integral sign indicates that the integration 
is performed along the curve L.

We note two properties of a line integral.
Property 1. A line integral is determined by the element of 

integration, the form of the curve of integration, and the sense 
of integration.

*) Here, the limit of the integral sum is to be understood in the same
sense as in the case of the definite integral, see Sec. 2, Ch. XI.
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■ A line integral changes sign when the sense of integration is 
reversed, since in that case the vector As, and hence its proje
ctions Ax and Ay, changes sign.

Property 2. Divide the curve L by the point K into pieces Lx
and L2 so that M N = M K + K M  (Fig. 327). Then, from formula (1) 
it follows directly that

(.N) (K) (AT)
 ̂ X dx +  Y dy =  J X d x + Y  dy +  J X d x + Y  dy.

(M) (M)  (K )

This relationship holds for any number of terms.
It will further be noted that the definition of a line integral 

holds true also for the case when the curve L is closed.
In this case, the initial and terminal points of the curve coin

cide. Therefore, in the case of a closed curve we cannot write
<JV)
J Xdx +  Y dy, but only § X dx  + Y dy, and we

(M) L
have to indicate the direction of circulation 
(sense of description) over the closed curve L. 
The line integral over a closed contour L is
frequently denoted also by the symbol (f) Xdx  +

L
+ Ydy.

Note. We arrived at the concept of a line integral while consi
dering the problem of the work of a force F  on a curved path L.

Here, at all points of the curve L the force F was given as 
a vector function F of the coordinates of the point of applica
tion (x, y)\ the projections of the variable vector F on the coor
dinate axes are equal to the scalar (numerical, that is) functions 
X  (x, y) and Y (x, y). For this reason, line integral of the form
^Xdx-\ -Ydy  may be regarded as an integral of the vector
L
function F given by the projections X  and Y.

The integral of a vector function F  over the curve L is deno
ted by the symbol

\F ds .

If the vector F is defined by its projections X, Y, Z then this 
integral is equal to the line integral

 ̂X d x + Y d y  + Zdz,
i
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As a particular instance, if the vector F lies in the ;«/-plane, 
then the integral of this vector is equal to

J X dx + Y dy.
L

When the line integral of a vector function F is taken along 
a closed curve L, this line integral is also called a circulation of 
the vector F over the closed contour L.

SEC. 2 EVALUATING A LINE INTEGRAL

In this section we shall make more precise the concept of the 
limit of the sum (1) of Sec. 1 and in this connection we shall 
make more precise the concept of 
the line integral and indicate a 
method for calculating it.

Let a curve L be represented by 
equations in parametric form:

*  =  < P ( 0 .  y  =

Consider the arc of the curve MN 
(Fig. 328). Let the points M and N 
correspond to the values of the para
meter a and p. Divide the arc MN 
into subarcs As{ by the points M x {xx, yx), Mt (xt, yt), ., 
Mn(x„,yn), and put ^  =  cp(^), % -$ (* ,) .

Consider the line integral

y)dx +  Y{x, y)dy (1)
defined in the preceding section. We give without proof the exist
ence theorem of a line integral. If  the functions fp(t) and i|s(0 
are continuous and have continuous derivatives <p' (t) and (t), 
and also continuous are the functions X  [cp(0, ^  (01 end Y  [cp (t), t|j(f)] 
as functions of t on the interval [a, p], then the following limits 
exist:

" c 
lim 2  x  (x i, yd A x( = \ X ( x ,  y) dx,
X i - +  o i - \  

n

lim 2  Y (*,-, yt) At/,. =  J Y (x, y) dy.
(2)

A Xi -> o i = i

where x{ and y( are the coordinates of some point lying on the 
arc Ast-. These limits do not depend on way the arc L is divided
22 — 3388
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into subarcs As,-, provided that As; —>-0 and do not depend on the 
choice of the point M ,- (x;, ~y;) on the subarc As,-; they are called 
line integrals and are denoted as

lim 2j x  (Xi, yi) AX; =  \ X (x, y)dx,
A x i  -*■ o i = i  l

lim 2  Y  (x;, yt) A t/, =  $ K (x, y) dy.
A y i - *  o x = i l

Note. From this theorem it follows that the sums defined in 
the preceding section, where the points Miifx^yf) are the extremi
ties of the subarc As,- and the manner of partition of the arc L 
into subarcs As, is arbitrary, approach the same limit—the line 
integral.

This theorem makes it possible to develop a method for comput
ing a line integral.

Thus, by definition, we have
w> n
\ X (x, y)dx=  lim 2  x  (x,-, y,) Ax„ (3)

(A f)  A x { - + o  i - i

where
A xl *=x,—x,_l =  TO?, )—?(</-,)•

Transform this latter difference by the Lagrange formula 
Ax,- =  <p (/,-)—9 ((,.,) =  cp' (t,) (t,— t,_t) =  <p' (T,-) At,-,

where t,- is some value of t that lies between the values tt — 1 
and /,-. Since the point xt, t/,- on the subarc As,- may be chosen 
at pleasure, we shall choose it so that its coordinates correspond 
to the value of the parameter t,-:

Substituting into (3) the values of xlt yt and Ax, that we have 
found, we get

M „
$ X  (x, y) dx =  lim 2  X  [cp (t,-) ̂  (t,-)] <p' (t,-) At-,.

XM) ( i - >

On the right is the limit of the integral sum for the continuous 
function of a single variable X  [cp(/), ^(01 <p'(0 on the interval
l«, PI.
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Hence, this limit is equal to the definite integral of this 
function:

(AO P
J  X  { x ,  y ) d x = ^  X [ ( f ( t ) ,  o p ( 0 1  <}>'( t ) d t .

(Af) a

In analogous fashion we get the formula
(AO P

5  Y  ( X ,  y ) d y = ^ Y [ ( f ( t ) ,  ( f ) d t .

(M) a

Adding these equations term by term, we obtain
(Af) p
$  X  ( x ,  y ) d x  +  Y ( x ,  y ) d y —  $  { * [ < p ( / ) i | ) ( / ) ]  +

(Af) a
+ n « p ( o ,  * m : v ) } d t .  ( 4 )

This is the desired formula for computing a line integral.
In similar manner we compute the line integral

J  X  d x + Y  d y  - \ - Z d z

over the space curve defined by the equations jc =  <p(/), y = ty(t),
z  =  X ( 0 -

Example 1. Compute the line integral of three functions: x*t 3zy2, — x*y 
(or, which is the same thing, of the vector function x*i-\-3zy*j—x2yk) along 
a segment of a straight line issuing from the point M (3, 2, 1) to the point 
N (0, 0, 0) (Fig. 329).

Solution. To find the parametric equations of the line MN,  along which 
the integration is to be performed, we write the equation of the straight line 
that passes through the given two points:

x _ z  
3 ~  2 ~ " T ;

and denote all these relations by a single letter t; then we get the equations 
of the straight line in parametric form:

x =  31, y =  2t , z — t.

Here, obviously, to the origin of the segment MN corresponds the value of 
the parameter / =  1, and to the terminus of the segment, the value / =  0. The 
derivatives of x, y, z with respect to the parameter t (which will be needed 
for evaluating the line integral) are easily found:

xt — 3, yt = 2 , zt =  1.

22*
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Now the desired line integral may be computed by formula (4):
( N )  o
J x*dx +  Zzy2 d y —x*ydz =   ̂[(3/)» • 3 +  3/ (2t)* ■ 2 — (302 • 2M  ] dt =
m

Example 2 . Evaluate the line integral of a pair of functions: 6a:2//, 10a://2 
along a plane curve y =  x* from the point M ( 1, 1) to the point N (2 , 8 ) 
(Fig. 330).

Solution. To compute the required 
integral

( N)

[ 6x2y d x + \ 0xyz dy
m

we must have the parametric equations of 
the given curve. However, the explicitly 
defined equation of the curve y =  x* is a 
special case of the parametric equation:

here, the abscissa x of the point of the curve serves as the parameter, and 
the parametric equations of the curve are

* =  *, y =  x*.
The parameter x varies from xx =  \ to * 2 =  2. The derivatives with respect 
to the parameter are readily evaluated:

Hence,
**=1, y'x = 3*2*

(AO *

J 6x2tj dx +  10a://2 d //=  J [6x2x* • 1 + 10**6 • 3*2] dx =
(A O  i

2

=  J  (6a-5 +  30a9) dx =  [a* +  3a1®]* =  1084.
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We now indicate certain applica
tions of a line integral.

1. The expression of the area of a 
region bounded by a curve in terms 
of a line integral. In an *t/-plane let 
there be given a region D (bounded 
by the contour L) such that 
any straight line parallel to one of 
the coordinate axes and passing 
through an interior point of the reg
ion cuts the boundary L of the re
gion in no more than two points 
(which means that the region D is 
regular) (Fig. 331).-

Suppose that the region D is projected on the x-axis in the 
interval [a, b], and it is bounded below by the curve (It):

y = Ux (x), 
and above by the curve (/2):

y = y ,  (*).
bfi (*)<£.(*)]•

Then the area of the region D is
b b

S =  (x)dx— [ y l (x)dx.
a a

But the first integral is a line integral over the curve lt (MPN), 
since y = yt (x) is the equation of this curve; hence,

b

\ y t {x)dx^= $ ydx.
a MPN

The second integral is a line integral over the curve lx(MQN),
that is,

b

$ y1(x)dx=  $ y d x .
a M Q N

By Property 1 of the line integral we have 

J ydx =  —  ̂ ydx.
MPN NPM S

S =  — J y d x — j) ydx  — — [yd x .
NPM M Q N  L

Hence,
(5)
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Here, the curve L is traced in a counterclockwise direction. 
If part of the boundary L is the segment M,M, parallel to the

( M )  '

#-axis, then J ydx = 0, and equation (5) holds true in this
(MO

case as well (Fig. 332).
Similarly, it may be shown that

S ^ ^ x d y .  (6)
L

Adding (5) and (6) term by term and dividing by 2, we get 
another formula, for computing the area S:

S =  xd y—ydx.  (7)
L

Example 3. Compute the area of the ellipse
x = o cos t, y— b sin t.

Solution. By formula (7) we find
in

S = - •  J [a cos tb cos t — b sin t (—a sin f)] dt =  nab.

We note that formula (7) and formulas (5) and (6) as well hold 
true also for areas whose boundaries are cut by coordinate lines 
in more than two points (Fig. 333).
To prove this, we divide the 
given region (Fig. 333) into two 
regular regions by the line I*.

Formula (7) holds for each of these regions. Adding the left and 
right sides, we get (on the left) the area of the given region, on 
the right, a line integral (with coefficient'/») taken over the entire 
boundary, since the line integral over the division line I* is taken 
twice: in the direct and reverse senses; hence, it is equal to zero.
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2. Computing the work of a variable force F on some curved 
path L. As was shown at the beginning of Sec. 1, the work done 
by a force F = X (x, y, z) i + Y (x, y, z ) j + Z (x, y t z) k along a line 
L =  MN is equal to the line integral 

w
A =  $ X(x,  y, z)dx + Y (x, y, z) dy + Z{x, y, z)dz.

(AO
Let us consider an instance that 

shows how to calculate the work of 
the force in concrete cases.

Example 4. Determine the work A of the 
force of gravity F when the mass m is tran
slated from the point Mx (alt bu c j  to the 
point M2(a2, b2, c2) along an arbitrary path L 
(Fig. 334).

Solution. The projections of the force of 
gravity F on the coordinate axes are

X =  0, Y =  0, Z =  — mg.

Hence, the desired work is
(A*a) fa

A =  J X d x  +  Y dy +  Z d z = ^  (— mg)dz =  mg(c1 — c2).
(Afi)

Consequently, Tin this case the line integral is independent of the path of 
integration and dependent only on the initial and terminal points. More pre
cisely, the work of the force of gravity is dependent only on the difference 
between the heights of the terminal and initial points of the path.

SEC. 3. GREEN’S FORMULA

Let us establish a connection between a double integral over 
some plane region D and the line integral around the boundary L 
of this region.

In an xy-^plane, let there be given a region D, which is regu
lar both in the direction of the *-axis and the (/-axis, bounded 
by a closed contour L. Let this region be bounded below by the 
curve y = yx(x), and above by the curve y = y2(x)f yl ( x ) ^ y 2(x) 
( a ^ x ^ b )  (Fig. 331).

Together, both these curves represent the closed contour L. Let 
there be given, in the region D, continuous functions X(x t y) and 
Y (x, y) that have continuous partial derivatives. We consider the 
integral

D
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Representing it in the form of an iterated integral, we find
b _ Hi (*)

=  J[ I $ d y ] d x  = $ X ( x , y )
, / a  M

dx-
a y x (x ) yi (*)

( i )=  J [X (X, y2 (x))— X (x, yx • (X))] dx.
a

We note that the integral
b
$ X (x, yt (x)) dx
a

is numerically equal to the line integral

$ X {x, y) dx
{MPN)

taken along the curve MPN, whose equations, in parametric 
form, are

*=*, y = y A x)>
where x is a parameter.
Thus

b
J X (x, yt (.x)) dx =  J X (x, y) dx. (2)

MPN

Similarly, the integral

$ X {x, yx (x)) dx
a

is numerically equal to the line integral along the arc MQN:
b
 ̂X (x, t/, (x)) dx =  J X (x, y) dx. (3)

a {MQN)

Substituting expressions (2) and (3) Into formula (1), we obtain

\ \ ^ y dxdLJ= I  X (x,"y) dx~  I  X  ^  ^  W
°D MPN M Q N

$ X (x, y)dx =  — j  X (x, y) dx
M Q N N Q M

But
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(see Sec. 1, Property 1). And so formula (4) may be written thus:

C§~~-dxdy= J  X(x, y)dx +  f X(x,y)dx.
D MPN MQN

But the sum of the line integrals on the right is equal to the line 
integral taken along the entire closed curve L in the clockwise 
direction. Hence, the last equation can be reduced to the form

§ § W dxdy= 5 X(x,y)dx.  (5)
D L( in the clockwise sense)

If part of the boundary is the segment /, parallel to the t/-axis,
then  ̂X (x, y)dx — 0, and equation (5) holds true in this case as

i,
well.

Analogously, we find

§ § f c dxdy = — j  Y{x,y)dy.  (6)
D L (in the clockwise sense)

Subtracting (6) from (5), we obtain

n l w - T , ) dxd!/~  I X i x + Y d y .
D L (In the clockwise sense)

If the contour is traversed in the counterclockwise sense, then*)

^ { w ~ i £ ) dxdy==l X d x + Y d y -
D L

This is Green's formula, named after the English physicist and 
mathematician D. Green (1793-1841)**).

We assumed that the region D is regular. But, as in the area 
problem (see Sec. 2), it may be shown that this formula holds 
true for any region that may be divided into regular regions.

SEC. 4. CONDITIONS FOR A LINE INTEGRAL BEING 
INDEPENDENT OF THE PATH OF INTEGRATION

Consider the line integral
( V )

J X dx  + Ydy,
___________________________  (M )

*) If in a line integral along a closed contour the direction of circulation 
is not indicated, it is assumed that it is in the counterclockwise sense. If the 
direction of circulation is clockwise, this must be specified.

**) This formula is a special case of a more general formula discovered by 
the Russian mathematician M. V. Ostrogradsky.
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taken around some plane curve L connecting the points M and N. 
We assume that the functions X (x, y) and Y (x, y) have conti

nuous partial derivatives in the region D 
/ —  m under consideration. Let us find out under

what conditions the line integral above is 
independent of the shape of the curve L and 
is dependent only on the position of the ini
tial and terminal points M and N.

Consider two arbitrary curves MPN and 
MQN lying in the given region D and connecting the points M 
and N (Fig. 335). Let

M.
P

Fig 335.

J X d x + Y d y  = $ Xdx  + Ydy,  (1)
MPN MQN

that is,
$ X d x + Y d y — $ X d x  + Y dy  = 0 .

MPN MQN

Then, on the basis of Properties 1 and 2 of line integrals (Sec. 1), 
we have

$ X d x  +  Y d y -F $ Xdx  + Y dy = 0,
MPN NQM

which is a line integral around the closed contour L:

J X d x + Y d y  =  0.
L

In this formula, the line integral is taken around the closed con
tour L, which is made up of the curves MPN and NQM. This 
contour L may obviously be considered arbitrary.

Thus, from the condition that for any two points M and N the 
line integral is independent of the shape of the curve connecting 
them and is dependent only on the position of these points, it 
follows that the line integral along any closed contour is equal io 
zero. .

The converse conclusion is also true: if a line integral around 
any closed contour is equal to zero, then this line integral is inde
pendent of the shape of the curve connecting the two points, and 
depends only upon the position of these points. Indeed, equation (1) 
follows from equation (2).

In Example 4 of Sec. 2, the line integral is independent of the 
path of integration; in Example 3 the line integral depends on the 
path of integration because here the integral around the closed 
contour is not equal to zero, but yields an area bounded by the
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contour in question; in Examples 1 and 2 the line integrals are 
likewise dependent on the path of integration.

The natural question arises: what conditions must the functions 
X (x , y) and Y (,x, y) satisfy in order that the line integral
 ̂X dx-\~Y dy along any closed contour be equal to zero. The

answer is given by the following theorem.
Theorem. At all points of some region D, let the functions X (x, y),

Y (x, y), together with their partial derivatives dXQ*' -  and — ̂  ^
be continuous. Then, for the line integral along any closed contour b 
lying in this region to be zero, that is, for

$ X  (x , y)dx +  Y [x, y)dy — 0, (2)
L

it is necessary and sufficient to fulfil the equation
dX _  dY n \
dy ~  dx W

at all points of the region D.
Proof. Consider an arbitrary closed contour L in a region D 

and write Green’s formula for it:

H  ( § - % ) d x d y ~ $ X d x  + Y dy.
D L

If condition (3) is fulfilled, then the double integral on the left 
is identically zero and, hence,

^ X d x + Y d y  = 0.
L

This proves the sufficiency of condition (3).
Now we prove the necessity of this condition; that is, we prove 

that if (2) is fulfilled for any closed curve L in the region D, 
then condition (3) is also fulfilled at each point of this region.

Let us assume, on the contrary, that equation (2) is fulfilled, 
that is,

^ X d x + Y d y  = 0,
L

and that condition (3) is not fulfilled;

dx

at least in one point. For example, at some point P(xt, y t) let
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there be the inequality
^ - ^ > 0  dx dy :>KJ-

Since there is a continuous function on the left.it will be positive 
and greater than some number 6 >  0 at all points of some sufficiently 
small region D' containing the point P (xt, y0). Take the double
integral of the difference ^ o v e r  this region. It will have a
positive value. Indeed,

i dxdy = 6D' > ° -
D ‘ D’ Dy

But by Green’s formula the left side of the last inequality is 
equal to a line integral along the boundary L' of the region D', 
which, by assumption, is zero. Hence, the last inequality contra-

dY dXdiets condition (2) and therefore the assumption that ^  is
different from zero in at least one point is not correct. Whence it 
follows that

at all points of the given region D.
The theorem is thus proved completely.
In Sec. 9, Ch. XIII, it was proved that fulfillment of the con

dition
dY(x ,y)  dX(x ,y )  

dx dy

is tantamount to the fact that the expression X d x - ^ Y d y  is an 
exact differential of some function u(x, y), or

X dx + Y dy = du (x, y)
and

X(x,  r/) =  — , Y ( x ,y )  = d£ .

But in this case the vector
F - X i  + Y J - £ l + l L j

is the gradient of the function u(x, y)\ the function u(x, y), the 
gradient of which is equal to the vector Xi-\-Yj,  is called the 
potential of this vector.
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We shall prove that in this case the line integral I =  ] X d x  +  Ydy
(M)

along any curve L connecting the points M and N is equal to the 
difference between the values of the function u at these points:

( N )  ( N )

 ̂ X dx + Y dy = J du(x , y) = u(N) — u(M).
(Af) ( M)

Proof. If Xdx  + Ydy  is the exact differential of the function 
u(x, y), then =  ^  and the line integral takes on the
form

( V )

<M)

To evaluate this integral we write the parametric equations of 
the curve L connecting the points M and N:

x = y(t), y = ty(t).

We shall consider that to. the value of the parameter t = ta 
there corresponds the point Af, and to t = T, the point N. Then 
the line integral reduces to the following definite integral;

T

The expression in the brackets is a function of t, and this func
tion is the total derivative of the function «[<p(0 » $(/)] with 
respect to t. Therefore

T

i = § w dt = u ^ W ’ W)]|£-«lq>(a *(01
^ o)] =  K(A0 -« (A f).

As we see, the line integral of an exact differential is independent 
of the shape of the curve along which the integration is performed.

We have a similar assertion for a line integral over a space 
curve (see below, Sec. 7).
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Note. It is sometimes necessary to consider line integrals of 
some function X (x, y) along the length of an arc L :

n

j) X (*, y) ds = lim £  X (xh i/,) Ash (4)
L As,->o,. = 1

where ds is the differential of the arc. Such integrals are evaluat
ed in similar fashion to the line integrals considered above. Let 
the curve L be represented by the parametric equations

* =  <P(0. =  0.
where <p(f), r|)' (t) are continuous functions of t.

Let a and (i be. values of the parameter t corresponding to the 
origin and terminus of the arc L.

Since
ds =  Z T W + i F W  dt, 

we get a formula for evaluating integral (4):

SX(*. 0)ds=jx[q>(O, *(0] VV W +  'P' itydt.
L a

We can consider the line integral along the arc of the space 
curve x = (f(t), y = ̂ (t), z = %(t):

$* (* , y, z)ds=  Jx[q>(0, m
L a

By the use of line integrals along an arc we can determine, for 
example, the coordinates of the centre of gravity of lines.

Reasoning as in Sec. 8, Ch. XII, we obtain a formula for 
evaluating the coordinates of the centre of gravity of a space 
curve.

Uc

\ y ds
*c

Szds
L

L

(5)

Example. Find the coordinates of the centre 
helix

x = a c o s t , # =  asinf, z =  bt 
if its. linear density is constant.

of . gravity of one turn of the 

(0 <  / < 2ji),
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Solution. Applying formula (5), we find

 ̂a cos / Ya2 sin2 1 + a2 cos2 1 -f- b2 dt
0__________________________

' 2JI
 ̂ |^ a2 sin2 1 +  a2 cos2 1 +  bz dt

0
2JI

 ̂a cost Va‘ + b‘ dt

irt
J V ¥ + 7 ‘ dt

c t Y a ‘ + b ‘ 0 

2n )/'at +  bt
= 0.

Similarly, yc =  0,

J bt V a2 sin21 a2 cos2 / -f- b2dt
6 »4jt2 l^fl2+ 6 2

=  T ib .
2ji ]/"a2+  b‘ 2n Va * + b *

Thus, the coordinates of the centre of gravity of one turn of the helix are 
xc =  0 , yc =  0 . zc — nb.

SEC. 5. SURFACE INTEGRALS

Let a region V be given in an ^-coordinate system. Let a 
surface a bounded by a certain space line X be given in V.

With respect to the surface c we shall assume that at each 
point P of it the positive direction of the normal is determined 
by the unit vector ti(P), the direction cosines of which are con
tinuous functions of the coordinates of the surface points.

At each point of the surface let there be defined a vector,
F = X(x, y% z)l + Y(x, yt z ) j+ Z ( x , y , z) ft,

where X, Y, Z are continuous functions of the coordinates.
Divide the surface in some way into subregions Acr,.. In each 

subregion take an arbitrary point Pt and consider the sum
^ (F (P ,)» (P ,))  Ao,, (1)

where F (P f) is the value of the vector F at the point P, of the 
subregion A a,; n(Pj) is the unit normal vector at this point and 
Fn is the scalar product of these vectors.

The limit of the sum (1) extended over all subregions Aaf as 
the diameters of all such subregions approach zero is called the
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surface integral and is denoted by the symbol
\ \ F n d o .

Thus, by definition*)
lim ^  F fa  A a i = [ [ F n  da. (2)

diam Aoj-*o J0

Each term of the sum (1)
FtniAa, =  F, Aa. cos (nit Ft) (3)

may be interpreted mechanically as follows: this product is equal 
to the volume of a cylinder with base Aaf and altitude F, cos {nt, Ft). 
If the vector F  is the rate of flow of a liquid through the sur
face a, then the product (3) is equal to the quantity of liquid 
flowing through the subregion Aa,- in unit time in the direction 
of the vector ttt (Fig. 336).

The expression Fnda  yields the total quantity of liquid
a

flowing in unit time through the surface o in the positive direc
tion if by the vector F  we assume the flow-rate vector of the 
liquid at the given point. Therefore, the surface integral (2) is 
called the flux of the vector field F through the surface a.

From the definition of a surface integral it follows that if the 
surface a is divided into the parts a,, at, . . . ,  ak, then

J ̂  Fnda =  $ J Fn da J ̂  Fn da + . . .  J ̂  Fn da.
a  <Ji Oj Ok

*)lf the surface a is such that at each point of it there exists a tangent 
plane that constantly varies as the point P is translated over the surface, 
and if the vector function F is continuous on this surface, then this limit 
exists (we accept this existence theorem of a surface integral without proof).
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Let us express the unit vector » in terms of its projections on 
the coordinate axes:

» =  cos(m, x)/ +  cos(n, y ) j +  cos (n, z)k.

Substituting into the integral (2) the expressions of the vectors 
F and n in terms of their projections, we get

55 Fndo=  55 [X cos(n, x) + Y cos(n, y) + Zcos(n, z)] do. (2')
o a

The product Ac cos (n, z) is the projection of subregion Act on 
the xy-plane (Fig. 337); an analogous assertion holds true for the 
following products as well:
Aacos(n, x) = Aoyz, Aacos(n, y) = Aoxz, Acrcos(n, z) = Aoxy, (4)

where Aoyz, Aoxz, Aoxy are the projections of the subregion Acr 
on the appropriate coordinate planes.

On this basis, integral (2') can also be written in the form

5 5 Ftido =  5 5 [-K cos (n, x) +  Y  cos (n, y) +  Z cos (n, z)] do =
a <x

=  55 X dy dz-\-Y dzdx-\-Z dxdy. (2")

SEC. 6. EVALUATING SURFACE INTEGRALS

Computing the integral over a curved surface reduces to eva
luating a double integral over a plane region.

To illustrate, the following is a method of computing the 
integral

55 2 cos(n, z)do.
O

Let the surface o be such that any straight line parallel to the 
z axis cuts it in one point. Then the equation of the surface 
may be written in the form

z =  /(*» y)-
Denoting by D the projection of the surface a on the xy-plane, 

we get (by the definition of a surface integral)
n

\ \Z (X ,  y, z )cos(/i, z )do=  lim ^ Z ( x f, yit z,.)cos(rtt-, z)Aat-.
"  d l a m  A O / - M )  /  =  1
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Noting, further, the last of formulas (4), Sec. 5, we obtain
n

5  [ Z cos {n, z) do =  lim (xit yit f £/,)) (Aaxy\  =
a  d i a m  i==1

n

=  ±  lim £Z(*,-, f(x it £/,)) | Act*. ,, f
d i a m  A a  -► o ■ =zl

the last expression is the integral sum for a double integral of 
the function Z(x, y, f(x, y)) over the region D. Therefore,

Z cos (n, z) do — ±  5  5  ^  (*> f (*> D)) ^x dy- 
a d

The plus sign in front of the double integral is taken if cos (n, z) 5= 0, 
the minus sign, if cos (n, z ) ^ 0 .

If the surface a does not satisfy the condition indicated at the 
beginning of this section, then it is divided into parts that satisfy 
this condition, and the integral is computed over each part 
separately.

The following integrals are computed in similar fashion:

SS* cos (n, .v) da\ S J ^  cos (n< y) do.

The foregoing proof justifies the notation of a surface integral 
in the form of (2"), Sec. 5.

Here, the right side of (2") may be regarded as the sum of 
double integrals over the appropriate projections of the region a 
and the signs of these double integrals (or, otherwise stated, 
the signs of the products dydz, dxdz, dxdy) are taken in 
accord with the foregoing rule.

Example I. Let a closed surface a be such that any straight line parallel 
to the z-axis cuts it in no more than two points.

Consider the integral

5 J 2 cos (n, z) do. 
a

We shall call the outer normal the positive direction of the normal.
In this case, the surface may be divided info two parts: lower and upper; 

their equations are, respectively,

z = f i ( x .  y )  and z = f t (x, y ) .

Denote by D the projection a on the x(/-plane (Fig. 338); then

55* co s(n . z ) d o = 5 5 f t (*. y i <**ay — 55 ^ (*• y ) * * dy-
V  D D
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The minus sign in the second integral is taken because in a surface integ
ral the sign of dx dy on a surface z =  f1(x, y) must be taken negative, since 
for it cos (ft, z) Is negative.

Fig. 338.

But the difference between the integrals on the right in the last .formula 
yields a volume bounded by the surface a. This means that the volume of 
the solid bounded by the closed surface a is equal to the following integral 
over the surface

z cos (ft, z) do.

Example 2 . A positive electric charge e placed at the coordinate origin 
creates a vector field such that at each point of space the vector F is defined, 
by the Coulomb law as

F =  k-p-f .

where r is the distance of the given point from the origin, r is the unit 
vector directed along the radius vector of the given point (Fig. 339); and k 
is a constant coefficient.

Determine the vector-field flux through a sphere o f ' radius R with centre 
at the origin of coordinates.

Solution. Taking into account that r =  fl =  const, we will have

^ k L r n d a = ^ ^ r n d a .  
o a

But the last integral is equal to the area of the surface o. Indeed, by the 
definition of an integral (noting that rn =  1), we obtain

\ \ r n  do =  lim 2  rknk&ok =  lim 2  =  °«
AOjk -> o A<X* -*• 0

Hence, the flux' =  • 4jt/?*=4jifce.
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SEC. 7. STOKES’ FORMULA

Let there be a surface cr such that any straight line parallel 
to the z-axis cuts it in one point. Denote by X the boundary of 
the surface a. Take the positive direction of the normal n so 
that it forms an acute angle with the positive z-axis (Fig. 340).

Let the equation of the surface be z = f(x, y). The direction 
cosines of the normal are expressed by the formulas (see Sec. 6,

cos (/t, y) = dy

COS (/I, z) :
/ ' + ( i y + ( g y  

V ' + d y n u r i

0 )

F‘g- 340. We shall assume that the surface a lies
entirely in some region V. Let there be 

a function X  (x , y, z) given in V that is continuous together with 
first-order partial derivatives. Consider the line integral along 
the curve A,:

$X (* , y, z)dx.

On the line X, z — f(x, y), where x, y are the coordinates of 
the points of the line L, which is a projection of the line X on 
the jcjr-plane (Fig. 340). Thus, we can write the equation

5 X ( x , y, z )d x = JX (x , y, f{x, y))dx. (2)
X  L

The last integral is a line integral along L. Transform this integ
ral by Green’s formula, putting

X(x,  y, f(x, y)) = X(x ,  y), 0 =  F(*, y).

Substituting into Green’s formula the expressions of X  and Y, 
we obtain

j j x (*> y> f ( x> y))dx> (3)
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where the region D is bounded by the line L. On the basis of 
the derivative of the composite function X  (x, y, f(x, y)), where 
y enters both directly and in terms of the function z = f(x, y), 
we find

dX(x,  y,  f(x,  y)) dX(x,  y, z) dX (*, y, z )d f (x ,  y) . .
dy ~  dy "r  dz dy ' w

Substituting expression (4) into the left side of (3), we obtain

- f t  d x d y .
D

=  J X (x, y i f (xt y)) dx.
L

Taking into account (2), the last equation may be rewritten as 

{ X ( x ,  y, z)dx = - ^ ^ d x d y - ^ d£ 2fy dxdy. (5)
X D D

The last two integrals can be transformed into surface integrals. 
Indeed, from formula (2"), Sec. 5, it follows that if we have 
some function A (x, y, z), the following equation is true:

y, z)cos(/i, z ) d o = \ \  Adxdy.
a D

On the basis of this equation, the integrals on the right side 
of (5) are transformed as follows:

^ ^ d x d y = ^ ^ c ° s ( n , z ) d o ,  )

<6>D a  /
Transform the last integral using formulas (1) of this section: 
dividing the second of these equations by the third termwise, 
we find

cos (n, y )   df
cos (tiy z) dy

or ar
^ c o s  (n, z) =  cos (n, y).

SS sr I dx dy = “  J J §  cos (». V)da-

Hence,
(7)
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Substituting expressions (6) and (7) into equation (5), we get 

§X (x ,  y, z) dx = — cos (n, z)da +  ^  — cos (n, y)do. (8)
K (J O
The direction of circulation of the contour X must agree with 

the chosen direction of the positive normal n. Namely, if an 
observer looks from the end of the normal, he sees the circula
tion along the curve X as being counterclockwise.

Formula (8) holds true for any surface if this surface can be 
divided into parts whose equations have the form z = f ( x , y). 

Similarly, we can write the formulas

j  Y (x, y, z)dy = § j  — cos(n, x ) + ^ c o s ( n ,  2)] da, (8')
A. a

^ Z (x, y, z)dz = j ^  [ —^  cos(n, y) +  — cos(n, *)] da. (8")

Adding the left and right sides of (8), (8'), and (8"), we get 
the formula

^ X d x + Y d y  + Zdz = ̂  [ ( S - 57) cos <n* z) +

+  ( I f - g r ) cos (”• * ) + ( 3 7 - 3 7 ) cos < n > 0)] d a '  M

This formula is called Stokes’ formula after the English physicist 
and mathematician D. Stokes (1819-1903). It establishes a rela
tionship between the integral over the surface a and the line 
integral along the boundary X of this surface, the circulation 
about the curve X being performed according to the same rule as 
that given earlier.

The vector B,  defined by the projections

n — d z _ d Y  . r  ftU* ~ d y  3 7  ’ a y ~  dz dx ’ a * ~  dx dy '

is called the curl or rotation of the vector function F  — Xl  +  Y j+ Z k  
and is denoted by the symbol rot F.

Thus, in vector notation, formula (9) will have the form

J F d s =  $$ nro tF da, (9')
i. a

and Stokes’ theorem is formulated thus:
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T/ie circulation of a vector around the contour of some surface 
is equal to the flux of the curl through this surface.

Note. If the surface a is a piece of plane parallel to the 
xy-plane, then Az =  0, and we get Green’s formula as a special 
case of Stokes* formula.

From formula (9) it follows that if
ay_ax_n az__ay_n ax__dz_n
dx dy * dy dz * dz dx  * ( 10)

then the line integral along any closed space curve X is zero:

 ̂X dx +  Y dy + Zdz = 0. (11)
a

Whence it follows that the line integral is independent of the 
shape of the curve of integration.

As in the case of a plane curve, it may be shown that the 
indicated conditions are not only sufficient but also necessary.

In the fulfillment of these conditions, the expression under the 
integral sign is an exact differential of some function u(x, y, z):

Xdx  +  Ydy + Zdz = du(x, y, z) 
and, consequently,

(AO (V)
J X d x ^ - Y  dy + Zdz =  $ du==u(N)—u(M).

(Af) (A O

This is proved exactly like the corresponding formula for a 
function of two variables (see Sec. 4).

Example 1. Write the basic equations of the dynamics of a material 
point:

d o, v  d v y  v  d v z  _m =  a ; m =  Y; m - r r  =  Z. at at at

Here, m is the mass of the point, X , Y, Z are the projections of a force,
acting on the point, onto the coordinate axes; vx =  ̂ t 0  ̂=  — , vz =  ~?j are
the projections of velocity v on the axes.

Multiply the left and right sides of these equations by the expressions
vx dt =  dx, vv dt =  dy , v2 dt =  dz.

Adding the given equations term by term, we obtain

m (vx dvx +  vy dvv -\-vz dvz) =  X dx +  Y dy-\-Z dz;

m Y  d +  vl  +  y|)  =  x  dx +  Y d.y +  Z d2 ,
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Since v l  +  v z +  v l  =  v 2, we can write

d  ^  mo2J  = X  d x  +  Y  d y  +  Z  d z .

where v t and

Take the integral along the trajectory connecting the points M, and M2:
(A*,)

^ ■ t n v \  —  ^ m v \ = z  J  ' X d x  +  Y  d y  +  Z d z ,

(M i)
are the velocities at the points M, and M 2.

This last equation expresses the theorem 
of live forces: the increase in kinetic energy 
when passing from one point to  another is 
equal to the work of the force acting on the 
mass m .

Example 2. Determine the work of the force 
of Newtonian attraction to a fixed centre of 
mass m  in the translation of unit mass from 
M ,(a ,, b lt  c x) to M 2 ( a 2, b 2, c 2).

Solution. Let the origin be in the fixed 
centre of attraction. Denote by r  the radius 
vector of the point M  (Fig. 341) corresponding 
to an arbitrary position of unit mass, and by 
r° the unit vector directed along the vector r.

F ig .  3 4 1 .  

k m
Then F = — y r  r °» where 
the force F on the coordinate

k  is the constant of gravitation. The projections of 
axes will be

x = —fe/n-i-—; K = —ftm-i- —,
r 2 r r 2 r '

Z = —k m ~ — . 
r* v

Then the work of the force F over the path M jM 2 is
(Mi)

A  ----- k m  j  * J ± L ± y d y  +  * d z  =

(since r 2 = x 2 +  y 2 +  z 2, r  d r  =  x  d x  +  y  d y  +  z  d z ) .  If we denote by r, and r* 
the lengths of the radius vectors of the points M, and M 2, then

A  =  k m  ( t f - - ) -

Thus, here again the line integral does not depend on the shape of the 
curve of integration, but only on the position of the initial and terminal 

k tnpoints. The function u  =  —  called tile p o t e n t i a l  of .the gravitational field
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generated by the mass m. In the given case,
y _du y  _du 7 _ d u

dx' dy '  d z '
A =  a(Af2) —u(Mx).

That is, the work done in moving unit mass is equal to the difference be
tween the values of the potential at the terminal and initial points.

SEC. 8 . OSTROGRADSKY’S FORMULA

Let there be given, in space, a regular three-dimensional region 
V bounded by a closed surface a and projected on an JW/-plane 
into a regular two-dimensional region D. We shall assume that 
the surface a may be divided into three parts alt a2, and a3 
such that the equations of the first two have the form

z =  /,(*, y) and z = f2 (x, y),
where f t (x, y) and f2(x, y) are functions continuous is the region 
D and the third part a, is a cylindrical surface with generator 
parallel to the z-axis.

Consider the integral

Z)dxdy dz-

First perform the integration with respect to z:

=  J J Z (a:, y ,  f, [x, y) )  d x  d y — $ $ Z (x,  y, f t (x , y)) d x d y .  (1)
D D

On the normal to the surface, choose a definite direction, name
ly that which coincides with the direction of the outer normal 
to the surface a. Then cos(n, z) will be positive on the surface 
o, and negative on the surface on the surface a, it will be 
zero.

The double integrals on the right of (1) are equal to the cor
responding surface integrals:

\ \ Z { x ,  y, f2 (x, y)) d x d y = \ \ z  (x , y, z) cos (n, z) da, (2')
D <Ja

y, fA x> y ^ d x d y - ^ ^ Z i x ,  y, z)(— cos(n, z))da.
D ot
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In the last integral we wrote [ —cos(n, z)] because the elements 
of surface a, and a, and the element of area As of the region D 
are connected by the relation As =  Acr [—cos(n, z)], since the 
angle (n, z) is obtuse.

Thus,

$$ 1 (x, y, f t (x, y))dxdy= — ^ Z ( x ,  y, f t (x, t/))cos(n, z)da. (2")
D  G t

Substituting (2') and (2") into (1), we obtain 

v

=  y, z) cos (n, z)dcr+$$ Z(x, y, z)cos(n, z)da.
a, o,

For the sake of convenience in subsequent formulas, we shall rewrite 
the last equation as follows adding jj^Z ^ , y, z)cos(n, z)da =  0,

since the equation cos (n, z) =  0 is fulfilled on the surface a, :

W d- Xi zy ,z )dxdy dz=v
=  ^$Zcos(rt, z)da+ Z cos(n, z)do+ J $ Zcos(n, z)do.

But the sum of integrals on the right of this equation is an in
tegral over the entire closed surface a; therefore,

^  dx dy dz = Z (x, y, z)cos(n, z)da. 
°  V a

Analogously, we can obtain the relations

[ [ [ ^ d x d y  dz = ^ Y ( x ,  y, z)cos(n, y)da,
a

C f j  ^  dx dydz = (x> i/» z) cos (n, x) do,
J v a ■
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Adding together the last three equations term by term, we get 
Ostrogradsky's formula**:

=  ^ (X co s(/i, x) +  Vcos(n, y )+ Z  cos (ti, z))do. (2)
a

d X  d Y dZThe expression ^  +  ̂  +  is called the divergence of the vec
tor (or the divergence of the vector function):

F=*Xl +  Y j + Z k

and is denoted by the symbol div F:
„  d X . d Y  . dZ 

d i y F  =  d7 +  d-y +  Tz'

We note that this formula holds good for any region which 
may be divided into subregions that satisfy the conditions indi
cated at the beginning of this section.

Let us examine a hydromechanical interpretation of this 
formula.

Let the vector F = Xi-\~Yj-\~Zk be the velocity vector of a 
liquid flowing through the region V . Then the surface integral in 
formula (2) is an integral of the projection of the vector F on 
the outer normal n\ it yields the quantity of liquid flowing out 
of the region V through the surface a in unit time (or flowing 
into V if this integral is negative). This quantity is expressed 
in terms of the triple integral of div F.

If div f  =  0, then the double integral over any closed surface 
is equal to zero, that is, the quantity of liquid flowing out of 
(or into) something through any closed surface o will be zero 
(no sources). More precisely, the quantity of liquid flowing into a 
region is equal to the quantity of liquid flowing out of this 
region.

In vector notation, Ostrogradsky’s formula has the form

JJJd i v Fdv = Fnds  (T)
v  a

*) This formula (sometimes called the Ostrogradsky-Gauss formula) was 
discovered by the noted Russian mathematician M. V. Ostrogradsky (1801-1861) 
and published in 1828 in an article entitled “A Note on the Theory of Heat”.
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and is read: the integral of the divergence of a vector field F  
extended over some volume is equal to the vector flux through the 
surface bounding the given volume.

SEC. 9. THE HAMILTONIAN OPERATOR AND CERTAIN 
APPLICATIONS OF IT

Suppose we have a function u = u(x, y , z). At each point of 
the region in which the function u(x , y , z) is defined and diffe
rentiable, the following gradient is determined:

, .du . s du , - du /1xgrad u = i s-x + J Ty +  k S I . (1)

The gradient of the function u(x, y, z) is sometimes denoted as 
follows:

„  . du . . du . u du /m
VU = l TX+JiTy +  k Tz- (2)

The symbol y is rea<l “del”.
1) It is convenient to write equation (2) symbolically as

=  +  (2') 

and to consider the symbol

v - ' s + 4 + * l  <3>
as a “symbolic vector”. This symbolic vector is called the Hamil
tonian operator or del operator (y-operator). From formulas (2) 
and (2') it follows that “multiplication” of the symbolic vector v 
by the scalar function u gives the gradient of this function:

V« =  grad u. (4)

2) We can form the scalar product of the symbolic vector y by 
the vector F = iX + j Y  +  kZ:

d v  - d u  , d 7  dX , dY . dZ .. , -  
s= F x X + F y Y +  TzZ==d7+Ty+Tz =  dlvF

(see Sec. 8). Thus,
y f  —divF. (5)
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3) Form the vector product of the symbolic vector v by the 
vector F — IX +  j Y  +  kZ:

V X f - ( / | ; + / a-  +  * | ) x ( « + /V'+ tZ) =

i j k d d d d d d
d d d du dz

—j
dx dz dx dy

dx dy dz =  i Y Z x z X Y
X Y Z

, ( d Z  dK\ t f dZ d X \  , .  ( d Y  9 X \
\  d z )  dz ) ' "  dy )

. ( d Z  d Y \  , / d X  d Z \ , h ( d Y  d X \  , P  
= l { T y - t e ) + j { t e - T x) + k {dZ -d j - )  = rotF

(see Sec. 7). Thus,
V x F  =  ro t/?. (6)

From the foregoing it follows that vector operations may be 
greatly condensed by the use of the symbolic vector v- Let us 
consider several more formulas.

4) The vector field F (x, y, z) = i X + j Y  +  kZ is called a poten
tial vector field if the vector F  is the gradient of some scalar 
function u (x , y, z):

F  =  grad u
or

F — • — 4- / — 4- Jfe —
F dx +  J dy +  K d z '

In this case the projections of the vector F  will be
Y _du y _da 7  da
A- ~ d x ’ Y ~!T y ' / ‘ ~ d z '

From these equations it follows (see Ch. VIII, Sec. 12) that 
d X _ d Y  <>Y__dZ d X _ d Z
dy dx ' dz dy ' dz dx

or
d X _ _ d Y _ n d Y _ d Z _ n dX d Z _ n
dy dx dz d y ~ K}' dz d x ~ U*

Hence, for the vector F under consideration,
ro tF  =  0.

Thus, we get
rot (grad u) =  0. (7)
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Applying the del operator v. we can write (7) as follows [on the 
basis of (4) and (5)]:

( V X V « )  =  0. (7')

Taking advantage of the property that for multiplication of a 
vector product by a scalar it is sufficient to multiply this scalar 
by one of the factors, we write

(VX v) w—-0. (7")
Here, the del operator again has the properties of an ordinary 
vector; the vector product of a vector into itself is zero.

The vector field F (x, y, z), for which ro tF  =  0, is called irro- 
tational. From (7) it follows that every potential field is irrota- 
tional.

The converse also holds: if some vector field F is irrotational, 
then it is potential. The truth of this statement follows from 
reasoning given at the end of Sec. 7.

5) A vector field F (x, y, z) for which
d ivF= 0,

that is, a vector field in which there are no sources (see Sec. 8) 
is called solenoidal. We shall prove that

div (rotF) =  0 (8)
or that the rotational field is free of sources.

Indeed, if F = i X + j Y  +  kZ, then
, ,, J d Z  <?K\ . . ( d X  d Z \  . u ( d Y  d X \  

T O t F = = t [ r y - d F ) + j { d r - r x ) + k { ^ - ^ )

and therefore
~  d ( d Z  a n  , d ( d X  d Z \  , d ( d Y  d X \  •-

d lv (ro tF ) — d x y dy d z j + d y [ d z  d x )  +  d z \ d x  d y ) ~ ° *

Using the del operator, we can write equation (8) as
V (V X F) =  0. (8')

The left side of this equation may be regarded as a vector-scalar 
(mixed) product of three vectors: y> V> F, of which two are the 
same. This product is obviously equal to zero.

6) Let there be a scalar field u = u(x, y, z). Determine the 
gradient field:

, .du , .du , - du grad u=,irx+ j T, + k Tz .
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Then find

div (grad „ ) - ! ( ! )  +  i ( | )  + | ( | )

or
/ j x d2u . d2u . d2u /rudiv(gradU) =  gp +  5 ? + -5 ? . (9)

The right side of this expression is called the Laplacian ope
rator of the function u and is denoted by

A d‘u , d‘u , d*u 
aU~  dxt +  dy* +  dz** (10)

Hence, (9) may be written as
div (grad u)=Au. (11)

Using the del operator v  we can write (11) as
(VV«) =  Au. d l ')

We note that the equation
d‘u , d‘u , d‘u „ 
djr* +  dyt +  dz*~U (12)

or
A« =  0 (12')

is called Laplace’s equation. The function that satisfies the Lap
lace equation is called a harmonic function.

Exercises on Chapter XV

Compute the following line integrals:
1. J  y 2 dx~\~2 xy dy  over the circumference x =  a cos t t y =  as\nt.

Ans. 0 .

2. J y dx—x dy over an arc of the ellipse x = a c o s t t y — bsint .

Ans. —2nab.

3 . \ (  t t —• dx--------—zdy ) over a circle with centre at the origin.+  x2 +  y 2 9 J
Ans. 0.

4. "x2^ Xy * ^ )  °Ver a se£men* line y—x fr o m x = l to
x =  2. Ans.  In 2.

5 . J yzdx  +  xzdy +  xydz  over an arc of the helix x =  a c o s t , y =  sint9 
z =  kt as t varies from 0 to 2n. Ans. 0.
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6.  ̂ x d y —y dx over an arc of t h e  h y p o c y c l o l d  x =  a cos* t, y =  asin*t.

Ans. — Jta2 (the double area of the hypocycloid).

7. ^ x d y —y d x  over the loop of the folium of Descartes x- 3 at
1 +  **’

y  =  ^ . Ans. a2 (the double area of the region bounded by the indicated 

loop).

8 .  ̂ xdy—ydx over the curve x =  a{t  — sin 0 . y =  a ( l — cos 0 (0^  t <!2n).
Ans. —6na2 (the double area of the region bounded by one arc of a cycloid 
and the x-axis).

Prove that:
9 . grad (ccp) =cgrad <p where c is a constant.
10. grad (c1cp +  cao|)) =  c,grad cp +  c2grad o|) where c is a constant.
11. grad (qnj>)=cp grad '|> +  'i|> grad cp.
12. Find grad r, grad r1, grad —, grad /(r) where r =  V’x2+ y 2 +  z2. Ans.

13. Prove that div (<4 +  £) =  div A +  div B.
14. Compute d ivr, where r = x i  +  y j + z k .

Ans. 3.
15. Compute div (4 9 ), where A is a vector function and 9  is a scalar 

function. Ans. 9  div A +  (grad 9  A).
16. Compute div (r-c), where c is a constant vector. Ans. (c-r)

17. Compute div B(rA). Ans. AB.
Prove that;
18. rot (c1i41 +  c2i42) =  c, rot ^j +  CjTot where ct and c2 are constants.
19. rot (Ac) =  grad A x e  where 0 is a constant vector.
20 . rot rot A =  grad div A — VA.
21. 4̂ X rot 9  =  rot (9-4).

Surface Integrals

22. Prove that cos (n,z) do =  0 if a Is a closed surface and n Is a nor
mal to it.

23. Find the ;moment of inertia of the surface of a segment of a sphere 
with equation x2 +  y 2 +  z2=  R2 cut off by the plane z =  H relative to the
2-axis. Ans2 ^ V R * — l R tH +  H').

24. Find the moment of inertia of the surface of the paraboloid of revo
lution x2 +  y 2 =  2cz cut off by the plane z =  o relative to the z-axis. Ans.

55 + 9 0  .1
65 J *

25. Compute the coordinates of the centre of gravity of a part of the sur-
R2 2

face of the cone x * + y * = j p z *  cut off by the plane z =  H. Ans. 0, 0,-g H.
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26. Compute the coordinates of the centre of gravity of a segment of the surface

of the sphere x2 +  y 2 +  z2=  R2cut off by the plane z =  H.Ans.  ^0 , 0 , j  .

27. Find ^  [x cos (tt*) +  r/cos (ny)+zc.os  (nz)] do. where a is a
o

closed surface. Ans. SV, where V is the volume of the solid bounded by the 
surface o.

28,i. Find z d x d y  where 5 is the external side of a sphere xz -\-y2 +  z2

=  R2. Ans. -g- nr8.

29. Find x2 dy d z + y 2 dz dx +  z2 dx dy where S is the external side of
s

the surface of a sphere xz+ y 2 +  z2=i R2. Ans. n R \
30. Find ^ V ’x*-\-y*ds where 5 is the lateral surface of a cone

s
x2 y 2 z2 n . - 2na2 Y~a* +  b2

0<z<b- Ans■ -------3--------•
31. Using the Stokes formula, transform the integral J y d x + z  d y + x d z .

L

Ans. — J J (cos a +  cos p +  cos y) ds. 
s

Find the line integrals, applying the Stokes formula and directly: 32. 
J (y +  z) dx +  (z +  x) dy +  (x +  y) dz where L is the circle x2 +  y z +  z2 =  
L
=  a2, x +  y  +  z — 0. Ans. 0. 33. J x2y 9d x +  d y +  z dz where L is the circle

L
kR9

x* +  y * = R * t 2 =  0. Ans. - .
Applying the Ostrogradsky formula, transform the surface integrals into

volume integrals: 34. (* c o s a +  y  cos (3 + 2  cos y)ds.  Ans. 3 dx dy dz.
S  v  J

35 . (x2-{■ y 2 z2) (dy dz +  dx dz +  dx dy). Ans. ( x +  y +  z) dx dy dz.
s vJ

36. J J  xy dx dy +  yz dy dz +  zx dz dx. Ans. 0. 37. J J  ^ d y  dz +  ̂  dx dz +

+ p z d x d y .  Ans. ) d x d y d z .

Using the Ostrogradsky formula compute the following integrals: 38. 
^  (x cos a +  y cos {3 +  z cos y) ds where S is the surface of the ellipsoid

23 — 3 3 8 8
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xz u2 z2 C
a2+ b2+ T2 = l ' AnS' 4ltabc- 39‘ \ \ ( ^ c o s a + i /3 c o s P + z 3 cosY )^  where 5

S
is the surface of the sphere x2 +  y2 +  z2= R 2. Ans. ^jt/?5. 40. x2dydz  +

S
2 , ,2

+  y2 dz dx +  z2 dx dy  where S is the surface of the cone — —  =  0

jta2b2 f* C
(0^z<:b).  Ans. — —̂ • 41. \ \ x dy dz +  y dx dz +  z dx dy where 5 is the

S
surface of the cylinder x2 +  y2 =  a2t — Ans. 3jta2H.

42. Prove the identity d x d y  =  § % ds’ where C is a con-

du .tour bounding the region D, and ^  is the directional derivative of the outer
normal.

Solution.

dX dy =  ̂ ~ Y dx +  X d y =  \  [— ^ cos(s, j:) +  X sin(s, *)] ds, 
' d  c c
where (s, x) is the angle between the tangent line to the contour C and the 
*-axis. If we denote by (n, x) the angle between the normal and the jc-axis, 
then sin (s, x) =  cos (nt x), cos (s, x) =  — sin(/i, x). Hence,

+  dx dy =  J [X cos(n . *) +  ^sin(rt, x)]ds.

0 A1. v  du da
Sett,I,g X = Tx' ^  = dy ’ We ®et

* ) + ^  sin (n, *)] ds

or

The expression +  is ca^ed the Laplacian operator.
43. Prove the identity (called Green's formula)

a-ttHv)dxd y d z ^ ( v ^ - u ^ y a.
V a

where u and v are continuous functions with continuous derivatives to the 
second order in the region D.

The symbols A a and An denote
. d2u , d2u , d*u k d2v d2v . d2v
&U~W ‘+ dyi+ d?’ ^V~dx, + dp+ 'dzi ’

These expressions are called Laplacian operators in space.
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Solution. In the formula

dxdy dz= § § i Xcos(n' * ) + Ycos(rt> y)+2cos(n , 2)]rf«j
V O

we put
X =  vux — uvx,
Y =  Dll — uv .J uu,y u u yt

Z =  vuz— uvz.
Then

dX dY , dZ^  +  ̂ + a 7  =  t,(“« + “w+ “«)- “(0̂  + t’w + °«) =  t,Att-«Ai>,
X cos(/i, x) +  Y cos{n, y) +  Z cos (n, z) =
=  o (a  ̂cos nx +  uy cos ny +  uz cos nz)—u (vx cos nx +  vy cos ny +  o' cos nz) =

du dv=  v ----- u 5-  .dn dn
Hence,

1ST (t,A « - « A t.)dA :^rf2 =  J J ( , | - Ug)rfa.
V a

44. Prove the identity

^ ^ u d x d y d z  = ̂ d o ,
V a

, k d2a . d2u , d2u /T . . .where A a = - g p + - g p + ( L a p la c ia n ) .
Solution. In Green's formula, which was derived in the preceding section, 

put u =  l. Then A o = 0 , and we get the desired identity.
45. If u(x , y , z )  is a harmonic function in some region, that is, a func

tion which at every point of this region satisfies the Laplace equation
d2u d2a d*q 
dF2 +  dy2‘b d ? ~ ° t

then

a
where a is a closed surface.

Solution. This follows directly from the formula of Problem 44.
46. Let u (x, y t z)_be a harmonic function in some region V and let there 

be, in V, a sphere a with centre at the point M (xlt y lt z j  and with radius 
R. Prove that

«(*i. 0i. z*) = 4 ^ J J “ do*

23*
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Solution. Consider the region Q bunded by two spheres a, a of radius R 
and q (q < R )  with centres at the point M (jclf y lt Z+ Apply Green’s formula 
(found in Problem 43) to this region, taking for u the above-indicated function, 
and for the function u,

r ' ^ -A T l)2+ (y -y 1)i +(z-2,)J '
d û d2uBy direct differentiation and substitution we are convinced that •5- 5+ 3- ;  +  J dx2 1 dy2

+  ~ = = 0 .  Consequently,

SS ( « - © - .

or

da = 0.

On the surfaces a and o the quantity — is constant and and so can
be taken outside the integral sign. By virtue of the result obtained in Prob
lem 45, we have

a
Hence,

a
but

K i L l I i L - i .
dn dr r2

Therefore,

® a
or

a a
( 1 )
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Apply the theorem of the mean to the integral on the right:

£. ~o
where u (£, ti, £) is a point on the surface of a sphere of radius q with 
centre at the point M (xlf y ly zx).

We make q approach zero; then a(g, v\, £) -+u( x lf y it zx)\

Hence, as q -> 0 we get
O

■£r J J  “ da -*• “ (*i> yt> zi)4rt-

Further, since the left side of (1) is independent of q, it follows that a 
Q-fO we finally get

^Fl l “d<T=4n“^ 1’ y" 2,)
or

Z‘)==4 l ^ W ada-



C H A P T E R  XVI

SERIES

SEC. 1. SERIES. SUM OF A SERIES

Definition 1. Let there be given an infinite sequence of num
bers *)

^|l Wjl • • •> • • •
The expression

Uj +  M* +  W|+ • • • • • • (0
is called a numerical series. Here, the numbers ut, . . .
are called the terms of the series.

Definition 2. The sum of a finite number of terms (the first n 
terms) of a series is called the nth partial sum of the series:

Sn ~ U 1 +  U 1 +  • • • +  u n ‘

Consider the partial sums 
s. =  «,,
«, =  «, + « „
s, == u, +  ut +  u„

sn = ul + ut + « ,+  . . . + u n.
If there exists a finite limit

s =  lim sn,
n-+ co

it is called the sum of the series (1) and we say that the series 
converges.

If lira sn does not exist (for example, sn—►oo as n —̂ oo),
n -*■ oo

then we say that the series (1) diverges and has no sum.
Example. Consider the series

a +  aq +  a q * + . . . + a q n- ' +  . . .  (2)
This is a geometric progression with first term a and ratio q (a ^  0).

*) A sequence is considered specified if we know the law by which it is 
possible to determine any term un for a given n.
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The sum of the first n terms of the geometric progression is (when q #  1)
a —aqn 

Sn~  1 —q

a aqn
n 1 —q 1 — <7 *

1) If | (7 1 <  1, then as n -► oo and, consequently,

ton , „ =  lim (  « .
n  oo n  oo \  1 —q 1 —q )  1—q

Hence, in the case of |^ | < 1 ,  the series (2) converges and its sum is

a
s~ r

2) If | q | >  1, then | qn | oo as n oo and then ±  oo as n oo,
that is, lim does not exist. Thus, when |^ | >  1, the series (2) diverges.

n - > o o

3) If <7 = 1, then the series (2) has the form

In this case
Cl -j- Cl -J- Cl *{- . . .  

sn =  nat lim s n =  oo,
n -*■ oo

and the series diverges.
4) If q — — 1, then the series (2) has the form

Cl — Cl -{- Cl — CL -|- . . .
In this case

( 0 when n is even, 
n I a when n is odd.

Thus, sn has no limit and the series diverges.
Thus, a geometric progression (with first term different from zero) conver

ges only when the ratio of the progression is less than unity in absolute 
value.

Theorem 1. If a series obtained from a given series (1) by sup- 
pression of some of its terms converges, then the given series itself 
converges.

Conversely, if a given series convergesy then a series obtained 
from the given series by suppression of several terms also converges. 
In other words, the convergence of a series is not affected by the 
suppression of a finite number of its terms.

Proof. Let sn be the sum of the first n terms of the series (1), 
cky the sum of k suppressed terms (we note that for a sufficiently 
large n, all suppressed terms are contained in the sum s„), and 
on_k is the sum of the terms of the series that enter into the
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sum s„ but do not enter into ck. Then we have

where ck is a constant that is independent of n.
From the last relationship it follows that if lim on_k exists,

n  —► co

then lim sn exists as well; if lim sn exists, then lira on_k also
n  —► oo n  - >  oo n  —► oo

exists; which proves the theorem.
We conclude this section with two simple properties of series. 
Theorem 2. If a series

ai +  ai +  • • • (3 )

converges and its sum is s, then the series
cat + ca2+ . . .  (4)

where c is some fixed number, also converges, and its sum is cs.
Proof. Denote the nth partial sum of the series (3) by sn, and 

that of the series (4), by a„. Then
a„ =  caI +  . . .  +  can = c (a, +  . . .  + o n) =  cs„.

Whence it is clear that the limit of the nth partial sum of the 
series (4) exists, since

lim <j„= lim (csn) — c lim s„ =  cs.
n  -*> oo n - +  co n  oo

Thus, the series (4) converges and its sum is equal to cs.
Theorem 3. If the series

ai *F at *t* • • • (5)
and

+  bt +  . . .  (6)
converge and their sums, respectively, are s and s, then the series 

(ai +  ^i) +  (a» +  bt) +  . . .  (7)
and

(a,—b,) +  (a,—&,) +  ••• (8)
also converge and their sums are s +  s and s—s, respectively.

Proof. We prove the convergence of the series (7). Denoting 
its nth partial sum by on and the nth partial sums of the series (5)
and (6) by s„ and sn, respectively, we get

°>» =  (Qi +  ^ i)+  • • • + ( an +  ^n)==
=  (<*! + . . . - ( -  an) (b, +  . . .  +  ba) — sn +  s„.
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Passing to the limit in this equation as n —*-<x>, we get 

lim crn=  lim (s„-f-s„) =  lim ~s„-l- lim sB= s  +  s.
n -► oo n-> co n-+co n-+co

Thus, the series (7) converges and its sum is s-f-s.
It is analogously proved that the series (8) also converges and

its sum is equal to s—s.
Of the series (7) and (8) it is said that they were obtained by 

means of termwise addition or, respectively, termwise subtraction 
of the series (5) and (6).

SEC. 2. NECESSARY CONDITION FOR CONVERGENCE 
OF A SERIES

One of the basic questions, when investigating series, is that 
of whether the given series converges or diverges. We shall 
establish sufficient conditions for one to decide this question. We 
shall also examine the necessary condition for convergence of a 
series; in other words, we shall establish a condition for which 
the series will diverge if it is not fulfilled.

Theorem. If a series converges, its nth term approaches zero as n 
becomes infinite.

Proof. Let the series
ui +  Uj +  u, +  . . .  +  un -f- . . .

converge; that is, let us have the equality
lim sn = s,tl —b CO

where s is the sum of the series (a finite fixed number). But then 
we also have the equation

lim sB_ ,= s ,
n-+ co

since (n— 1) also tends to infinity as n —>-oo. Subtracting the 
second equation from the first termwise, we obtain

lim sn— lim srt_, =  0

or

But

lim (s„—s„_,) =  0.
n  - >  oc

Sn — S „ _ ,  =  U „ .
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Hence,
lim un = 0,
n-> o

which is what was to be proved.
Corollary. If the nth term of a series does not tend to zero as 

n —+ oo, then the series diverges.
Example. The series

1 2  3 n
T+T+T+-+STH + -

diverges, since

„i”.  ( s t t ) - ! ’10-
We stress the fact that this condition is only a necessary con

dition, but not a sufficient condition; in other words, from the 
fact that the nth term approaches zero, it does not follow that the 
series converges, for the series may diverge.

For example, the so-called harmonic series

1 + T  +  T  +  T + - -  - + T + - -  •
diverges, although

lim u„=  lim — =  0.n nn —w on ri on

To prove this, write the harmonic series in more detail: 

1 +  Y + T  +  T  +  y  +  ̂ + j 7 + J  +

+  T  +  re +  !T + ll +  A +  l i + A +  l^ +  T7+  •• • ( 1 )

We also write the auxiliary series

1 + T  +  T  +  T  +  TT +  TT+ '5' +  ‘5' +
16 terms

- - + A + - ••

The series (2) is constructed as follows: its first term is equal 
to unity, its second is '/2, its third and fourth are */.> the fifth 
to the eighth terms are equal to '/„, the terms 9 to 16 are equal 
to ' / hi the terms 17 to 32 are equal to '/«> etc.
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Denote by s^  the sum of the first ti terms of the harmonic 
series (1) and by s<,2) the sum of the first n terms of the series (2).

Since each term of the series (1) is greater than the correspond
ing term of the series (2) or equal to it, then for n >  2

s<'>>S<2>. (3)

We compute the partial sums of the series (2) for values of n 
equal to 2 \ 2’, 2 \ 2\  2!:

i , l  3 St — 1 +  2 ~  2 ’

s4= I+TF +  It  +  t ) 3  1 +  T +  T == 1 +  2 *T’ 

s»=1 + T + ( t  +  t )  +  ( t  +  ¥  +  ^  +  ¥ )  =  1 +  3 ‘T ’

si« =  1 +  2' +  ( "4+ t ) +  (¥■*■•••■*■ 8"̂  ( l6 “̂  ' ' ’ + I6  )
4 terms 8 terms

=  1 + 4 -y ,

ssi= 1 + 4  +  ( t  +  t ) +  ( ¥ + " - + ¥ )  +  (re+- ••+!?) +v v - '
4 terms 8 terms

+  ( i + - -  - + i )  = 1 + 5 ,y i^
16 terms

in the same way we find that Sj« =  l + 6 '- - ,  s 2t =  1+7--— and,

generally, s / =  1 ■
Thus, for sufficiently large k, the partial sums of the series (2) 

can be made greater than any positive number; that is,

lim s<f> =  oo,
n-±co

but then from the relation (3) it also follows that
lim s£> =  oo

n -*• oo

which means that the harmonic series (1) diverges.
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SEC. 3. COMPARING SERIES WITH POSITIVE TERMS

Suppose we have two series with positive terms:
U \ " f ”  U 2 +  U i  " H  • • • +  U n  4 "  • • • > ( 0

y1 +  yl + y , +  . . .  +  y „ + . . .  (2)
For them the following assertions hold true.
Theorem 1. If the terms of the series (1) are not greater than 

the corresponding terms of the series (2); that is,
U „ ^vn (n=  1, 2, . . . )  (3)

and the series (2) converges, then the series (1) also converges.
Proof. Denote by sn and on, respectively, the partial sums of 

the first and second series:
n n

i=l i=i
From the condition (3) it follows that

(4)
Since the series (2) converges, its partial sum has a limit a:

lim o„ =  o.
n  -*■ oo

From the fact that the terms of the series (1) and (2) are posi
tive, it follows that o „ < a , and then by virtue of (4)

S„<<7.
We have thus proved that the partial sums sn are bounded. 
We note that as n increases, the partial sum s„ increases, and 
from the fact that the sequence of partial sums is bounded and 
increases, it follows that it has a limit *)

lim sn =  s,
n  oo

and it is obvious that
s ^ a .

Using Theorem l,we can judge of the convergence of certain series.

*) To convince ourselves that the variable sn has a limit, let us recall a 
condition for the existence of a limit of a sequence (see Ch. II): **if a vari
able is bounded and increases, it has a lim it.” Here, the sequence of sums sn
is bounded and increases. Hence it has a limit, i. e., the series converges.
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Example 1. The series

1 + 22+3F + 44 + -- -+^ri+*“
/

converges because its terms are smaller than the corresponding terms of the 
series

1 + 22 + 23+28+24 + -.-+ 27*+...
But the last series converges because its terms, beginning with the second, 
form a geometric progression with common ratio — . The sum of this series

is equal to 1 ~  . Hence, by virtue of Theorem 1, the given series also con

verges, and the sum does not exceed 1 ~ .

Theorem 2. If thp terms of the series (1) are not smaller than 
the corresponding terms o f the series (2); that is,

“n >  (5)
and the series (2) diverges, then the series (1) also diverges.

Proof. From condition (5) it follows that
s, o„. (6)

Since the terms of the series (2) are positive, its partial sum on 
increases with increasing n, and since it diverges, it follows that

lim on — oo.

But then, by virtue of (6),
lim s„ =  oo,

n co

the series (1) diverges.

Example 2 . The series

1+ 7 ^ + 7 =3+ ---+ F ^ + - -
diverges because its terms (from the second on) are greater than the corre
sponding terms of the harmonic series

1+T + T + " - + i + ---’
which, as we know, diverges.

Note. Both the conditions that we have proved (Theorems 1 
and 2) hold only for series with positive terms. They also hold
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true when some of the terms of the first or second series are zero. 
But these conditions do not hold if some of the terms of the 
series are negative numbers.

SEC. 4. D’ALEMBERT’S TEST 

Theorem (d'Alembert's Test). If in a series with positive terms

u\ + w2 +  w3+ • • • • • • 0 )
the ratio of the ( n - t - l ) s Z  term to the nth term, as n —+ oo, has a 
(finite) limit Z, that is,

then:
1) the series converges for / <  1,
2) the series diverges for / >  1.

(For 1=1,  the theorem cannot determine the convergence or 
divergence of the series.)

Proof. 1) Let Z<1. Consider a number q that satisfies the 
relationship l< q < .  1 (Fig. 342).

From the definition of a limit and relation (2) it follows that 
for all values of n after a certain integer N, that is, for n ^ N ,  
we will have the inequality

“ n  +  i  
“ n

< ? . (2')

Indeed, since the quantity tends to the limit I, the dif-un
ference between the quantity and the number / may (after aUn
certain N) be made less (in absolute value) than any positive 
number, in particular less than q — /; that is,

“n + i I <  q—Z.

Inequality (2') follows from this last inequality. Writing this 
inequality for various values of n, from N onwards, we get

^N+1 ^
u n +2  <  Q u n +  i ^  Q Zu n > 

u n + 2 <  Q U N + 2  <
(3)
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Now consider the two series
u i +  +  w i +  • • • + « t v +  U N + i +  wa t+ 2 +  • • •> ( 0

«w+<7«;v+<7sMjv+ - - -  O')
The series (1') is a geometric progression with positive common 

ratio q<. 1. Hence, this series converges. The terms of the

~0 I Unk q ‘ u„
4-
/

F/g. 542.

0

M H
1 “o±t I

un
Fig. 343.

series (1), after uN+v are less than the terms of the series (T). 
By Theorem 1, Sec. 3, and Theorem 1, Sec. 1, it follows that 
the series (1) converges.

2) Let / >  1.
Then from the equation lim ^±1 =  / (where /> 1 )  it follows

n  -► ao u n
that, after a certain N, that is for n>=N, we will have the 
inequality

un+ 1  ^  |

(Fig. 343), or wrt:M> w rt for all n ^ N .  But this means that the 
terms of the series increase after the term N 1, and for this 
reason the general term of the series does not tend to zero. Hence, 
the series diverges.

Note 1. The series will also diverge when lim ^ ^  =  oo. This
n  -► oo u n

follows from the fact that if lim ^ ^  =  00, then after a certain
n  -► 00 u n

n = N we will have the inequality or un+l> u n.
u n

Example 1. Test the following series for convergence:

1 + n  + T O + •1 •+ T 7 F 3 ^7 ^+ • •'
Solution. Here,

_  1 _  1 _  1 1 
1 *2... n nl ’ "n+I 1 - 2.. .n (ra +  l ) ~ (n  + 1)1 ’

“n+i_  ft I 1
«„ (n +  l) l n + 1 *
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Hence,
lim ti n ± l  — l i m —!— =  0 <  1.

n  —► co U n  n  co t l  - j -  1

The series converges.
Example 2. Test for convergence the series

! + ! 4 + . . . + ? + ...

Solution. Here,
2» 
n

2n + i
“n+,==r + T ! “n+i_2  w lim - n+1 =  lim 2 = 2 >  1.

U n  / Z - j - 1  oo n  -► oo

The series diverges and its general term u„ approaches infinity.

Note 2. D’Alembert’s test tells us whether a given positive 
series converges; but it does so only when lim exists and is

n  co ^  n
different from 1. But if this limit does not exist or if it does 
exist and lim ^ ^ = 1 ,  then d’Alembert’s test does not enable us

n-*« «»
to tell whether the series converges or diverges, because in this 
case the series may prove to be both convergent and divergent. 
Some other test is needed to determine the convergence of such 
series.

It will be noted, however, that if lim ^±> =  1, but the ratio
f t - *  oo U n

for all n (after a certain one) is greater than unity, the se- 

ries diverges. This follows from the fact that if 1, then
U n

and the general term does not approach zero as n —►oo. 
To illustrate, let us examine some examples.
Example 3. Test for convergence the series

+ T + --- n + 1
Solution. Here,

n + 1
lim fh*±I =  lim

n -► oo Un n-+ oo n
n + l

lim
n  oo

n2-\-2n +1  
n2-±2n

In this case the series diverges because >  1 for all m
u n

»n+i _ n2+ 2 n + l
n2 + 2n ^  •
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Example 4. Using the d’Alembert test, examine the harmonic series

1+T + y + " , + 'i '+ ’-’

We note that un =  — , un+x = ti-\- 1 and, consequently,

: 1 .lim if2± i =  lim —
n - >  oo n  - >  oo n  1

Thus, d'Alembert’s test does not allow us to determine the convergence or 
divergence of the given series. But we earlier found out by a different 
expedient that a harmonic series diverges.

Example 5. Test for convergence the series

1 i + ..._ L + _ L + _ L ,  _
1 -2 ^ 2 . 3 ^ 3 - ‘ n ( n + l )

Solution. Here,

: 1.

1 _  1
“n+I (n +  1) (« +  2) ’

lim !f"±I =  lim lim - J — .
n-+ oo Un n-+  oo (fl -f- 1) (rt -f- 2) n-+ oo r t - f -2

D’Alembert’s test does not permit us to infer that the series converges; 
but by other reasoning we can establish the fact that this series converges. 
Noting that

1 =  1___1_
n n n-\- 1 ’

we can write the given series in the form

The partial sum of the first n terms, after removing brackets and cancell
ing, is

s» = l- 1ti -f*1
Hence,

lim sn— lim M ------ L _ ) = : i .
n  —► oo n - > o o \  n -f- I  J

That is, the series converges and its sum is 1.

SEC. 5. CAUCHY’S TEST

Theorem (Cauchy’s Test). If for a series with positive terms
Ul +  U, +  Uj +  • • • + Un +  • • • (1)

the quantity \ /u n has a finite limit I as n —coo, that is,
lim v/~iTn = l ,
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then: 1) for / C  1, the series converges;
2) /or / >  1, the series diverges.

Proof. 1) Let / < 1 .  Consider the number q that satisfies the 
relation / <  q <  1.

After some n — Nvj e  will have the relation

whence it follows that
W u n— l \ < q  — l\

Q
or

Un<Q]
for all n ^ N .

Now consider two series:
U \  +  U t  +  U i  +  * • • +  U N ^ ~ U N +1 +  u N + t  +  • • •* (1)

q*'+qN+' + q * '" + . . .  O')
The series (T) converges since its terms form a decreasing 

geometric progression. The terms of the series (1), after uN, are 
less than the terms of the series (I7). Consequently, the series (1) 
converges.

2) Let / > 1 .  Then, after some n = N , we will have

V u n >  1
or

«»>*•
But if all the terms of this series, after uN, exceed 1, then the 
series diverges, since its general term does not tend to zero.

Example. Test for convergence the series 
1- + (4 W +- * t e r ) ' -

Solution. Apply the Cauchy test:

lim V « „ =  lim | f  ( s r x r )  =  lim
n  -►  oo n  oo f  \ 2 n - f - l  J  n  - +  a

The series converges.
oo 2/i -f-T 2= Tr< 1.

Note. As in the d’Alembert test, the case

lim y/l^n — l — 1
n  -► oo

requires further investigation. Among the series that satisfy this 
condition are convergent and divergent series. Thus, for the har-
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monic series (which is known to be divergent)

Here, the numerator and denominator of the fraction approach 
infinity. Applying 1'HospitaTs rule, we find

we also have the equality

but this series converges, since if we suppress the first term, the 
terms of the remaining series will be less than the corresponding 
terms of the converging series

(see Example 5, Sec. 4).

SEC. 6. THE INTEGRAL TEST FOR CONVERGENCE 
OF A SERIES

Theorem. Let the terms of the series
ui U2 4“ • • • ~t~ un +  

be positive and not increasing, that is,

To be sure, we shall prove Indeed,

Thus, In

For the series

t + * H + ■ • • + * + ■ • • ’

1-2 +  2.3+ • • • + rt(n+l)-r •••

( 1)
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and let f(x) be a continuous nonincreasing function such that

/(!) =  «,; /(2) =  w,; f(n)=-un. (2)
Then the following assertions hold true.
1) if the improper integral

oo
S f w  Ax

converges (see Sec. 7, Ch. XI), then the series (1) converges too;
2) if the given integral diverges, then the series (1) diverges 

as well.
Proof. Depict the terms of the series geometrically by plotting 

on the x-axis the numbers 1, 2, 3, . . . ,  n, n +  1, . . .  of the terms 
of the series, and on the y-axis, the corresponding values of the terms 
of the series . . .  (Fig. 344).

In the same coordinate system plot the graph of the continuous 
nonincreasing function

y = f(x)

which satisfies condition (2).
An examination of Fig. 344 shows that the first of the construct

ed rectangles has base equal to 1 and altitude f (\ )  — ut. The
area of this rectangle is thus The area of the second one is u2, 
and so on; finally, the area of the last (nth) of the constructed 
rectangles is un. The sum of the areas of the constructed rectangles 
is equal to the sum s„ of the first n terms of the series.
On the other hand, the step-like figure formed by these rectangles
embraces a region bounded by the curve y — f(x) and the straight 
lines x = l ,  x =  n-Fl ,  y =  0; the area of this region is equal to
n + i

 ̂ f(x)dx.  Hence,
1 n +1

s„> $ f(x)dx.  (3)

Let us now consider Fig. 345. Here the first of the constructed 
rectangles on the left has altitude and so its area is 
The area of the second rectangle is u2, and so forth. The area 
of the last of the constructed rectangles is u.,+1. Hence, the sum 
of the areas of all constructed rectangles is equal to the sum of 
all terms of the series beginning from the second to the (n +  l)s t
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or sn+1 — On the other hand, it is readily seen that the step
like figure formed by these rectangles is contained within the

curvilinear figure bounded by the curve y = f(x) and the straight 
lines x — l, x = n + 1, y — 0. The area of this curvilinear figure

n +1

is equal to  ̂ f(x)dx.  Hence,

whence

sn+, —« , <
n+i
$ }(x)dx,

n + i
Sn +1 <C i  f(x)dx-\-ux. (4)

Let us now consider both cases.
CO

1. We assume that the integral converges, that is,
1

has a finite value.
Since

7t +  l 09

J fix) dx<c\ f {x)  dx,
1 1

it follows, by virtue of inequality (4), that
09

S n  <  S /» +  j  <  ^  /  ( # )  < &  +  « , •

1
Thus, the partial sum s„ remains bounded for all values of n. 
But it increases with insreasing n, since all the terms u„ are
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positive. Consequently, s„ (as n —>-oo) has the finite limit

lim sn = s
n -> oo

and the series converges. 00
2. Assume, further, that J f  (x) dx = oo. This means that

1n + i
J f(x)dx increases without bound as n increases. But then, by
1

virtue of inequality (3), sn likewise increases indefinitely with n\ 
the series diverges.

The theorem is thus proved completely.

Example. Test for convergence the series

1 , 1 . 1 .  . 1  .
\p ^  2P ^  3  ̂^  ’ ^  nP r  ' ' •

Solution. Apply the integral test, putting

i <«>-?•

This function satisfies all the conditions of the theorem. Consider the 
integral

Ncdx f T = ix'~p\" = r h (N'~P~ l) when p * 1'
i [ l n * | ^  =  lnW when p =  l.

Allow N to approach infinity and determine whether the improper 
integral converges in various cases.

It will then be possible to judge about the convergence or divergence of 
the series for various values of p.

For
00

1
1

p - 1 ’
the integral is finite and, hence, the series

converges; 

for p <  1»
CD

P dx
\^ p = o o , the integral is infinite, and the series diverges;
i

09p dx
for p =  l, \ —  =  oo, the integral is infinite, and the series diverges.
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We note that neither the d’Alembert test nor the Cauchy test, which 
were considered earlier, decide whether the series is convergent or not, since

11m  ~- ” + 1  =  l i m ( V  =  1,
n - +  oo U n  n -► oo “ r  1 /

Um V u n=  lim — =  lim (  l / ' - i - )  =1P  =  1-
n  —>  co n  - * ■ »  r  “  n -► co \  r  "  /

SEC. 7. ALTERNATING SERIES. LEIBNIZ’ THEOREM

So far we have been considering series whose terms are all 
positive. In this section we consider series whose terms have 
alternating signs, that is, series of the form

ul— u2 + us — uA+  . . ., (1)

where ul9 u2, . . .  , un, . . .  are positive.
Leibniz* Theorem. If in the alternating series

ul— ut + ut — ul + . . .  («„>0) (1)
the terms are such that

« » > « * > “. > • • •  (2)
and

lim un — 0, (3)
n - >  oo

then the series (1) converges, its sum is positive and does not 
exceed the first term.

Proof. Consider the sum of the first n = 2m terms of the 
series (1):

=  (“ , — «,) + (« . — “* ) + • • . +  , — «„)•
From condition (2) it follows that the expression in each of 

the brackets is positive. Hence, the sum s2m is positive,

and increases with increasing m.
Now write this sum as follows:
®2/» ~ u \  (wi ĵ) (̂ 4 U i )  • • • ( u t m - 2

By virtue of condition (2), each of the parentheses is positive. 
Therefore, subtracting these parentheses from ut we get a number 
less than ult or

hm O i -
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We have thus established that stm increases with increasing m 
and is bounded above. Whence it follows that s tm  has the limit s:

lim stm =  5,
t i l C D

and
0 < s < u . .

However, we have not yet proved the convergence of the series; 
we have only proved that a sequence of “even” partial sums has 
as its limit the number s. We now prove that “odd” partial sums 
also approach the limit s.

Consider the sum of the first n =  2m +  l terms of the series (1):
S2#! + 1 = Sin~̂ ~ Uzm + \-

Since, by condition (3), lim uim+l — 0, it follows that
m  - >  oo

lim «*„+,= lim s*,„ +  Km =  Km s tm =  s .
m  - >  oo m  ->• »  m  - >  oo m  oo

We have thus proved that lim s„ =  s both for even n and
n  -*■ co

for odd n. Hence, the series (1) converges.
Note 1. The Leibniz theorem may be illustrated geometrically 

as follows. Plot the following partial sums on a number line 
(Fig. 346):
S , = « , ,  Sj =  u ,  —  u t  =  s ,  —  u t , S, =  Sj +  M„ s l  =  s ,  —  u l , s f  =  s t + u it  
etc.

The points corresponding to partial sums will approach a 
certain point s, which depicts the sum of the series. Here, the

points corresponding to the 
even partial sums lie on 
the left of s, and those 
corresponding to odd sums, 
on the right of s.

Note 2. If an alternating 
series satisfies the statement 
of the Leibniz theorem, 
then it is easy to evaluate 
the error that results if 

we replace its sum, s, by the partial sum s„. In this substi
tution we suppress all terms after But these numbers form
by themselves an alternating series, whose sum (in absolute value) 
is less than the first term of this series (that is, less than u„+1). 
Thus, the error obtained when replacing s by s„ does not exceed 
(in absolute value) the first of the suppressed terms.

^ ----------------u2--------
u3

^ ------- U s-------- ►

* S4. Sff s % $3
Fig. 346.

sr uf
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Example 1. The series
i _ ! + 1 - I +

2 ^ 3  4 ^
converges, since

i 1 11) i>  2 > -3> ---5

2) lim un=  lim — =  0 .
n  —*■ co n  —► co ^

The sum of the first n terms of this series

s« = l - Y + T ~ T + ---+(“ 1)n^
differs from the sum s of the series by a quantity less than 

Example 2 . The series
i _ ± + I _ ! +

21^ 3! 4! *̂ * * *

1
n+1 #

converges by virtue of the Leibniz theorem.

SEC. 8 . PLUS-AND-MINUS SERIES. ABSOLUTE 
AND CONDITIONAL CONVERGENCE

We give the name plus-and-minus series to a series that has 
both positive and negative terms.

Obviously, the alternating series considered in Sec. 7 is a 
special case of plus-and-minus series*).

We shall consider some properties of alternating series.
In contrast to the agreement made in the preceding section we 

will now assume that the numbers ulf u2t . . .  , un . . .  can be 
both positive and negative.

First, let us give an important sufficient condition for the 
convergence of an alternating series.

Theorem 1. If the alternating series
ui + ut + • • • + “» + • • •  (1)

is such that a series made up of the absolute values of its terms,
I ui I +  | 1 +  • • • + 1 tin | +  . . . ,  (2)

converges, then the given alternating series also converges.
Proof. Let sn and on be the sums of the first n terms of the 

series (1) and (2).

*) In this English edition we shall use the term alternating series for 
both types.— 7V.
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Also, let sn be the sum of all the positive terms, and s", the 
sum of the absolute values of all the negative terms of the first 
n terms of the given series; then

sn = s' — s"; crn =  s' +  s"n n n 1 n n 1 n

By hypothesis, on has the limit a; sn and s"n are positive in
creasing quantities less than a. Consequently, they have the 
limits s' and s". From the relationship [s„ =  s'rt— s"n it follows that 
sn also has a limit and that this limit is equal to s' — s", which 
means that the alternating series (1) converges.

The above-proved theorem enables one to judge about the 
convergence of some alternating series. In this case, the test for 
convergence of the alternating series reduces to investigating a 
series with positive terms.

Consider two examples.
Example 1. Test for convergence the series

sin a sin 2a sin 3a sin na /0

where a is any number.

Solution. Also consider the series 
I sin a
| “I5™

and
1 + 1 + 1 +  1* ^2*

+
sin 2a sin 3a , , I sin na

22 + 32 + ■ (4)

(5)

The series (5) converges (see Sec. 6). The terms of the series (4) are not 
greater than the corresponding terms of the series (5); hence, the series (4) 
also converges. But then, in virtue of the theorem just proved, the given 
series (3) likewise converges.

Example 2. Test for convergence the series
Jt _ 3T _ It , .  JTc o s—  cos 3 —  cos 5 —  cos (2/i — 1) —

— 3—  +  — p — + ----p — + • • •  + ----------- 3*-----------+ • • •  (6)

Solution. In addition to this series, consider the series

1 y +  3 2 + 3J +  • • • + 371+ •  • • (7)

This series converges because if is a decreasing geometric progression with 

ratio -i- . But then the given series (6) converges, since the absolute valuesu
of its terms are less than those of the corresponding terms of the series (7).
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We note that the convergence condition that was proved earlier 
is only a sufficient condition for convergence of an alternating 
series, but not a necessary condition: there are alternating series 
which converge, but series formed from the absolute values of 
their terms diverge. In this connection, it is useful to introduce 
the concepts of absolute and conditional convergence of an 
alternating series and, on the basis of these concepts, to classify 
alternating series.

Definition. The alternating series
U \ +  U2 +  u s +  • • • +  Un +  • • • ( 0

is called absolutely convergent if a series made up of the absolute 
values of its terms converges:

I U 1 I +  I Uz I +  I u i I +  • * • +  I Un I +  • • • (2)
If the alternating series (1) converges, while the series (2) 

composed of the absolute values of its terms diverges, then the 
given alternating series (1) is called a conditionally convergent 
series.

Example 3. The alternating series

is conditionally convergent, since a series composed of the absolute values 
of its terms is a harmonic series,

1+y + l + T + --- •
which diverges. The series itself converges (this can be readily verified by 
Leibniz’ test).

Example 4. The alternating series

i _ ± + ± _ ± + . . .
2! t 3! 41 ^

is absolutely convergent, since a series made up of the absolute values of 
its terms,

1+jf+ jr +ir+---
converges, as established in Sec. 4 .

Theorem 1 is frequently stated (with the help of the concept 
of absolute convergence) as follows: every absolutely convergent 
series is a convergent series.

In conclusion, we note (without proof) the following properties 
of absolutely convergent and conditionally convergent series.
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Theorem 2. If a series converges absolutely, it remains abso
lutely convergent for any rearrangement of its terms. The sum of 
the series is independent of the order of its terms.

This property does not hold for conditionally convergent series.
Theorem 3. If a series converges conditionally, then no matter 

what number A is given, the terms of this series can be rearranged 
in such manner that its sum is exactly equal to A. What is morey 
it is possible so to rearrange the terms of a conditionally conver
gent series that the series resulting after the rearrangement is 
divergent.

The proofs of these theorems are beyond the scope of this course.
To illustrate the fact that the sum of a conditionally convergent 

series can change upon rearrangement of its terms, consider the 
following example.

Example 5. The alternating series

l - i + T - T + " ‘ (8)
converges conditionally. Denote its sum by s. It is obvious that s > 0 .  
Rearrange the terms of the series (8) so that two negative terms follow one 
positive term:

1_ i _ i + l _ l _ l +  + _ J ______»____1
2 4 ‘ 3 6  8  T  T 2ft— 1 4k—2 4k + ... (9)

We shall prove that the resultant series converges, but that its sum s' is 
half the sum of the series (8): ~ s .  Denote by sn and sn the partial sums of 

the series (8) and (9). Consider the sum of 3k terms of the series (9):

Consequently,

1 f ,  1 , 1  1 , , 1 1 \ _  1 „
— 2 1 / 2 + 3 4 + " ' + 2k — 1 2kJ 2 Sjft‘

lim s'3k =  lim 4 - =S2k — Q S*

k

(  Stk + 2A +  l ) ~  2 S*

1Hn»s,ft+2==lim ( s,*+ 2 F n —4̂ + 2) = ‘2 s.

Further,
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And we obtain
lirn s'„ =  s' = T s.oo

Thus, in this case the sum of the series changed after its terms were 
rearranged (it diminished by a factor of 2).

SEC. 9. FUNCTIONAL SERIES

The series ul + u2 +  . is called a functional series
if its terms are functions of x.

Consider the functional series

u i ( * )  +  Uz ( x ) +  U i ( * )  +  • • • +  Un ( * )  +  • • • ( 1 )

Assigning to x definite numerical values, we get different 
numerical series, which may prove to be convergent or divergent.

The set of all those values of x for which the functional series 
converges is called the domain of convergence of the series.

Obviously, in the domain of convergence of a series its sum is 
some function of x . Therefore, the sum of a functional series is 
denoted by s(*).

Example. Consider the functional series

This series converges for all values of x in the interval (— 1, 1), that is, 
for all x that satisfy the condition | * | < 1 .  For each value of x in the

interval (— 1, 1), the sum of the series is equal to sum a

decreasing geometric progression with ratio x). Thus, in the interval (— 1, 1) 
the given series defines the function

which is the sum of the series; that is,

Denote by sn(x) the sum of the first n terms of the series (1). 
If this series converges and its sum is equal to s(x), then

s(x) = s„(x)+rH (x), 

where rn(x) is the sum of the series «„+, (*) +  «n+j (*)+• . . . .  i.e., 

'»W  =  «n+1 (*)+
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Here, the quantity rn(x) is called the remainder of the series (1). 
For all values of x in the domain of convergence of the series we 
have the relation liin sn(x) = s(x)\ therefore,

n oo
litn rn(x) = lim [s(*)—s„(;t)] =  0,

n  -► od n  —► oo

which means that the remainder rn (x) of a convergent series ap
proaches zero as n —»-oo.

SEC. 10. DOMINATED SERIES

Definition. The functional series
«, (■*) +  U, (*) +  «, (*) +  • • • +  Un (x) +  . t t  (t)

is called dominated in some range of x if there exists a conver
gent numerical series

ai “F az +  a 3 • • • +  Un 4- • • • (2)
with positive terms such that for all values of x from this range 
the following relations are fulfilled:

I«1 ( * ) ( < « , .  I M * ) | < a 2............... K ( * ) l < « n. • • •  (3)

In other words, a series is called dominated if each of its terms 
does not exceed, in absolute value, the corresponding term of some 
convergent numerical series with positive terms.

For example, the series
cos x , cos 2x , cos 3x , , cos nx ,
—j— i -  —22— i  32— -r  • • • -r  +  • • •

is a series majorised on the entire jc-axis. Indeed, for all values 
of x , the relation

cos nx I
I & ( n = l .  2, •).

is fulfilled and the series
1 + 1 + 1 +
1 - t -  2 J T  3»  +  • • •»

as we know, converges.
From the definition it follows straightway that a series domina

ted in some range converges absolutely at all points of this range 
(see Sec. 8). Also, a dominated series has the following important 
property.

Theorem. Let the functional series
« i W + « . W +  ••• +  «„ ( * ) + . . .
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be dominated on the interval [a, b\. Let s(x) be the sum of this 
series and sn(x) the sum of the first n terms of this series. Then 
for each arbitrarily small number e > 0  there will be a positive 
integer N such that for all n ^ N  the following inequality will be 
fulfilled,

I *(*) — ■S»(*)l<8,
no matter what the x of the interval [a, b].

Proof. Denote by a the sum of the series (2):
a =  a 1 +  aJ +  a ,  +  . . .  + a n-(-an+1+  . . . .

then
of =  (rn +  en>

where an is the sum of the first n terms of the series (2), and en 
is the sum of the remaining terms of this series; that is,

en =  an + i +  an + S+  ■ • •
Since this series converges, it follows that

lim cr„ =  of
n  oo

and, consequently,
lim e„ = 0.

Let us now represent the sum of the functional series (1) in the 
form

s (*) =  sn (x) +  rn (x),
where

S„ (*) =  « , ( * ) +  • • • + « »  (*).
f n (■*) ~  + i (•*■) ^n + t C*0 “t~^n + t (* ) ■)“ • • •

From condition (3) it follows that
I Wn +  i (•*•) I ^ ° n  +  i> | u i H - i W | ^ a / i + j i  • • • >

and therefore
I rn ( a; )  | <  e „  

for all x of the range under consideration.
Thus,

|s(*)—s» (*)!<«»
for all x of the interval [a, b], and e„—*-0 as n —*oo.

Note 1. This result may be represented geometrically as follows. 
Consider the graph of the function y = s(x). About this curve 

construct a band of width 2e„; in other words, construct the



736 Series

curves y — s(x) -f- e„ and y = s(x)—e„ (Fig. 347). Then for any e„ the 
graph of the function s„(x) will lie completely in the band under 
consideration. The graphs of all successive partial sums will like

wise lie within this band.
Note 2. Not every function

al series convergent on the 
interval [a, 61 has the pro
perty indicated in the forego
ing theorem. However, there 
are nondominated series such 
that possess this property. 
A series that possesses this 
property is called a uniform
ly convergent series on the 
interval [a, b\.

Thus, the functional series
« iW  +  «1W + • • • +«»  (*) +

+ . . .  is called a uniformly convergent series on the interval [a, b] 
if for any arbitrarily small e > 0  there is an integer N such that 
for all n ^ N  the inequality

|S W -S » W  I < 8

will be fulfilled for any x of the interval [a, 6].
From the theorem that has been proved it follows that a domi

nated series is a series that uniformly converges.

SEC. 11. THE CONTINUITY OF THE SUM OF A SERIES

Let there be a series made up of continuous functions

ui (x) +  ut (•*) +  • • • + “«(•*) +  • • • >
convergent on some interval [a, b].

In Chapter II we proved a theorem which stated that the sum 
of a finite number of continuous functions is a continuous func
tion. This property does not hold for the sum of a series (consist
ing of an infinite number of terms). Some functional series with 
continuous terms have for the sum a continuous function, while 
in the case of other functional series with continuous terms, the 
sum is a discontinuous function.

Example. Consider the series
_i_ _i_ i _L _L 1 1

(x 3 — x) +  ( x i —x 3 ) +  (x 7 — X 8 ) +  . . . +  (x2n+1— x2,l-1) +  . . .
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The terms of this series (each term is bracketed) are continuous functions for 
all values of x. We shall prove that this series converges and that its sum 
is a discontinuous function.

We find the sum of the first n terms of the series:
i

Find the sum of the series: 
if x  >  0 , then i

s =  lim sn ( x ) =  lim (*2n + 1 — x) =  1 — x,
n  -*■ oo t i  —► co

if x  <  0 , then i
s =  lim .s„ (jc)=  lim (— \ x \ 2n + 1— x) — — 1 — jc,

n  -*■ oo n  —► oo

if * =  0, then sn — 0, and so s =  lim sn — 0. Thus, we have
n -+ oo

s (*) =  1 — x  for x  >  0, 
s (x) =  —  1 — x  for x  <  0, 
s(x) =  0 fo r j c = 0 .

And so the sum of the given series is a discontinuous function. Its graph is 
shown in Fig. 348 along with the graphs of the partial sums s, (x), s2 {x), 
and s, (jc).

The following theorem holds true for dominated series.
Theorem. The sum of a series of continuous functions dominated 

on some interval [a, b] is a function continuous on this interval.
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Proof. Let there be a series of continuous functions dominated 
on the interval [a, b]:

ul (x) +  ut {x) + u ,(x )+ . . .  (1)
Let us represent its sum in the form

s(x) =  s„ (x) + rn (x),
where

and
rn (*) =  «„+1 (*) +  «„+, (* )+ •• •

On the interval [a, b\ take an arbitrary value of the argument 
x and give it an increase Ax such that the point x-f-Ax should 
also lie on the interval [a, b\.

We introduce the notations
As =  s (x +  A*)— s (x);

As„ =  s„(x +  Ax)—s„(x);
then

As =  As„ +  r„ (x+ Ax)—r„ (x), 
from which we have

I As | <  [ As„ | +1 r„ (x +  Ax)| + 1 r„ (x) |. (2)
This inequality is true for any integer n.
To prove the continuity of s(x), we have to show that for any 

preassigned and arbitrarily small e > 0  there will be a number 
6 > 0  such that for all |A x | < 8  we will have |A s |< e .

Since the given series (1) is dominated, it follows that for any 
preassigned e > 0  there will be found an integer N such that for 
all n ^ N  (and as a particular case, n = N) the inequality

M * ) l < y  (3)
will be fulfilled for any x of the interval [a, b]. The value x +  Ajc 
lies on the interval [a, b] and therefore the following inequality 
is fulfilled:

| r * ( x + A x ) |< | .  (3')

Further, for the chosen N the partial sum s# (x) is a continuous 
function (the sum of a finite number of continuous functions) and, 
consequently, a positive number 8 may be chosen such that for 
every Ax that satisfies the condition |Ax | < 6  the following 
inequality is fulfilled:

I Asat I <  y • (4)
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By inequalities (2), (3), (3'), and (4), we have

lAsl< T  +  T +  l ==e»
that is,

| As | < e  for |A jk |< 8,
which means that s(x) is a continuous function at the point x 
(and, consequently, at any point of the interval [a, 6]).

Note. From this theorem it follows that if the sum of a series 
is discontinuous on some interval [a, 6], then the series is not 
dominated on this interval. In particular, the series given in the 
example is not dominated (on any interval containing the point 
x = 0, that is to say, a point of discontinuity of the sum of the 
series).

We note, finally, that the converse statement is not true: there 
are series, not dominated on an interval, which, however, converge 
on this interval to a continuous function. For instance, every 
series uniformly convergent on the interval [a, b] (even if it is not 
dominated) has a continuous function for its sum (if, of course, 
all terms of the series are continuous).

SEC. 12. INTEGRATION AND DIFFERENTIATION OF SERIES 

Theorem 1. Let there be a series of continuous functions
u\ W +  ̂ t W +  ••• +  wnW +  •••> (1)

dominated on the interval [a, b\ and let s(x) be the sum of this 
series. Then the integral of between the limits from a to x , 
which limits belong to the interval [a, 6], is equal to the sum o f 
such integrals of the terms of the given series\ that is,

X X X  X

J s (x) dx =  J u, (*) dx +  J ut (x) dx +  . . .  +  J un (*) dx +  . . .
a a a a -

Proof. The function s(x) may be represented in the form
s(*) = s„(*)+ '•„(*)

or
s (*) =  h, (x) +  «, (*) +  . . .  +  un (x) +  ra (x).

Then
X X  *

§s(x)dx=  )u , (x )d x + $ u ,(x )+  . . . +
a a a

* *
+  $ un{x )d x + lrn(x)dx

a a

24*

(2)
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(the integral of the sum of a finite number of terms is equal to 
the sum of the integrals of these terms).

Since the original series (1) is dominated, it follows that for 
every x we have where e„—*0 as n —►oo. Therefore,

X X  X

(*)\ d x < l  e„dx =  e„{x— a )< e„(6—a).
a a a

Since e„—>-0, it follows that
X

lim \ r n(x)dx — 0 .
n-+ ® a

But from equation (2) we have
X X X  X

J r„ (x) d x = ^ s (x )d x — u1 (x) dx +  . . .  -f  J u„ (x) djcJ .
a a a a

Hence
X X  X

lim s(x)dx— u, (x)dx+  . . .  +  J u„(x) dx]} = 0,
n 00 a a a

or
X X X

lim £ J ul (x) dx +  . . .  +  J u„ (x) dx]  =  J s (x) dx. (3)
n 00 a a a

The sum in the brackets is a partial sum of the series
X X

$ u1(x)dx+  . . . +  J u„(x)dx+  . . .  (4)
a a

Since the partial sums of this series have a limit, this series 
converges and its sum, by virtue of equation (3), is equal to
X
^s(x)dx, i. e.,
a

x x x  x
J s (x) dx — J «, (x) dx +  J u, (x) dx +  • • • +  $ «„ (x) dx 4- . . . ,
a a a a

this is the equation that had to be proved.
Note 1. If a series is not dominated, term-by-term integration 

of it is not always possible. This is to be understood in the sense
X

that the integral  ̂s(x)dx of the sum of the series (1) is not always
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equal to the sum of the integrals of its terms [that is, to the sum 
of the series (4)].

Theorem 2. If a series,
ut {x) + ut (x)+ . . . + u n(x)+ . . . ,  (5)

made up of functions having continuous derivatives on the interval 
[a, b\ converges (on this interval) to the sum s (x) and the series

U\ (x) 4* Ui (x) 4* . . .  4" un (x) +  . . .  (6)
made up of the derivatives of its terms is dominated on the same 
interval, then the sum of the series of derivatives is equal to the 
derivative of the sum of the original series; that is,

s' (x) =  U\ (x) +  u\ {x) +  U, {x) + . . . +Un{x)+ . . .
Proof. Denote by F (x) the sum of the series (6):

F (x) =  u, (x) +  u2 ( * ) + - . . +  un (x) + . . . ,
and prove that

F (x) = s'(x).
Since the series (6) is dominated, it follows, by the preceding 

theorem, that
x x x  X

J F (x) d x= ^  u\ (x) dx +   ̂u2 (*) dx +  . . .  +  J un (x) dx +  . . .
a a a a

Performing the integration, we get
X

J F (*) dx =  [u, (x)— ut (a)] +
a

+  [«*W — “s (a)] +  • • • +  K  (x)— u„(u)] 4-. • •
But, by hypothesis,

s(a:) =  « ,(x)4-w1(j:)-1- . . .  + u rt(jc)+ . . . ,  
s(u) =  «, (a) +  ut (a) +  . . .  +  un (a) +  . . .  ,

no matter what the numbers x and a on the interval [a, b\. 
Therefore,

X

J F(x)dx = s (x)— s (a).
a

Differentiating both sides of this equation with respect to x, 
we obtain

F (x) =  s' (x).
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We have thus proved that when the conditions of the theorem
are fulfilled, the derivative of the sum of the series is equal to
the sum of the derivatives of the terms of the series.

Note 2. The requirement of dominance (majorisation) of a series
of derivatives is extremely essential, and if not fulfilled it can 
make term-by-term differentiation of the series impossible. This is 
illustrated by a dominated series that does not admit term- 
by-term differentiation.

Consider the series
sin 1 *x . sin 2*x . sin 3*x . . sin n *x  .

r* ■“ 2* ' 3* *■"• • •+ n» +  • • •
This series converges to a continuous function because it is 
dominated. Indeed, for every x its terms are (in absolute value) 
less than the terms of the numerical convergent series with 
positive terms

1 J 1 1 ^ 1  _!_!_!1 - r  22 ' 32 • • • - r  n2r  • • •

Write a series composed of the derivatives of the terms of the 
original series:

cos x +  2* cos 2*x + • • • + n* cos n*x +  . . .
This series diverges. Thus, for instance, for * =  0 it turns into 
the series

l + 2 2 +  32+ . . . + n 2+ . . .
(It may be shown that it diverges not only for x =  0.)

SEC. 13. POWER SERIES. INTERVAL OF CONVERGENCE
Definition 1. A power series is a functional series of the form

ao +  a\x aix* +  • • • +  anxn +  • • •» (1)
where a0, a2, . . . ,  art, . . .  are constants called coefficients of
the series.

The domain of convergence of a power series is always some 
interval, which, in a particular case, can degenerate into a point. 
To convince ourselves of this, let us first prove the following theorem, 
which is very important for the whole theory of power series.

Theorem 1 (Abel’s Theorem). I) If a power series converges for 
some nonzero value x0, then it converges absolutely for any value 
of x, for which

W<KI;
2) if a series diverges for some value xa, then it diverges for every 
x for which

M>KI-
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Proof. 1) Since, by assumption, the numerical series
aa + axXt + atx \ + . . .+ a nx * + . . .  (1')

converges, it follows that its common term anx"—► () as n —*00, 
and this means that there exists a positive number M such that 
all the terms of the series are less than M in absolute value. 

Rewrite the serie’s (1) in the form

«.+« ,* . (7. ) + ■ «  ( - ) ■ +  ■ • • +  v ;  (* )"  +  . . .  (la)
and consider a series of the absolute values of its terms:

lao l+ la .jcol|7o| + l a^ l | r o
is of this series 
es
m + m | -  + m

+ •• •+IV»nl|-( + ... (2)
The terms of this series are less than the corresponding terms 

of the series
f  + - - - + M f  + (3)

For |* | < |* 01 the latter series is a geometric progression with 
ratio — <  1 and, consequently, converges. Since the terms of the*0
series (2) are less than the corresponding terms of the series (3), 
the series (2) also converges, and this means that the series (la) 
or (1) converges absolutely.

2) It is now easy to prove the second part of the theorem: let 
the series (1) diverge at some point x '. Then it will diverge at 
any point x that satisfies the condition |* l> |* 0|. Indeed, if at
some point x that satisfies this condition the series converged, then 
by virtue of the first part (just proved) of the theorem, it should 
converge at the point x9 as well, since | * ' | •< | * |. But this con
tradicts the condition that at the point x0 the series diverges.
Hence the series diverges at the point * as well. The theorem is 
thus completely proved.

Abel’s theorem makes it possible to judge the position of the 
points of convergence and divergence of a power series. Indeed, 
if x0 is a point of convergence, then the entire interyal (—| jc0 |, 
|jc0 | ) is filled with points of absolute convergence. If x\ is a point 
of divergence, then the whole infinite half-line to the right of the 
point | x '01 and the whole half-line to the left of the point —|x '| 
consist of points of divergence.

From this it may be concluded that there exists a number R 
such that for we have points of absolute convergence and
for | jc|> /? ,  points of divergence.
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We thus have the following theorem on the structure of the 
domain of convergence of a power series:

Theorem 2. The domain of convergence of a power series is an 
interval with centre at the coordinate origin.

Definition 2. The interval of convergence of a power series is an 
interval from —R to + R such that for any point x lying inside

Series converges

Series diverges Series diverges
Fig. 349.

this interval, the series converges and converges absolutely, while 
for points x lying outside it, the series diverges (Fig. 349). The 
number R is called the radius of convergence of the. power series.

At the end points of the interval (at x = R and at x = —R) the 
question of the convergence or divergence of a given series is 
decided separately for each specific series.

We note that in some series the interval of convergence dege
nerates into a point (R =  0), while in others it encompasses the 
entire Jt-axis (R = oo).

We give a method for determining the radius of convergence of 
a power series.

Let there be a series
a„ + atx +  a2x* anxa +  ., ( 1)

Consider a series made up of the absolute values of its terms:
*.i+iai iM + K i i * r + i a.i i*r+
+ KlUl4+ • • •+KIM n+ ••• (4)

To determine the convergence of this series (with positive terms!), 
apply the d’Alembert test.

Let us assume that there exists a limit:

lim ^±>= lim
n _ k  on n  k. on

\ a n + i x
rt +1

an =  lim
n-fco

|* | =  L |* |.

Then by the d’Alembert test the series (4) converges, if L ( j c |< 1; 
that is, if |* |< £ - ,  and diverges if L J jc | >  1, that is, if | j e |> —.

Consequently, series (1) converges absolutely when |jc |< ;^r. But

if [> -!-, then lim t̂  = \x \L >  1 and series (4) diverges, and
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its general term does not tend to zero.*) But then neither does 
the general term of the given power series (1) tend to zero, and 
this means that (on the basis of the necessary condition of con
vergence) this power series diverges (when I•*!>-£-) •

From the foregoing it follows that the interval ( —j - , j- j  is 
the interval of convergence of the power series (1):

£  =  - =  lim I .
^  oo &n +  i  I

Similarly, to determine the interval of convergence we can make 
use of the Cauchy test, and then

^  _____ 1____
lim 5 / I 5 J  ’

f l -> -0 0  W

Example 1. To determine the interval of convergence of the series 

1 +  x +  x2-{-x3 +

Solution. Applying d’Alembert’s test directly, we get

lim
n -► oo

Xn + l
= 1*1-

Thus, the series converges when | * | < 1  and diverges when | * | > 1 . At 
the extremities of the interval (— l, 1) it is impossible to investigate the 
series by means of d’Alembert's test. However, it is immediately apparent 
that when x = — 1 and when x = l  the series diverges.

Example 2 . Determine the interval of convergence of the series

2x (2x)2 (2x )3
1 2 +  3

Solution. We apply the d’Alembert test:

lim
n-*~co

(2x)n+' 
» +  ! 
(2x)n

n
lim

n - +  oo

n
^r+T | 2*l = | 2*|.

The series converges if |2 * | < 1 ,  that is, if |* |  < ~ ;  when the series

converges; when x =  — -• the series diverges.

*) It will be recalled that in proving d’Alembert’s test (see Sec. 4 ) we
found that if l im - 2^ > l ,  then the general term of the series increases and, un
consequently, does not tend to zero.
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Example 3 . Determine the interval of convergence of the series
yt yj ytt

Solution. Applying the d’Alembert test we get

llm “" + '1=  lira 1 f +'n' =  lim X
n-*co U n  1 n  - *  oo [ xn (n +  1 ) 1 n  —*■ oo « +  l

Since the limit is independent of x and 
verges for all values of x.

is less than i

= 0 < 1.

Example 4. The series 1 + x  +  (2x)2+ (3 x ) * + . . . +  (/**)"+ •• • diverges for 
all values of x except x =  0 because {nx)n -► oo as n —► oo no matter what 
the x t as long as it is different from zero.

Theorem 3. The power series
a o +  a \x  +  a zxZ  +  • •  •  +  a nx t l  +  •  •  • (1)

is dominated on any interval [—q, q] that lies completely inside 
the interval of convergence. * I

Interval of convergence

({Iterval of majorisatiom
Fig. 350.

-*■

Proof. It is given that q < R  (Fig. 350) and therefore the num
ber series (with positive terms)

I a o I + 1 a \ 1 6  +  I a 2 1 C *  +  • • •  + 1 a n  I Qn  ( 5 )

converge^. But when | a: | < q , the terms of the series (1) do not 
exceed, in absolute value, the corresponding terms of series (5). 
Hence, series (1) is dominated on the interval [—q, q].

Fig. 351.

Corollary 1. On every interval lying entirely within the interval 
of convergence, the sum of a power series is a continuous function. 
Indeed, the series on this interval is majorised, and its terms are 
continuous functions of x. Consequently, on the basis of Theorem 1, 
Sec. 11, the sum of this series is a continuous function.
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Corollary 2. If the limits of integration a, |J lie within the interval of 
convergence of a power series, then the integral of the sum of the series 
is equal to the sum of the integrals of the terms of the series, be
cause the region of integration may be taken in the interval 
[—q, g], where the series is dominated (Fig. 351) (see Theorem 2, 
Sec. 12, on the possibility of term-by-term integration of a domi
nated series).

SEC. 14. DIFFERENTIATION OF POWER SERIES

Theorem 1. If a power series
s (jr) =  a0 +  axx -f* a2x2 -f- a2x* +  axxl +  . . .  +  anxn +  . . .  (1)

has an interval of convergence (—R , R ), then the series
<p(*) =  ay +  2 a2x +  3 a2x* + . . . +  nanxn +  . . . ,  (2)

obtained by termwise differentiation of the series ( I) has the same 
interval of convergence (—R, R); herey

q>(*) = s' (*). 1*1 <R>
i.e.> inside the interval of convergence. the derivative of the sum 
of the power series (1) is equal to the sum of the series obtained by 
termwise differentiation of the series (1).

Fig. 352.

Proof. We shall prove that the series (2) is majorised on any 
interval [—q, q] that lies completely within the interval of con
vergence.

Take a point £ such that Q C l< lR  (Fig. 352). The series (1) 
converges at this point, hence lim a„£"=:0; it is therefore possible

n-*co
to indicate a constant number M such that

I | <  M (n = 1, 2, . . .)•
If |* |< e ,  then 

where

1 _  M < n j q n~l,

q =
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Thus, in absolute value, the terms of the series (2), when 
x | sS q, are less than the terms of a positive number series with 
constant terms:

- ( 1  +  2<7 +  3<7' +  . . .+ n q n- '- f  . . . ) .

But this latter series converges, as will be evident if we apply 
the d’Alembert test:

lim
n  - >  oo

nq n ~ 1
( n — \ ) q n * =  <7< 1.

Hence, the series (2) is majorised on the interval [—q, g], and by 
Theorem 2, Sec. 12, its sum is a derivative of the sum of the 
given series on the interval [—g, g], i.e.,

<p (x) =  s' (at).
Since every interior point of the interval (—R, R) may be 

included in some interval [—g, g], it follows that the series (2) 
converges at every interior point of the interval (—R, R).

We shall prove that outside the interval (—R, R) the series (2) 
diverges. Assume that the series (2) converges when x1> R .  
Integrating it termwise in the interval (0, xt), where < .*j <•*,, 
we would find that the series (1) converges at the point xt, but 
this contradicts the hypotheses of the theorem. Thus, the interval 
(— R, R) is the interval of convergence of series (2). And the 
theorem is proved completely.

Series (2) may again be differentiated term by term, and this 
may be continued as many times as one pleases. We thus have 
the conclusion:

Theorem 2. If a power series converges in an interval (—R, R), 
its sum is a function which has, inside the interval of convergence, 
derivatives of any order, each of which is the sum of a series re
sulting from term-by-term differentiation of the given series an 
appropriate number of times; here, the interval of convergence of 
each series obtained by differentiation is the same interval
(~R,  JO-

s e c .  15. S E R IE S  IN P O W ER S OF x — a 

Also called a power series is a functional series of the form 
a0 +  a, (*—o)+  <*,(*—<*)2+  •••+<*„ {x—<*)"+ . . ( 1)

where the constants a0, a,, . . . ,  an, . . .  are likewise termed coeffi
cients of the series. This is a power series arranged in powers of 
the binomial x —a.
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When a =  0, we have a power series in powers of x, which, 
consequently, is a special case of series (1).

To determine the region of convergence of series (1), substitute 
the variable

x —a = X.

Series (1) then takes on the form
ao ”1" aiX +  atX* +  • • • +  a.nX n +  • • •, (2)

we thus have a power series in powers of X.
Let the interval —R <  X <lR  be the interval of convergence 

of the series (2) (Fig. 353, a). It thus follows that series (1) will 
converge for values of x that satisfy the inequality — R <  x — a <  R 
or a—R < x < .a  + R. Since series (2) diverges for |X |> i ?  the 
series (1) will diverge for \x —a |> # ,  that is, it will diverge 
outside the interval a — R < .x < a  + R (Fig. 353, P).

a)-¥

AH-

~R 0 R-H-----1---h
a-R ̂ ----- -̂ a+R----1----1----1—a

x

x x

Fig. 353. Fig. 354.

And so the interval (a—R, a +  R) with centre at the point a 
will be the interval of convergence of series (1). All the properties 
of a series in powers of x inside the interval of convergence 
(—R, + i?) are retained completely for a series in powers of 
x —a inside the interval of convergence (a—R, a +  R). For example, 
after term-by-term integration of the power series (1), if the limits 
of integration lie within the interval of convergence (a—R ,a  +  R), 
we get a series whose sum is equal to the corresponding integral 
of the sum of the given series (1). In the case of termwise diffe
rentiation of the power series (1), for all x lying inside the inter
val of convergence (a—R, a + R) we obtain a series whose sum 
is equal to the derivative of the sum of the given series (1).

Example. Find the region of convergence of the series
{X—2 ) +  (x—2 )2+ (x— 2)’ +  . . .  +  (X— 2)n + . . .

Solution. Putting x — 2 =  X,  we get the series
X +  X 2 +  X 3+  . . . + X n+  . . .

This series converges when — 1 < X  <  +  l. Hence, the given series converges 
for all x that satisfy the inequality — \ < x  — 2 < 1, that is, when 1 < * < 3  
(Fig. 354).
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SEC. 16. TAYLOR'S SERIES AND MACLAURIN'S SERIES

In Sec. 6, Ch. IV, it was shown that for a function f(x) that 
has all derivatives up to the (n + l)s t order inclusive, Taylor’s 
formula holds in the neighbourhood of the point x — a (that is, 
in some interval containing the point x = a):

/W  =  /(a) +  — /'(a) +

+ / "  ( « ) + • • • +  — r -  <*>’ a )
where the so-called remainder term Rn (x) is computed from the 
formula

If the function f (x) has derivatives of all orders in the neigh
bourhood of the point x — a, then in Taylor’s formula the number 
n may be taken as large as we please. Suppose that in the 
neighbourhood under consideration the remainder term R n tends 
to zero as n —>-oo:

lim R n = 0.
n-±<x>

Then, passing to the limit in formula (1) as n —>oo, we get an 
infinite series on the right which is called the Taylor series:

f (x) =  f (a) +  / ' (a) +  . .  . + r  (a)-+  . . .  (2).

This equation is valid only when Rn (x)—>-0 as n —*• oo. Then the 
series on the right converges and its sum is equal to the given 
function f(x). Let us prove that this is indeed the case:

f(x) = Pn (x) +  Rn (x),
where

P„ <*) =  /(a) +  — /' (a) + . . . +  r  (a)-

Since it is given that limtf„ =  0, we have
oo

/(* )=  lim Pa(x).
n - +  oo

But Pn(x) is the nth partial sum of the series (2); its limit is 
equal to the sum of the series on the right side of (2). Hence,
(2) is true:

Ux) = f{a) + x- ^ f '  (a) + (̂ ? r  (a) +  . .  . ^  P  (a) + . . .
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From the foregoing it follows that the Taylor series is a given 
function f (x) only when lim i?„=0. If lim #„=£(), then the series 
is not the given function, although it may converge (to a different 
function).

If in the Taylor series we put a =  0, we get a special case of 
this series known as Maclaurin’s series:

f(x) = t (0) +  y  f’ (0)'+Ji f" (0) +  • • • + £  r  (0) ■+ • ..  (3)
If for some function we have a formally written Taylor’s 

series, then in order to prove that this series is a given function 
it is either necessary to prove that the remainder term approaches 
zero, or to be convinced in some way that this series converges 
to the given function.

We note that for each of the elementary functions defined in 
Sec. 8, Ch. I, there exists an a and an R such that in the inter
val (a—R, a + R) it may be expanded into a Taylor’s series or 
(if a =  0) into a Maclaurin’s series.

SEC. 17. EXAMPLES OF EXPANSION OF FUNCTIONS 
IN SERIES

1. Expanding the function /(Ar) =  sinjr in a Maclaurin’s series.
In Sec. 7, Ch. IV, we obtained the formula

sinx =  . + ( — 1)”+I (2n—1)1
Since it was proved that lim R 2n = 0, it follows, by what has been

ri—ycn
said in the preceding section, that we get an expansion of sin* 
in a Maclaurin’s series:

s\nx = x - -  +  ̂ + . .  . + ( — 1)w+l
(2/1—1)! + ( 1)

Since the remainder term approaches zero for any x , the given 
series converges and, for its sum, has the function sin x for 
any x.

Fig. 355 shows the graphs of the function sin* and of the 
first three partial sums of the series (1).

This series is used to compute the values of sin* for different 
values of x .

To illustrate, let us compute sin 10° to the fifth decimal place.
Since 10° =  ̂  =  0.174533, we have

si" 10" ^ -n -5 i  ($ ) '+ in  ( a y - M S ) ’+ •  • •
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Confining ourselves to the first two terms, we get the following 
approximate equality:

.  n_l /■ jt V
sin TiB̂ Ts IT \18/ '

here, we are in*error by 6, which in absolute value is less than 
the first of the suppressed terms; that is,

Fig. 355.

If each term in the expression for sin-^ is computed to six 
decimal places, we get

sin -  =  0.173647.

We can be sure of the first four decimals.
2. Expanding the function f ( x )  =  e* in a Maclaurin’s series.
On the basis of Sec. 7, Ch. IV, we have

y2 ytt

(2)
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since it was proved that lim /?n(je) =  0 for any x . Hence, the
n -> oo

series converges for all values of x and is the function ex.
3. Expanding the function f ( x )  — cosx  in a Maclaurin’s series. 
From Sec. 7, Ch. IV, we have

c« * - 1 - S  +  5 - H + " - ;  (3)
for all values of x the series converges and represents the function 
cos x.

SEC. 18. EULER’S FORMULA

Up till now we have considered only series with real terms and 
have not dealt with series with complex terms. We shall not give 
the complete theory of series with complex terms, for this goes 
beyond the scope of this text. We shall consider only one important 
example in this field.

In Chapter VII we defined the function e**,y by the equation
gX + ty „  g* (cos y _j_ { Sjn yy

When jc =  0, we get Euler’s formula:
e,y =  cos y i s\ny.

If we determine the exponential function eiy with imaginary 
exponent by means of formula (2), Sec. 17, which represents the 
function ex in the form of a power series, we will get the very 
same Euler equation. Indeed, determine ely by putting the expres
sion iy in place of x in equation (2), Sec. 17:

eiy= i+ % + m2! + M  +
^  3! ^ T  rtl ^ (1)

Taking into account that / '=  — 1, t’ =  —i, t*= 1, i5  ̂
and so forth, we transform formula (1) to the form

eiy _  i .<£_!!!_<£ _i_£ j- 
M l 21 31 t 4 ! ^ 5 I

i, i ' = - l ,

Separating in this series the reals from the imaginaries, we find

The parentheses contain power series whose sums are equal to 
cosy and sini/, respectively [see formulas (3) and (1) of the pre
ceding section]. Consequently,

eiy = cos y +  i sin y.
Thus, we have again arrived at Euler’s formula.
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SEC. 19. THE BINOMIAL SERIES

1. Let us expand the following function in a Maclaurin’s series:
f(x) = ( l+ x )m,

where m is an arbitrary constant number.
Here the evaluation of the remainder term presents certain dif

ficulties and so we shall approach the series expansion of this 
function somewhat dilferently.

Noting that the function /( jc )= ( l+ x )m satisfies the differential 
equation

(1 + x)f' (x) = mf(x) (1)
and the condition

/ (0) =  1,
we find a power series whose sum s(x) satisfies equation (1) and 
the condition s (0) =  1:

s(x) = 1 +  a1x + a sx' +  . . .  +  anxn +  ...* ) . (2)
Putting this series into equation (1), we get

(1 +  x) (a, +  2asx +  3a,x* +  . . .  -f nanxn~' +  .. .) =
= m (1 ■ffl1x - | - a / +  . . .  + a nxn+ . . . ) .

Equating the coefficients of identical powers of x in different parts 
of the equation, we find

a, = m; a, +  2at =  ma,; n a „ - f (n + l)a n+1 =ma„; . . .
Whence for the coefficients of the series we get the expressions 

_  _  ax (m — 1) _ m (m — 1)a0 =  1; a, =  m; at =

a.
at (m—2)  m(m — l)(m—2).

3 ~  2-3 ’
m (m— 1) . . .  [m— n +  1] .a = 1-2-...n

These are binomial coefficients.
Putting them into formula (2), we obtain

s (x) =  1 +mx- tn (m — 1) ,
1-2

m (m— 1) . .  .[m — (n— 1)1 
1 -2 . . . n

X’ +  . . .

x"+  . . (3)

*) We took the absolute term equal to unity by virtue of the initial con
dition s (0) =  1.
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If tn is a positive integer, then beginning with the term con
taining xm+l all coefficients are equal to zero, and the series is 
converted into a polynomial. For m fractional or a negative 
integer, we have an infinite series.

Let us determine the radius of convergence of series (3):

lim
n -> oo

m(m — l)...[m—n+U „ n

*.1 &  I“ n +  1 n\

. .  _m(m— 1 ) . . .[m — n +  2] ,

n (n-l)l *  ’

—  lim
n - >  oo

m( m— l)...(m — n+l)(n—1)!
m (m— 1).. .(m —  f l - f - 2 )  n\ X

=  lim
o o

m — n -f- 1 
n *1 =  1* 1-

Thus, series (3) converges for | x | <  1.
In the interval (— 1, 1), series (3) is a function s(x) that 

satisfies the differential equation (1) and the condition
s(0) =  1.

Since the differential equation (1) and the condition s(0) =  l 
are satisfied by a unique function, it follows that the sum of the 
series (3) is identically equal to the function (l-Fx)”, and we 
obtain the expansion

( i + * r = i + m * + ^  w (m 7 , ̂  • <3 ')

For the particular case m = — 1, we have
j - i -  =  l — *  +  * * — *» +  . . .  (4 )

For m — -^ we get

For m = —y  we have

V i+ x '

1 2 ,i 1*3 , 1 -3 .5
2 - 4 *  ^^ 2 - 4 - 6 * 2 . 4 . 6-8

1-3 a 1-3-5 , 1 - 3 . 5 . 7
2-4 X ~ 2 - 4 - 6 * 1 2 - 4 . 6-8 x — .. ,

(5)

(6)

2. We apply the binomial expansion to the expansion of other 
functions. Expand the following function in a Maclaurin’s series:

/ (x) =  arc sin x.
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Putting into equation (6) the expression —x* 
get

1
V  i — *f

1 , 1  t  , 1- 3 t  ,
1 +~2 X + 2l X +

in place of x, we

1- 3-5
2- 4-6

1-3-5. ..(2 n- l ) „in , 
2-4-6 . . . In

By the theorem of integration of power series we have, for
M < 1 :

I n
arc sin jc — x 1 

2
1*3 * 5 
2-4 5

1- 3-5 jc7
2- 4-6 7

o
1-3-5 .. ,(2/i— 1)

2 -4 -6 ...2  n 2 n + l

This series converges in the interval (— 1, 1). One could prove 
that the series converges for x = ± l  as well as that for these 
values the sum of the series is likewise equal to arc sin x. Then, 
setting x = l ,  we get a formula for computing n:

. , Jl , . 1 1 , 1 - 3  1
arc sin 1 2  ™ 2  ’ 3 2-4 * 5

1- 3-5 1
2- 4-6 ' 7

SEC. 20. EXPANSION OF THE FUNCTION In ( \ + x )
IN A POWER SERIES. COMPUTING LOGARITHMS

Integrating equation (4), Sec. 19, from 0 to a: (when | * | < 1 ) ,  
we obtain

- x + x ' - ? + . . . ) d x
0 0

or
l n ( l + x ) = x - ^ + ^ - J + . . . + ( - i r I^ + . . .  (1)

This equation holds true in the interval (— 1, 1).
If in this formula x is replaced by —x, then we get the series

which converges in the interval (— 1, 1).
Using the series (1) and (2) we can compute the logarithms of 

numbers lying between zero and two. We note, without proof, 
that for x — \ the expansion (1) also holds true.

We will now derive a formula for computing the natural loga
rithms of all integers.
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Since in the term-by-term subtraction of two corivergent series 
we get a convergent series (see Sec. 1, Theorem 3), then by sub
tracting equation (2) from equation (1) term by term, we find

In (1 + x ) - In (1 - jc) = In = 2 [* + £+ - + .. .] .

Now put ; then x =  „ 1 . . ̂ 1— jc n ’ 2n + l
For any « > 0  we have 0 < jk< 1; therefore

1 1 +  X 1 tl “J“ 1 QIn 7-̂ -— =  In —— =  2 
1 —x n

whence
ln (n+  1) — Inn =  2

l l
3 (2n +  l )3 ‘ 5 (2n -f  l )5

___!____ i____!___
3 (2/1 +  1)’ • 5 ( 2 / i+ l) ‘

- ]■

(3)

For n=  1 we then obtain

ln 2 =  2 [ r 3 + 3?3’+ 5 ^  +  • • •] •
To compute In 2 to a given degree of accuracy 6, one has to 

compute the partial sum sp, choosing the number p of its terms 
such that the sum of the suppressed terms (that is, the error Rp 
committed when replacing s by sp) is less than the admissible 
error 5. To do this, let us evaluate the error Rp:

~  2 [(2p +1) 3V + 1  "*“ (2p +  3) ¥ P + ‘  +(2p +  5)3V+‘ ' ••]*
Since the numbers 2p +  3, 2p +  5, . . .  are greater than 2 p + l,  it 
follows that by replacing them by 2p + l  we increase each fraction. 
Therefore,

^ / , < ' 2 [(2p +  l)3 « ’+ I +  (2p + 1) 32/,+s (2p +  1) 3v + -‘ +  * • • ] ’
or

The series .in the brackets is a geometric progression with ratio 
-i-. Computing the sum of this progression we find

l
_  2 3V+t i

^ P ^ 2 p  +  l ___ 1̂  (2p +  l ) 3 ^ - , 4 *
1 9

If we now want to compute In 2 to, for example, seven decimal 
places, we must choose p such that Rp< 0.0000001. This can be 
done by selecting p so that the right side of inequality (4) is less
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than 0.0000001. By direct choice we find that it is sufficient to 
take p = 8. To seven-decimal accuracy we have

ln2« s g =  2 [773+ 3735+ 5^+7737 +  973* + jy73n +

+ 133* + 153*] = 0-®931471.
Thus, In 2 =  0.6931471. These seven digits are significant digits. 

Assuming n =  2 in formula (3), we obtain

ln3 =  ln2 +  2 ^ - g - + g ^ + ..  .j =1.098612, and so forth.

In this way we obtain the natural logarithms of any integer.
To get the common logarithms of numbers, use the following 

relationship (see Sec. 8, Ch. II)
\ogN = M \nN ,

where M = 0.434294. Then, for example, we get In 2 =  0.6931472, 
log 2 =  0.30103.

SEC. 21. INTEGRATION BY USE OF SERIES 
(CALCULATING DEFINITE INTEGRALS)

In Chapters X and XI it was noted that there exist definite 
integrals, which, as functions of the superior limit, are not, in 
final form, expressible in terms of elementary functions. It is 
sometimes convenient to compute such integrals by means of 
series.

Let us consider several examples.
1. Let it be required to compute the integral

a
J e~xt dx.

Here, the antiderivative of e~xt is not an elementary function. 
To evaluate this integral we expand the integrand in a series, 
replacing x by —xl in the expansion of ex [see formula (2), 
Sec. 17]:

,-j!
- I- n + 2 7 - ! r + - - - +<->>*■ +

Integrating both sides of this equality from 0 to a, we obtain
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Using this equation, we can calculate the given integral to any 
degree of accuracy for any a.

2. It is required to evaluate the integral
a

o
Expand the integrand in a series: from the equation

sin a: = _x̂  .  x̂_ ,
x ~  3 i ' f" 5 i— 7T*)'

we get
sin a:   « x* . x* x9 .
~ ~ ~  1 —3T +  5T- + • 9

the latter series converges for all values of x. Integrating term 
by term, we obtain

a

r e
* a . a i* *dx — a—^  +  5f5—7f7 +

The sum of the series is readily computed to any degree of 
accuracy for any a.

3. Evaluate the elliptic integral
n
 ̂ V 1 — 6* sin* tpdtp ( £ < 1).

0

Expand the integrand in a binomial series, putting m =  
x — — k* sin*<p [see formula (5), Sec. 19]:

V \ — k* sin2q> =  \ —^ k l sin2<p—y  — k* sin4<p—- ■|-£<,sin‘<p—...

This series converges for all values of <p and admits term-by-term 
integration because it majorises on any interval. Therefore,

J V 1—k2 sin* q>dtp — tp— J sin2 tp dtp— A4j  —
0 0 0

<p

— y  j* sin*<prf<P— •••
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The integrals on the right are computed in elementary fashion. 
For cp =  -5- we have

iL
2

J  sin*"cp dq>
0

1 -3.. .(2n — 1) it 
2-4...2n 2

(see Sec. 6, Ch. XI) and, hence,
n
2

sins<pd(p =  f ■syk'
•6) 5

SEC. 22 . INTEGRATING DIFFERENTIAL EQUATIONS 
BY MEANS OF SERIES

If the integration of a differential equation does not reduce to 
quadratures, one resorts to approximate methods of integrating 
the equation. One of these methods is representing the equation 
in a Taylor’s series; the sum of a finite number of terms of this 
series will be approximately equal to the desired particular 
solution.

To take an example, let it be required to find the solution of 
a second-order differential equation,

y" =. F (x, y, y'), (1)
that satisfies the initial conditions

0/)j:=a:o =  y<s> iy )*=*(, =  £/o- (2)

Suppose that the solution y = f(x )  exists and may be given in 
the form of a Taylor’s series (we will not discuss the conditions 
under which this occurs):

y=f(x)=f (*0)+— *■ r (x.)+£=̂  r (x.)+... (3)
We have to find /'(*„), i.e., the values of the

derivatives of the particular solution when x = x0. But this can 
be done by means of equation (1) and conditions (2).

Indeed, from conditions (2) it follows that

f Ĉ o) ~  f (*,) ~  y*,
from equation (1) we have

r ( x 0) = (y")x=Xo = F(xo, yt, y',).
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Differentiating both sides of (1) with respect to x, we get
y"  = F't (x, y, y') + F'y{x, y, y ')y ' +F'y (x, y, y')y"\ (4)

and substituting the value x = x0 into the right side, we find
r ( x 0) = (y'")x=Xo.

Differentiating the relationship (4) once again, we find

and so on.
We put these values of the derivatives into (3). For those 

values of x for which this series converges, this series represents 
the solution of the equation.

Example 1. Find the solution of the equation
yn =  — yx2>

which satisfies the initial conditions
{y)x=o — i > (y )x=o= 0 -

Solution. We have
/  (0 ) = = i ; r ( 0 ) = ^ ; = o .

From the given equation we find (yn)x- ^ f n (0) =  0; further,
y"' =  - y ' x * ~ - 2xy, (y'*)x=o =  r  (0 ) = 0 ,

y lW =  — x2tf —4 xy' — 2 y, (y™)x=0 =  — 2
and, generally, differentiating k times both sides of the equation by the 
Leibniz formula, we find (Sec. 22, Ch. Ill)

— yik) x2— 2k y {k“ l) x — k (k — 1) y (k~2K
Putting jc= 0, we have

*<*«» — *(*-l)*£-*
or, setting k +  2 =  nt

=  — (n — 3) (n— 2) y^ ~ * \
Whence

yjv = — 1-2, ?/o*) =  — 5-6yJv = ( — 1)*(1-2) (5-6),

=  = ( -  1)’ (1-2) (5-6) (9-10).

y ?  =  ( -  1 )* (1 • 2) (5 • 6) (9 • 10)... [(4ft - 3 )  (4ft -  2)].
In addition,

^ 5, = 0 . »<*> = 0 .............. y<‘*+,) =  o.

^ > = 0, </<10>=o........ =o,
{,(’> = 0 , {,<n » = o , . . . .  «,<4ft+* '= 0 .

Thus, only those derivatives whose order is a multiple of four do not 
become zero.
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Putting the values of the derivatives that we have found into a Macla- 
urin’s series, we get the solution of the equation

{ / = l - - l - 2 + J ( 1 .2 ) ( 5 .6 ) - i J ( 1 . 2 ) ( 5 .6 ) ( 9 .1 0 )  +  . . .

l)ft- ^ ( l - 2 ) ( 5 .6 ) . . . [ ( 4 * - 3 ) ( 4 f e - 2 ) ]  +  . . .

By means of d’Alembert’s test we can verify that this series converges for 
all values of x; hence, it is the solution of the equation.

If the equation is linear, it is more convenient to seek the 
coefficients of expansion of the particular solution by the method 
of undetermined coefficients. To do this, we put the series

y = aQ + ctlx + aixi +  . . .  +  a,,*" -f  . . .
into the differential equation and equate the coefficients of 
identical powers of x on different sides of the equation.

Example 2 . Find the solution of the equation
y” = 2xy'+4y

that satisfies the initial conditions

(y)x=o=o. (yf)*=o=l-
Solution. We set

«/ = fl0 + a1x + a2x* + aax8 + . . .+ a rtx"+ ...
On the basis of the initial conditions we find

a0 = 0, ^  = 1.
Hence,

y = x  +  a2x* +  asx * + . . .  + a nxn+ . . .  
y' = 1 + 2a*x + 3aax* + . . .  + n a nxn + . . .  
y* =  2a2 +  3• 2asx + . . .  (n — 1) anxn~2-}-. . .

Putting these expressions into the given equation and equating the 
coefficients of identical powers of x, we obtain

2aa= 0 , whence a2 =  0 ;
3*2oa =  2 +  4, whence aa= l
4-3a4 =  4c2 +  4a2, whence a4 =  0

n(n — 1) a„ =  (n — 2) 2a„ . 2 +  4art_ l, whence aa = -  

Consequently,

2.i-
_ 2 *t _  1 _  2 _  1 . _  I

a‘ ~  4 21 ’ a , _  6 31; a* 41 ’
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fli6 + i “
a4 = 0;

2.__1__
(*-Ql = 1 ■

2/5 6! *
att = 0; a2ft = 0.

Substituting the coefficients which we have found 
solution:

, X *  , X* X 1 X **+1 .
^=->.'+T+2r+3i+” -+- *i

we get the desired

The series thus obtained converges for all values of x.
It will be noted that this particular solution may be expressed in terms 

of the elementary functions: taking x outside the brackets we get (inside the 
brackets) an expansion of the function ex%. Hence,

y —xext.

SEC. 23. BESSEL’S EQUATION

Bessel’s equation is a differential equation of the form
xty'' + xy '+  {xt— p1)y = 0 (p =  const). (1)

The solution of this equation (as also of certain other equations 
with variable coefficients) should be sought not in the form of 
a power series, but in the form of a product of some power of 
x by a power series:

00

y = xr J f l / .  (2)
6  =  0

The coefficient aQ may be considered nonzero due to the 
indefiniteness of the exponent r.

We rewrite the expression (2) in the form

y - t a S * *
6  =  0

and find its derivatives:

1/ '=  +
6  =  0

/ = 2 ( ' + * ) ( '+ * -  6 = 0
Put these expressions into equation (1):

x*’2 ,(r-\-k)(r + k — l)a A*r+A"J -f 
6 = 0

+  * 2 {r + k)a,ycr+k- l + (xt— pt) 2 aft*r+* ~ 0.
6 = 0  6 = o
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Equating to zero the coefficients of x to the powers r, r - f l ,  
/■-(- 2.......r + k, we get a system of equations:

[r(r— 1) - K —p*]a0 =  0 or [rl —p2] a# =  0, '
[ ( r + l ) r  +  (r +  l ) - p s]a , = 0  or [(r +  l)2- p 2]a, = 0 , 

[(r +  2) ( r + l ) + ( r + 2)—p’]a2+ a 0= 0  or [(r+ 2)2—p2la2+ a #:=0, . (3)
[(r +  £ )(r-M — l)+ (r +  /t)—p*]ak + ak_t = 0 or

[(r +  fe)*—p*]aft+ a A_2 =  0. )
Let us consider the latter equation:

[(r +  &)*— P*1 a* +  fl* - 2 =  0 . (3')

It may be rewritten as follows:
[{j + k —p) (r + k +  p)]ak +  ak_t = 0.

It is given that a9 =£ 0; hence,
rz—p! =  0,

therefore, rl — p or r2 = — p.
Let us first consider the solution for r, =  p >  0.
From the system of equations (3) we determine all the coeffi

cients a,, a2, . . .  in succession; a9 remains arbitrary. For instance, 
put c#=  1. Then

a ______°ft-2
k ~  k (2p +  k) '

Assigning various values to k, we find
a, = 0, a, =  0 and, generally, a2m+1 =  0; ^

1 l
a * ~  2 (2p +  2) ’ a* — 2-4(2p +  2 )(2p + 4) ’ • • • ’ >

a ** =  ( ~  ^  + * 2 .4 -6 ...2 v (2 p  +  2)(2p +  4 )...(2 p  +  2v) • ,

(4)

Putting the coefficients found into (2), we obtain

y ■ = * '[ 2(2p +  2 )^ 2 .4 (2 p  +  2 )(2p + 4)

2.4-6(2p +  2)(2p +  4) (2p +  6) + - ] ■ (5)

All the coefficients a„ will be determined, since for every k the 
coefficient of ak in (3),

0r + k ) ' - p \
will be different from zero.
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Thus, yt is a particular solution of equation (1).
Let us further establish the conditions under which all the coef

ficients ak will be determined for the second root rt = — p as well. 
This will occur if for any even integral positive k the following 
inequalities are fulfilled:

{r. +  k Y - p ^ O  (6)
or

But p =  r,; hence,
rt + k=£p- 

r2 +  /e
Thus, condition (6) is in this case equivalent to the following

where k is a positive even integer. But

rx =  P> rt = — p,
hence

rx— rt = 2p.
Thus, if p is not equal to an integer, it is possible to write 

a second particular solution that is obtained from expression (5) 
by substituting —p for p:

u = x - ' \ l ______**___+ ________ * __________
"* L 2 ( - 2 p  +  2 » ^ 2 .4 ( - 2 p  +  2 ) ( - 2 p  +  4)

2 .4 .6 ( - 2 p  +  2 ) ( - 2 p  +  4 ) ( - 2 p  +  6 )'r  • - - J -  >

The power series (5) and (5') converge for all values of x; this 
is readily found by d’Alembert’s test. It is likewise obvious that 
y t and yt are linearly independent.*)

The solution t/, multiplied by a certain constant is called 
a Bessel function of the first kind of order p and is designated 
by the symbol Jp. The solution yt is denoted by the symbol J _ .

*) The linear independence of functions is verified as follows. Consider the 
relation

—  =  x ~ zP 
yi

2 (— 2p +  2)
1 2 (2p -\- 2)

r 2»4(— 2p +  2) (— 2p +  4) •••
“ J*
+  2.4(2p +  2)(2p +  4)“ -”

This relation is not constant, since for ^ 0  it approaches infinity. Hence 
the functions y x and y t are linearly independent.
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Thus, for p not equal to an integer, the general solution of 
equation (1) has the form

y = C, Jp -{- C2J

For instance, when p =  y  the series (5) will have the form

XT  [  i ___f l  i __________ *6 » 1 _
L 2 . 3 ^ 2 - 4 . 3 - 5  2-4-6 \3‘5 * 7 '  * ' * J

__i_ r ]
j ' x  [* 31 "i"5I 71 ' * ’ * J "

This solution multiplied by the constant factor --- is called
Bessel’s function Jr, we note that the brackets contain a series 

2

whose sum is equal to sin a;. Hence,

•M *)=  Y k sinjf- 
2

In exactly the same way, using formula (5'), we obtain

J _2_ (x) =  ]/^C O SA T.
2

The general integral of (1) for p =  -?r is

y = 2_ 00 -F _i_ 00*
2 ~ 2

Now let p be an integer which we shall denote by n ( n ^  0). 
The solution of (5) will in this case be meaningful and is the 
first particular solution of (1).

But the solution of (5') will not be meaningful because one of 
the factors of the denominator will become zero upon expansion. 

For positive integral p =  n the Bessel function Jn is determined
by the series (5) multiplied into the constant factor (when

=  0 we multiply by 1):

' . W - w [ 1-
2 ( 2 / i  +  2 ) ~ 2 - 4  ( 2 n  +  2 )  ( 2 / i  +  4 )

2 - 4 - 6  ( 2 / i  +  2 )  ( 2 r t  +  4 )  ( 2 m  +  6 )
. . . ]

or

j  (X) - y  i - wJn\x) — Z*vHn + v)\\2  J (7)
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It may be shown that the second particular solution should in 
this case be sought in the form

Kn{x) = Jn(x)\nx + x~n k = Q
Putting this expression into (1), we determine the coefficients bk.
The function K„(x), with the coefficients thus determined, mul

tiplied by a certain constant is called Bessel's function of the 
second kind of order n.

This is the second solution of (1), which with the first one 
forms a linearly independent system.

The general integral will be of the form
y = ClJ n(x)+CtKa{x). (8)

We note that
lim Kn (x) =  oo.

X —*• 0

Hence, if we want to consider the final solutions for jc =  0, then 
we must put C2 =  0 into formula (8).

Example. Find the solution of Bessel's equation, for p = 0 ,

/ + - » '+ * = °
that satisfies the initial conditions: for x =  0,

y = 2, y'=  0.
Solution. From (7) we find one particular solution:

v=o

( - 0*
(vl)» + . . .

Using this solution, we can write a solution that satisfies the given 
initial conditions, namely:

y =  2Ja (x).
Note. If we had to find the general integral of this given equation we 

would seek the second particular solution in the form

fc=o
Without giving all the computations, we indicate that the second 

particular solution, which we denote by K 0 (x), is of the form

K0W W 0Wln^ + J - ^ L ( | y ( l + l ) +(5L2

This function multiplied by some constant factor is called Bessel’s function 
of the second kind of order zero.
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Exercises on Chapter XVI

Write the first several terms of the series according to the given general 
term:

1. « n = — 2. 3. un =  \b g i .  4. «„ =  ( -  l )n + ,S '‘‘'‘■ 'rttn + ir
5. u „ = f / n >  +  l - f n ' + l .

3. =" (2n)l

1 2  3 n
Test the following series for convergence: 6 . y  +  +  • • • +  2 " +  • • •

1
^  Con,erg'!' 7- 7 T5+T4 +? i
8- 2 + t + - | + ' - - + 1? + " '  '*“ • Dlverges- *• » 7 f + | 7 f + -

Ans. Diverges.

+

+ i ? b ? + ' - ' t o ' Di, , ree! ' ,o^ + ( T ) ' + ( T ) ’+ ' - ' + ( ^ r + - '

Ans. Converges. 11. Y + 4 + T5+ T7+ '"

12• y + i + re+ n + ---' 1 +n2+ • -
;i2+ l 

>4/is. Converges.

Ans. Diverges.

Test for convergence the following series with given general terms: 
1 , „  ̂ 1 „ _  2

’5/i + 113. un= - 3 . j 4 / i s . Converges. 14. an =  — __ . 4 ns. Diverges. 15. a„ =

Ans. Diverges. 16. un = ^ ”1 . .Arts. Diverges. 17. un =  3 • Ans-

Converges. 18. un-\  =  ~^n n • Diverges. 19. Prove the inequality

1+ 4  + y + - " + x >,n(rt +  1) > T + T + ---' « + i '
2 0 . Is the Leibniz theorem applicable to the series

I 1 , 1  1 , , 1
V 2—i ] / 2 + i  +  1 / 3 - 1  yr3 + 1+ . . . + V n - i  Y n + \

+ -

Ans. It is not applicable because the terms of the series do not decrease 
monotonically in absolute value. The series diverges.

How many first terms must be taken in the series so that their sum should 
not differ by more than 10” a of the sum of the corresponding series:

21 _ L _ ± . ± _ ±  +  + 1 ____
2  22 ~ 2*  2*  * * ’ * ' 2n 2n + * .. Ans. n =  20. 22. Y _ T  +  T ‘

1
n+1 Ans. r .=  10". 23. +  . . .  + - -

(„ +  ! )* + •••  Ans■ rt- 10‘- 24- 2  2-3 +  2-3-4 2-3-4-5+ ‘ ‘ ’ +  nl
1

(n + 1)1+  . . .  Ans. n =  10.
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Find out which of the following series converges absolutely:

25. 1 — y + j j j —7 » + - g s + - - - +  (— 1)"+1 (2n — Ans' Converges abso

lutely. 26. j  * -gs +  y ‘ y . — • • • + ( — D"-1-1- - • ^s +  . . .  Am.  Converges 

absolutely. 27. ^ - ^  +  ^ - ^ + . . . ( - 1) " ^ + . . .  Ans. Converges

1 +  ■>f / 2* y w  y i
• d "

V *
4* . . .  Ans. Con-conditionally. 28. — 1 4 - 

verges conditionally.

Find the sum of the series, 29. r ^  +  g ^ + » - + fl(fl +  jy (fl +  2) +  -

Ans. 4 - .4

For what values of x do the following series converge:

30. 1 + 4 + T + - - + 5 B + - *  Ans- - 2 < * < 2 .  31.

+  . . . ( — 1)"+1^ + . . .  Ans. — K A < 1 .3 2 .3 A  +  34A4 +  3 V + . . . + 3 n'An2+ . . .  
. . , ^  L „  . , 100a: , 10,000a2 , 1,000,000a* ,Am.  | * | < T . 33. i +  — +  s — + . . .  A m . - « > < a < o 0.

34. sin a  +  2 sin -̂ - +  4 s in --• + . . .  +  2n s i n ^ i + . . . Ans. — oo <  x <  oo.

35.

36

= +  :
\ + V T  2 + ^ 2

2* , . 3*

= +
/» +  V~n

— +  . . .  Ans. — 1 ^ * < 1.

2 !
A + g j-  A2 + 5 j-A* +  . . .  +  ^ r An +  . . .  Ans. — OO < A  <  CO . 37 . A +  0 2  A2 -Fnl 22 ‘

+  5jr A, +  . . . + ^ A n +  . . .  Ans. — e < A < e .  38. * + | f  * * + (1 ‘ 5} ^  a* +3*'

+  ...■ (««)■
(2n)l

n" 

xn+ . Ans. — 4 <  x <  4. 39. Find the sum of the series

* +  2*a4- ... 4- n x n 4-.. .  ( I * | <  1).
Hint. Write the series in the form

x +  x2 +  xz -\-x*-\-. . .
*24-*84-*4 4 - . . .  

^, 4-x44 t . . -  
* 4 +  . . .

Ans.
( I - * ) 2,

Determine which of the following series is majorised on the indicated 
X x2 xn

intervals: 40. 1 4 - j 2 + 5 2  +  • • • + ; j a + • • • ( 0 < * < 1 ) .  Ans. Majorised.

41. 14-T" +  "T +  iT + * * * + " “ +  *" ( 0 < * < 1 ) .  Ans. Not majorised.i z o n

42

2 5 - 3 3 8 8

sin x , sin 2x , sin 3*
l 2 +  22 32

, , sinnjr ,
+ - - - + y i - + - 10, 2jtJ. i4/ts. Majorised.
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Expanding Functions in Series

43. Expand — in powers of * and determine the interval of conver
gence. Ans. The series converges for —-10 <  x <  10.

44. Expand cos* in powers of . Ans. = ̂ * -----------—

2 V 2

45. Expand e~x in powers of *. Ans. 1 —* +  2r +  3j" +  • ••

46. Expand ex in powers of (*—2). Ans. e2 +  e2(x —2) +  2 j"(.v—2)2 +  

4- Jr — 2)# +  . . .
_47. E x p a n d  * 8— 2* 2 +  5 * — 7 in powers of ( * — 1). Ans. — 3 +  4 ( *  —  1 ) +  

4~ (*— l )2 +  (*— l)s-
48. Expand the polynomial * 10- f 2 * 9— 3*7—  6*8 +  3*4 4 - 6* 8— * — 2 in a Tay

lor’s series in powers of (*— 1); check to see that this polynomial has the 
number 1 for a triple root. Ans, /(*) =  8\ ( x — l ) 8 + 2 7 0 ( * — l )4 +  3 4 2 (* — 1)5+  
4- 330 (* — l )6+  186 (* —  l )7 4 - 6 3 ( * — 1)8 +  1 2 ( * ~ 1 )9 +  (* — l) 10.

v x2
49. Expand cos(*4-fl) in powers of *. Ans. cos a —* sin a — cosa-f-

X 2+  g f sina +  — c°sa — . . .

50. Expand In* in powers of (x— 1). Ans. (x— 1) —-g-(x— 1)*+-^-(x— 1)’ —

~ l ( x - i r + . . .

51. Expand ex in a series of powers of (* +  2). Ans. e ~2 |"l +  ̂
n  =  l

52. Expand cos2* in a series of powers of (*  — -2-J .

Ans• T + S (“ 1)n-----W ^ iV —
n = l

1 0053. Expand -j  in a series of powers of (* +  l). Ans. 2  +
n  =  o

(— 2 <  x <  0).
54. Expand tan x in a series of powers of f x ----. i4ns. 1 +  2 ( x — -̂J +

Write the first four terms of the series expansion, in powers of *,
x 2 2 x 2 17 x 7

of the following functions: 55. tan*. Ans. * +  — 4 - 4"■315' +  • • •
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COS X A (  1 X * . 4 * 4 \
56. e . Ans. e  ̂1 2| +  4 ! 720 ' - - )  '

57. *"'**"'. +  +

58. In (1 +e*). Ans. In 2 +  | -  —J  +  §§4 +  • ••

59. e,sln x Ans. l + j t + —

60. (1 +*)*. Ans. l + * * - - + - x 4- . . .

y2 Ky4
61. secjc. Ans. \ + — +  —  + . . .

62 . In cosx. Ans. - 2 12 45

63. Expand sin /cjc in powers of x. Ans. +dl 01 / I
64. Expand sin2* in powers of * and determine the interval of conver-

2x2 28* 4 25jk® 22n“ 1x2n "
gence, Tins. ---- 4r + " 6i— • • • +( — ~ '(2n)| +  ••• The series conver.
ges for all values of *.

65. Expand in a series in powers of x. Ans. l — * 2 +  *4 —*# +  . . .
66 . Expand arc tan* in a series in powers of *.

X
p d* x2

Hint. Take advantage of the formula arc tan * =  \ y + x 2 • Ans. x— y  +

** *’
+■5  “ y +  ••• (— K * <  !)•

67. Expand ■ in a series of powers of *. 4ns. 1—2* +  3x2 — 4* 8 +  . . .
( - 1  < * < 1).

Using the formulas for expansion of the functions e*, sin x, cos*, ln(l-f-*) 
a n d (l+ * )/” into power series and applying various procedures, expanq the 
following functions in power series and determine the intervals of convergence!

*8 *5 x268. sinh*. Ans. * + — +  ̂ j-+ • . • (— 00 <  x <  00). 69. cosh x. Ans. l + 2f +

+  (— < » < .* <  oo). 70. cos’ *. 4ns. l + - g - j £ - — '(2n)T"~
n=i

00

(— o o < * <  00). 71. (1 4-Jf) In (1 +  *)• Ans. l)n *  ̂ ( |* |< 1 ) .

72. ( l + * ) e “*. Ans. l + ^ ^ ( — \)n~l —̂ - x n ( -  oo <  * <  co). 73.

25*
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* « •  ( l * l < / 5 J .  74. * = i .  Ans. l + | -  +  ̂  +  . . . + ^ + . . .
n=o

1 °°
(— co <  jc <  oo). 75. -  ; . 4ns. 2 ( n + 1) ;c" ( U | < 1 ) .  76. e*sinA:.

'  '  n - o
- , , , 2* 3 4x 5 , , . / I J t* ” ,

4ns. * +  *’ +  -31------ g j - + . . .  +  y  2n x s m (— oo <  .v <  oo).

77. x + V T + 7 ‘. Ans. ^ J  +  r ! T + . . - + ( - l ) ' t , 1 ,3 ' ^ l~ 1)X

x 2? n + -  ( - 1 < * < » ) •  78- A » - 2 < - l ) " +‘ p

ID- 79.| x \ < l ) . arc tan a: , .  t i ,  . o ,  x :s r t + I  . ,
<**• 4 n s .  2 l ( -  l )n ( 2 n + 1 ) i , ( - K K 1 ) .

oo

J ~ T ^ djC' i4ns- c  +  ln l * l + ^ ( ~  0 " (2n*(2n)l (— ° ° < * < 0  and
WJ n=i

 ̂ 00f* dX ___ — 8
► <  * <  oo). 81. \  ̂_ ^ 9- . Ans. V  -. 82. Prove the equations

sin (a +  x) =  sin a cos x +  cos a sin x, 
cos (a +  *) =  cos a cos x — sin a sin*

by expanding the left sides in powers of *.
Utilising appropriate series, compute: 83. cos 10° to four decimals. 

Ans. 0.9848. 84. sin 1° to four decimals. Ans. 0.0175.
ji85. sin 18° to three decimals. Ans. 0.309. 8 6 . sin- 7- to four decimals.4

i4ns. 0.7071. 87. arc tan 4- 1° four decimals. Ans. 0.1973. 8 8 . In 5 to three o
decimals. Ans. 1.609. 89. log10 5 to_three decimals. Ans. 0.699. 90. arc sin 1 to 
within 0.0001. Ans. 1.5708. 91. Y e  to within 0.0001. Ans. 1.6487. 92. logs to 
within 0.00001. Ans. 0.43429. 93. cos 1 to within 0 .0 0 0 0 1 . Ans. 0.5403.

Using a Maclaurin series expansion of the function f (*) =  y /a"  + * ,  
compute to within 0 .0 0 1 : 94. y f 30. i4ns. 3.107. 95. }/70. Ans. 4.121. 
96. s/500 . Ans. 7.937. 97. 5/250. Ans. 3.017. 98. ]/84 . Ans. 9.165. 99. J/2T  
Ans. 1.2598.

Expanding the integrand in a series, compute the integrals;
i  .

100 . \ - d x  to five decimal places. i4ns. 0.94608. 101. \ e ~ x*dx to four
0 0

n 
4

decimals. Ans. 0.7468, 102.  ̂ sin (*2) dx to four decimals* Ans. 0.1571*
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103. \̂  e vx dx to two decimals. Ans*. 0.81. 104.
0 o

i
mal places. Ans. 0.487. 105. J cos V x d x  to within 0.001. Arts. 0.764.

y r .
V . (

I
arc tan *

x dx to three deci-

106 J In (1 +  V~x) dx to within 0 .001 . Ans. 0.071. 107. ^ e *dx to within

i
^  sin a:

0.0001. Ans. 0.9226. 108. V &x to within 0.0001. Ans. 0.0214.
o

o.s 1
(* dx

,09- ) t + ? to within 0.001. Ans. 0.494. 110 •dx. Ans. 12 -

Note. When solving this exercise and the two following ones it is well to
u . A 4. v *  1 Jt2 ^  (— I) " - 1 jt2 1 ji2
bear in mind the equations: 2 , ^ = T '  - L  = l 2 ’ 2 -(& T =T F =  ¥

n=i n = l n = i
which will be established in Sec. 2, Ch. XVII*

f* In (1 —x) , „ jt2
111 . \ ----- -— - d x .  Ans. -g *

0

r l +112.
1 -\-x dx „ Jt2

J T '  Ans■ T  •

Integrating Differential Equations by Means of Series

113. Find the solution of the equation y"—xy that satisfies the initial 
conditions for x =  0 , y =  \, y f =  0 .

x3
Hint. Look for the solution in the form of a series. Ans. I-Ftt-—-!-Z • o

+ 2 -3 -5 -6 ~  ’ * ‘ ~ 2 - 3 - 5 -6 . . .(3k — 1) 3 £ ~  ” *
114. Find the solution-of the equation y* + x y '  + y  =  0 that satisfies the

initial conditions for * =  0 , y =  0, y ' =  1* Ans. x ^ X ‘ X
(— i)»+ixw-*

' —  1 -3-5__(2/t— 1)"
115. Find the general solution of the equation

1-3-5

Y  +xt / '  +  — i- j  y  =  0 .

Hint. Seek the solution in the form
y = x p (i4# +  Axx -j- Axx* + . . . ) .
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Ans. c ,* ’ [ ‘ - f i + g — ?r+ * " ] +ClX ' [ 1 ~ 5 r + ¥ “ - -- ]  ~  
r  sin* r  cos x

=  T ^T " ,/— •
F * K *

116. Find the solution of the equation xy" +  / /  +  xy =  0 that satisfies the
jf2 x* x*

initial conditions for x ==0t y —=-1 > y —— 0 . Ans. 1 "t- |j 2 )8 2^̂ ~ (1 2 3 )* 2®

+ - (“  1)Â ^ + -
Hint. The two latter differential equations are particular cases of the

Bessel equation
x:Y  +  xy' +  {x*—n*) y =  0

for n ~~2 anĉ   ̂=  0 .
117. Find the general solution of the equation

4xy" +  2y' + y  =  0-
Hint. Seek _the solution^ in the form of a series x? (a0 +  a,Jt +  a2̂ 2+ .. . ) .  

Ans. C, cos yrx +  C2 sin Y x .
118. Find the solution of the equation ( \ —x2) y"—xy' = 0  that satisfies

l x 8 i 3 x5
the initial conditions y' =  1 when * =  0 and y =  0. Ans. x +  - j  -g- +  y  y  +  

+  2 4 6 7 +
119. Find the solution of the equation (1 + * 2) y" +  %xy' =  0 that satisfies

x® x?
the initial conditions y' =  \ when x =  0 and y =  0. Ans. x — ^+-g- —y  +  . . .

120. Find the solution of the equation y" =  xyy' that satisfies the initial
x  ̂ 2j  ̂ 3jc8

conditions y ' =  1 when x =  0 and y = l .  Ans. \-\-x +  ̂ - \ -  — m
121. Find the solution of the equation (1 —x) y' =  1 +  * —y that satisfies 

the initial conditions y =  0 when * =  0 , and indicate the interval of conver-
j^2

gence of the series obtained. Ans. * +  +  4 - 3- 4 + • •  • (— l ^ J t ^ l ) .
122. Find the solution of the equation xy"-\-y =  0 that satisfies the initial 

conditions yf =  1 when x =  0 and y =  0 , and indicate the interval of conver-
gtnce. Ans. +  + • • •  ( - c o < * < o o ) .

2
123. Find the solution of the equation y" + — y f +  i/ =  0 that satisfies the

initial conditions y ' =  1 when * =  0, y =  1. Ans.* x
124. Find the solution of the equation yf -J— y'-\-y?= 0 that satisfies the

initial conditions y '=  0 when * =  0 and y — 1, and indicate the interval of 
convergence of the series obtained, Ans, 1 —— -f ^  ^2— -̂ s ^  . . .
( |* |  <  oo).



Exercises on Chapter XVI 775

Find the first three terms of the expansion in a power series of the solu
tions of the following differential equationis for the given initial conditions

4x*
125. y' —x,2 -\-y2\ for * = 0 , y =  1. Ans. 1 -\-x +  x2 +  ~-̂ - + .. .  126. y* =a

=  ey~\-x; for x =  0, y =  1, y ' =  0 . Ans. 1 + “2“ +  'g* +  • • • 127. y' =s \ny  — sinx; 
x8 x8

for * =  0 , i/ =  0. Ans. —  ̂ —-g —
Find several terms of the series expansion of solutions of differential equa

tions under the indicated initial conditions: 128. y" = y y ' —x2 when jc =  0 ,
y2 OyS Qy4 \AyS

y =  0 and y' = 0 . Ans. 1 + *  +  2f + 3r  +  "4r + “5j— 129' y ' = y *  +  x*

when * =  0 and y = A n s .  + -^  jc, +  ̂ a:1 + . . .  130. y' =
1 1  2=  x2—y2 when * =  0 and y =  0. Ans. x9—^  x7 + 7 7 7 5 7 2 7  •

131. yr =  xzy2 — 1 when x =  0 and y =  1. Ans. 1 — —
y2 Oy8 1 1 y4

132. * / ' +  when x =  0 and y =  0% Ans, x +  y  +  "3" +  57374  +  • • •
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FOURIER SERIES

SEC. 1. DEFINITION. STATEMENT OF THE PROBLEM

A functional series of the form

—-J-a, cosx +  bx sin x +  at cos 2x + b t sin 2x +  . .  

or, more compactly, a series of the form
oo

^  +  X ( a » C0 SrtJC+ 6 n S in ,I',i:)’ ( 1 )
n = l

is called a trigonometric series. The constants a0, an and bn 
( n = l ,  2 , . . . )  are called coefficients of the''trigonometric series.

If series (1) converges, then its sum is a periodic function f(x) 
with a period 2n, since sin me and cos nx are periodic functions 
with period 2n.

Thus,
f(x) =  f{x +  2n).

Let us pose the following problem.
Given a function f(x) which is periodic and has a period 2n. 

Under what conditions for f(x)  is it possible to find a trigonomet
ric series convergent to the given function?

That is the problem that we shall solve in this chapter.
Determining the coefficients of a series from Fourier’s formulas. 

Let the periodic function f(x) with period 2n be such that it may 
be represented as a trigonometric series convergent to a given 
function in the interval (— n, n); i. e., that it is the sum of this 
series:

00

f {x) =  ^  +  X ( a» cosnx +b „  sin nx). (2)
n = l

Suppose that the integral of the function on the left-hand side 
of this equation is equal to the sum of the integrals of the terms 
of the series (2). This will be the case, for example, if we assume 
that the numerical series made up of the coefficients of the given
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trigonometric series converges absolutely; that is, that the follow
ing positive number series converges:

|"2 | +1 a i 1+ I 1 + 1 a t 1 + |b» 1+ •• • + laJ + l̂ nl + • • • (3)
Then series (1) is majorised and, consequently, it may be inte

grated termwise in the interval from — n to n. Let us take advan
tage of this for computing the coefficient a0.

Integrate both sides of (2 ) from — n to + n :
n n w n n
j j f ( x ) d x - $ % d x  +  j?  ( J a .  cos nx dx -f J  bn sin nx dx'j .

n=i —n
Evaluate separately each integral on the right side:

31

J  \  dx = na0\
— Jl

Jl 31
C , c j  an sin nx I« ~\ an cos nx dx = an I cos nx dx —  ̂=  0 ;

J  ba sin nx dx =  bn J  sin nx dx = bn cos nx
=  0 .

Consequently,
31
^ H x) dx = na0,

- J t
whence

31

a ,  =  - ^ ^ f ( x ) d x .  (4 )
- J l

To calculate the other coefficients of the series we shall need 
certain definite integrals, which we will consider first.

If n and k are integers, then we have the following equations: 
if n =£ k, then

31
J cos nx cos kx dx =  0 ;

— Jl 
Jl

 ̂ cos nx sin kxdx =  0 ;
- J l  

Jl

J sin nx sin 6* d* =  0;

(I)
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but if n = kt then
n }
J cos2 kx dx =  Jt;

-n
ji

J sin kx cos kxdx =  0 ;
—n

( i i )

n
J sin2 kxdx = n.

To take an.example, evaluate the first integral of group (I). 
Since

cos nx cos kx==^ Icos (n + k) x+  cos (/i—&) jc], 
it follows that
n n n
C cos nx cos k x d x = ^  C cos (n +  k) x dx + — f cos (n—k)xdx — 0 .

The other formulas of (I)*) are obtained in similar fashion. The 
integrals of group (II) are computed directly (see Ch. X).

Now we can compute the coefficients ak and bk of series (2). 
To find the coefficient ak for some definite value k + 0, mul

tiply both sides of (2 ) by cos ft*:
oo

/ (x) cos kx =  —• cos kx + ̂ i  (an cos nx cos kx +  bn cos nx cos kx). (2 ')
n = i

The resulting series on the right may be majorised, since its terms 
do not exceed (in absolute value) the terms of the convergent 
positive series (3). We can therefore integrate it termwise on any 
interval.

Integrate (2') from — n to n:

cos kx dx -f

oo n  n

+  y*. J cos nx cos kxd x + b n jj sin nx cos kx dx
n=i ' -si -n

*y By means of the formulas
cos nx sin ^  =  1/* [sin (n +  k) jc —sin (n— k) jc] ,  

sin rue sin kx =  */* [— cos (n +  k) x -}- cos (n—k) x].
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Taking into account formulas (II) and (I), we see that all the 
integrals on the right are equal to zero, with the exception of the 
integral with coefficient ak. Hence,

Jl 71

J f (x) cos kx dx = ak J cos2 kx dx =  akn ,
- j r  - jt

whence
jt

ak = — ̂ f(x)coskxdx. (5 )
- J t

Multiplying both sides of (2 ) by sin£x and again integrating 
from —it to jt, we find

Jt Jt

 ̂f (.x) sin kx dx = bk J sin2 kx dx =  bkn,

whence
•jt

bk = -^  {x) sin kx dx. (6 )
-  Jt

The coefficients determined from formulas (4), (5) and (6 ) are 
called Fourier coefficients of the function f(x), and the trigono
metric series (1) with such coefficients is called a Fourier series 
of the function f(x).

Let us now revert to the question posed at the beginning of 
this section: What properties must a function have so that the 
Fourier series constructed for it should converge and so that the 
sum of the constructed Fourier series should equal the values of 
the given function at corresponding points? We shall here state 
a theorem that will yield sufficient conditions for representing 
a function f(x) by a Fourier series.

Definition. A function f(x) is called piecewise monotonic on the 
interval [a, b] if this interval may be divided by a finite number 
of points xv *2, . . . ,  xn_x into subintervals (a, xf), (xlt *2) , . . . ,  

b) such that the function is monotonic (that is, either nonin
creasing or nondecreasing) on each of the subintervals.

From the definition it follows that if the function f(x) is piece- 
wise monotonic and bounded on the interval [a, b], then it can 
have only discontinuities of the first kind. Indeed, if x = c is 
a point of discontinuity of the function /(*), then by virtue of the 
monotonicity of the function there exist the limits

lim f (x) = f (c—0 ), lim f(x) = f(c +  0 ),
X - + C - 0 JC-VC +  0

i. e., the point c is a discontinuity of the first kind (Fig. 356).
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We now state the following theorem.
Theorem. If a periodic function f(x) with period 2 jt is piecewise 

monotonic and bounded on the interval [—jt, Jt], then the Fourier 
series constructed for this function converges at all points. The sum 
of the resultant series s{x) is equal to the value of f(x) at the

discontinuities of the function. At the
discontinuities of f (x), the sum of the series 
is equal to the arithmetical mean of the 
limits of f(x) on the right and on the left; 
that is, if x — c is a discontinuity of the 
function f(x), then

_  / (c—0) +  / (c +  0)
* \ x /x = c  2  *

From this theorem it follows that the 
class of functions that may be represented 
by Fourier series is rather broad. That is why 

Fourier series have found extensive applications in various divi
sions of mathematics. Particularly effective use is made of Fourier 
series in mathematical physics and its applications to specific 
problems of mechanics and physics (see Ch. XVIII).

We give this theorem without proof. In Secs. 8 - 1 0  we will 
prove another sufficient condition for the expandability of a func
tion in a Fourier series, which condition in a certain sense deals 
with a narrower class of functions.

SEC 2 . EXPANSIONS OF FUNCTIONS IN FOURIER SERIES

The following are some instances of the expansion of functions in Fourier 
series.

Example 1. A periodic function f (x) with period 2j i  is defined as follows:
f(x) =  x, —

This function is piecewise monotonic and bounded (Fig. 357). Hence, it 
admits expansion in a Fourier series.

By formula (4), Sec. 1 , we find

*0 IT J x d x =
_ L f !  nit 2 - =  0 .

Fig. 357.
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Applying formula (5), Sec. l,.and  integrating by parts, we find
31

- ■ H
x cos kx dx =  —  n

- 31
s in  kx 31 I f , ,x —r— — r  \  s in  kxdxk -31 A J

- — 31 -*

By formula (6), Sec. 1, we have
31 “

x sin kx dx =  —  n — x -cos kx
J cos kx dx

=  0.

=  ( - D * +1
2_ 
k '

Thus, we get the series
r. x 0 [sin* sin 2x , sin 3a: , sin kx , 1
/W  =  2 [-T --------- 2 3------

This equation occurs at all points except points of discontinuity. At each 
discontinuity, the sum of the series is equal to the arithmetical mean of its 
limits on the right and left, which is zero.

Example 2 . A periodic function /  (a;) with period 2n is defined as follows:
f(x) =  —x when —j i ^ a : ^ 0 , 
f (a;) =  x when 0  <  a: C  Jt

[or f(x) =  \x\]  (Fig. 358). This function is also piecewise monotonic and bound
ed on the interval

*0

^ / N / N / N / I X / N
-5it r4it  -3it -2it - i t  o it. 2ir 3ir 4it Sit x

Fig. 358.

Let us determine its Fourier coefficients: 
31 r o

a0= -^  J  f (x )dx  = J ( —
JZ L-31 o J

0 31 T
J  ( —*) cos kx dx +  ^  x coskxdx ! =  
-Jt 0 j

ak — —
n Jt

x sin kx
' . M  S sin kx dx + x sin kx \n

-31
cos kx |° COS kx\n=i [ .

nk L

=  ̂ - , ( c o s f t n - 1) =  |  _
0  for k even,

nk2for k odd;
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o
J  ( —x) sinkxdx +  
—ji

J  jcsin/ejc dx
o J

= 0.

We thus obtain the series
jt 4 [ cosx ,

/ w = T - -  [— +
cos 3x , cos 5x .

3*
cos (2p + 1) x 

<2p + l)»  i ' 1
This series converges at all points, and its sum is equal to the given function. 

Example 3. A periodic function f(x) with period 2jt is defined as follows:
f (x)=  — 1 for — jt< x < 0 , 
/(*) =  ! for 0 «^ *^ Jt.

This function (Fig. 359) is piecewise monotonic and bounded on the interval
— jt ^ x  ^  Jt.

1

-3 n  -2 TC 1
i ______ ,0 f t  2

Fig. 359.

3 ft  X

Let us compute its Fourier coefficients:

° k ji

n  r  0 n

a°=-k S f{x)dx=i
- 3 1  L j i  0

0 JI *1

^ (— 1) cos kx dx -f- J  cos kxdx 1 =  —
— n  o J

0 31 *1

J  (— 1) sin kx dx -f-^ sin kxdx =  - £
- 3 1  o J

=  0;

, sin kx |° , sin kx n
~ k ~  I - n  +  ~ T ~  | o “ 0;

COS kx I® cos kx 
k ~ \ - n  V

^ n - c o s j t ] - { 1I Jtk

0 for k even, 

for k odd.

Consequently, for the function at hand the Fourier series has the form

/(*) =
4 [ sin x , sin 3* , sin 5x

It L 1 +
sin (2p - f-1) x 

2 p + i  "- +
This equation holds at all points with the exception of discontinuities.

Fig. 360 illustrates how the partial sums Sn of the series represent more 
and more accurately the function f (x) as n —>co.

Example 4 .  A periodic function f (x) with period 2 j i  is defined as follows:
f(x) =  x*, — (Fig. 361).
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Fig. 360.

Determine its Fourier coefficients.

Jt 3 [-n  3

x2 sin kx |Jt
n  [" jt ■

1 f  2 . . 1 \ x 2 sin kx  |Jt 2 C=  —  \ x2 cos kx d x  =  — - — ------------- \ *
* J *1 k l-n k J-Jt L -IT

sin fcjttfjt

nk
X cos kx Jl 1 p

+  -T  \ COS kx  dx  
- J t  k  J

- J t

=  A t* [Jt cos k n \ =7tk£

k*
for k even,

— p  for k odd;

si
bk~ —  f  x2s ' m k x d x = +  —  

k it J Jt

ji

n _JL  f
-jt k J

_2_ 
’ Jt/e

- j t

jc sin for

a;2 cos kx  In
ji

x  cos kx dx

sin kx  dx =  0.
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Thus, the Fourier series of the given function has the form 

. jt2 „ /  cos x cos2 x , cos 3x \
* = T — 4 ( ~ i --------- 2T - + — *— -  }

Since the function is piecewise monotonic, bounded and continuous, this equa
tion is fulfilled at all points.

Putting * =  Jt in the equality obtained, we gel
00

5 ! — V  1
n«=i

Example 5. A periodic function f(x) with period-2ji is defined as follows: 
f ( x ) =  0  for —
f ( x ) = x  for 0 < * < j t  (Fig. 362),

Determine the Fourier coefficients!

•— S’ I I
—n L - j x  o d

i f  i r=—  \ x cos kxdx = —  
n J Ji

u

1 cos /za: I71_f
" JiA k

x sin kx
ji

n—L  r
o k j

sin kx dx

for * odd, 

0  for k evenj
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n
x sin kx dx =  - x cos kx cos kx dx

= -----   cos kn — {Kk

-r  for k odd, k

— ]- for k even.R

The Fourier series will thus have the form

. ji 2 /cos x cos 3a: cos 5* \  /sin  x sin 2x , sin 3*
)=ST ~ H  \  —  +  —  +  —  +  +   2 3

At the discontinuities of the function f {x), the sum of the series is equal to 
the arithmetical mean of its limits on the right and left ^in this case, to the

number .
Putting * =  0 in the equality obtained, we get

V* 1
8 ~  (2n— l )2 *

n - i

SEC. 3. REMARK ON THE EXPANSION OF A PERIODIC 
FUNCTION IN A FOURIER SERIES

We note the following property of a periodic function \p(*) 
with period 2 n:

Jl A +  2JI

 ̂ (jc) dx =   ̂ (*) dx,
- tt A

no matter what the number X.
Indeed, since

t p d — 2 n) =  ty(£)

it follows that, putting x = l — 2n, we can write (for all c and d):
d d+ 2jt d+2ji d+2ji

^ ( a : ) =  y I|5(g — 2n)d l=  ^ ^  if)(a:)
C C+ 271 C+ 2JI C+2JI

In particular, taking c — — n, d = X, we get
A A+2ji

J i|)(x)dx=  J ty(jt)dx,
- ji a  '
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therefore,
X + 2 3 1  - 3 1  31 X  +  231

J -»J3 (jc) cfjc =  J  “»!> (at) <ia: +  ^ \|j ( jc) cfjc +  J tj? (jc) dje =
X X “ 31 3t

- 3 1  31 X 31

=   ̂ (jc) c?jc +   ̂ ty(x)dx + J ty(x)dx =  ̂ t|)(x)d;e.
X  - 3 1  - 3 1  - J l

This property means that the integral of a periodic function ty(x) 
over any interval whose length is equal to the period always has 
the same value. This fact is readily illustrated geometrically: the 
cross-hatched areas in Fig. 363 are equal.

From the property that has been proved it follows that when 
computing Fourier coefficients we can replace the interval of in
tegration ( — n, jt) by the interval of integration (h, h-f-2 ji), that 
is, we can put

X+23I X+2 31 ^

fl0 =  — j  f(x)dx, a„ =  - -  j  f(x)cosnxdx,

[ 0 )
b n~ l i  j* s 'n nx dx >

X J

where k is any number.
This follows from the fact that the function f(x) is, by hypothe

sis, periodic with period 2 n; hence, both the functions f(x) cos nx 
and /(*)sinnA: are periodic functions with period 2j i . We now 
illustrate how this property simplifies the process of finding coef
ficients in certain cases.

Example. Let it be required to expand in a Fourier series the function 
f(x) with period 2jt, which is given on the interval 0 ^  x ^  2jt by the equation

/(*)=■*•
The graph of f (x) is shown in Fig. 364. On the interval [—Jt, Jt] this func
tion is represented by two formulas: f(x) =  x-\- 2n on the interval [—Jt, 0] 
and f(x) =  x on the interval [0, jt]. Yet, on [0, 2jt] it is far more simply
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represented by a single formula f(x) =  x. Therefore, to expand this function 
in a Fourier series it is better to make use of formulas (1), setting A, =  0:

271 2JI

a0 — J  / (x) dx =  J  x dx =  2jt; 
o 0
271 271

1 f t / , . 1 f  , 1 sin nx , cos nx 1 Aan =  — \ f (*) cos nx dx — —  \ * cos nxdx =  — ------------ =— =  0 ;" Jt J ' n J it L n J o
0 0
271 271

. 1 f  r / , . , I f  . . I f  x cos nx sin nxl w  2bn =  —  \ /  (a: )  sin nx dx — —  \ a: sin nx dx =  — ------------------  r- = --------." J t j  j t J  Jt L n n2 n
0 0

Consequently,
2 2 2 2f (x) =  n — 2 sin a:— ^ sin 2x— T sin 3*— r-sin 4x— =- sin 5x— . . .  
i  o 4 o

This series yields the given function at all points with the exception of points 
of discontinuity (i.e ., except the pointsx =  0, 2jt, 4jt, . . . ) .  At these points the 
sum of the series is equal to the half sum of the limiting values of the 
function f (x) on the right and on the left (to the number n, in this case).

SEC. 4. FOURIER SERIES FOR EVEN AND ODD FUNCTIONS

From the definition of an even and odd function it follows that 
if (a:) is an even function, then

n n
J ty(x)dx = 2 ^ \|j(jc) dx.

- JT  0
Indeed,
Jl o 71 71 Jl
J i|)(x)dx=  J ty(x)dx +  =

— 71 —71 0 0 0
71 71 Jt

=  $ i|>(jc) dx+^ty(x)dx = 2^ty(x)dxt
0 0 0

since by the definition of an even function i|>(—at) =  ip(jc).
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It may similarly be proved that if <p(jc) is an odd function, 
then

Jl Jl Jl 31 31

 ̂ <p (a:) dx — J <p (—a:) dx +  J cp (x) dx =  —  ̂ q> (x) dx +  J <p (a;) dx =  0 .
— Jl 0 0 0 0

If an odd function f(x) is expanded in a Fourier series, then 
the product f(x) coskx is also an odd function, while f(x)s inkx  
.is an even function; hence,

n
J  f(x)dx =  0 ;

ak

bk

31

— ^ f(x) cos kxdx = 0,
- J l
Jl Jl

J  f (x) sin kxdx = - j^ ^ f  (a:) sin kx dx.
- 3 1  0

( 1)

Thus the Fourier series or an odd function contains “only sines” 
(see Example 1 , Sec. 2 ).

If an even function is expanded in a Fourier series, the pro
duct / ( a:) sin ft* is an odd function, while f  (x) cos kx is an even 
function and, hence,

Jl

a 0 =  ~
o
j i

(x).cos kx dx,
0

Jl

bk = — $ f{x )sm kxd x  = 0.
- J l

'I

)

(2)

Thus, the Fourier series of an even function contains “only cosines" 
(see Example 2, Sec. 2 ).

The formulas obtained permit simplifying computations when 
seeking Fourier coefficients in cases when the given function is 
even or odd. It is obvious that not every periodic function is 
even or odd (see Example 5, Sec. 2).

Example. Let it be required to expand in a Fourier series the even 
function f (x) which has a period of 2jt and on the interval [0 , ji] is given by 
the equation

y =  x.
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We have already expanded this function in a Fourier series in Example 2, 
Sec. 2. (Fig. 358). Let us again compute the Fourier series of this function, 
taking advantage of the fact that the given function is even.

By virtue of formulas (2) bk =  0 for any k\
I
x dx =  Jt,

Jt
2 r

<*k = n )
0

a: .sin kx , cos kx“1 J l

* + k2

0  for k even,
4

f°r  ̂odd.

We obtained the same coefficients as in Example 2 , Sec. 2 , but this time by 
a short cut.

SEC. 5. THE FOURIER SERIES FOR A FUNCTION 
WITH PERIOD 21

Let f(x) be a periodic function with period 21, generally 
speaking, different from 2n. Expand it in a Fourier series.

Make a substitution by the formula

Then the function will be a periodic function of t with
period 2j t .

It may be expanded in a Fourier series on the interval 
—  x s ^ n :

oo

f { i  J l ( a k c 0 S k t + bkS'm k t ), ( i )

where

dtt- n  -jt
JT

I  f (ir 0 slnktdt'
- ji

Now let us return to the original variable x: 

x  =  — t,  t  — x ^ - ,  d t  =  — dx.
Jt I I



790 F o u r i e r  S e r i e s

We will then have
/ / 

a0 =  y  J / (a:)dx, =  y  J / (a:) cosk jX dx ,

" / [  (2 )

T f (x) sin k y  x dx.
i t  J

Formula (1) takes the form
00

/ M  =  ^  +  ] £ ( a * c o s ^ * + & 4 s i n ^ . * ) ,  (3 )
k - \  '  '

where the coefficients a0, ak, 6 * are computed from formulas (2 ). 
This is the Fourier series for a periodic function with period 21.

We note that all the theorems that hold for Fourier series of 
periodic functions with period 2 it hold also for Fourier series of

K n

9

-3jt -2jt* -jt. 0 jr  2n 3?r 4n tin x

Fig. 365.

periodic functions with some other period 21. In particular, the 
sufficient condition for expansion of a function in a Fourier series 
(see end of Sec. 1) holds true, as do also the remark on the possibi
lity of computing coefficients of the series by integrating over any 
interval whose length is equal to the period (see Sec. 3), and the 
remark on the possibility of simplifying computation of coefficients 
of the series if the function is even or odd (Sec. 4).

Example. Expand in a Fourier series the periodic function f (x) with period 
21 which on the interval [ — /, /] is given by the equation f(x) — \x \ (Fig. 365). 

Solution. Since the function at hand is even, it follows that

l
bk = 0 ; a0 =  y ^  x dx =  l\ 

0

l Jt I 0
2 C kn x ;  21 C . . Iak = — \ a: cos ——dx=^—$ \ x c o s k x d x =  < 41

1 “  „J

for k even, 

for k odd.
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Hence, the expansion is of the form

. . I 41
J t  ^  3 j t  ( 2 p  + 1 )  j tcos — x cos — x cos ;— x

’ H 32 1“ • • • H /Qn_L_ 1 \2 h  •1 (2p + l )2

SEC. 6 . ON THE EXPANSION OF A NONPERIODIC FUNCTION 
IN A FOURIER SERIES 4

Let there be given, on some interval [a, b] a piecewise mono
tonic function f(x) (Fig. 366). We shall show that this function 
f(x) may be represented in the form of a sum of a Fourier series 
at the points of its discontinuity. To do this, let us consider an 
arbitrary periodic piecewise monotonic function fx (x) with period 
2p ^ |  b — a |, which coincides with the function f(x) on the inter
val [a, b], [We have redefined the function /(*).]

Expand /, (x) in a Fourier series. At all points of the interval 
[cit b] (with the exception of points of discontinuity) the sum of 
this series coincides with the given function f(x)\ in other words, 
we expanded the function f(x) in a Fourier series on the interval 
[fl, b].

Let us now consider the following important case. Let a func
tion f(x) be given on the interval [0, /]. Redefining this function 
in arbitrary fashion on the interval [— /, 0 ] (retaining piecewise 
monotonicity), we can expand it in a Fourier series. In particular, 
if we redefine this function so that when —/ ^ x < 0 , f (x) = f ( — x), 
we will get an even function (Fig. 367). [In this case we say that 
the function f(x) is “continued in even fashion”.] This function 
is expanded in a Fourier series that contains only cosines. Thus, 
we have expanded in cosines the function / (*) given on the inter
val [0 , /].
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But if we redefine the function f(x) when — l ^ x < 0  as follows: 
f(x)=  — /(  — x), then we get an odd function which may be expan
ded in sines (Fig. 368). [The function f(x) is “continued in odd 
fashion”.]

Fig. 367. Fig. 368.

Thus, if on the interval [0, /] there is given some piecewise 
monotonic function f(x), it may be expanded in a Fourier series 
both in cosines and in sines.

Example 1. Let it be required to expand the function /(* ) =  x in a series 
in sines on the interval [0 , it].

Solution. Continuing this function in odd fashion (Fig. 357), we get the
series

x sin 2x sin 3x
— ~  +  ~ T ~

(see Example 1 , Sec. 2).
Example 2 . Expand the function f(x) =  x in a series in cosines on the 

interval [0 , n].
Solution. Continuing this function in even fashion, we get

/(*) =  ! x \ , — J t < x < n

(Fig. 358). Expanding it in a series we find

r , v n 4 fcos x , cos 3x , cos 5x , 1
2 ~ n  | - r  +  — ' +

(see Example 2, Sec. 2). And so on the interval [0, ji] we have the equa
tion

it 4 f  cos x , cos 3x , cos 5* , ]
X~  2 n I 1 +  3* +  5* ’

SEC. 7. MEAN APPROXIMATION OF A GIVEN FUNCTION 
BY A TRIGONOMETRIC POLYNOMIAL

Representing a function by an infinite series (Fourier’s, Tay
lor’s and so forth) has the following meaning in practice: the 
finite sum obtained in terminating the series with the nth term
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is an approximate expression of the function being expanded. 
This approximate expression may be made as accurate as desired 
by choosing a sufficiently large value of n. However, the charac
ter of the approximate representation may differ.

For instance, the sum of the first n terms of a Taylor’s series 
sn coincides with the function at hand at one point, and at this 
point has derivatives up to the nth order that coincide with the 
derivatives of the function under consideration. An nth degree 
Lagrange polynomial (see Sec. 9, Ch. VII) coincides with the 
function under consideration at n + 1  points.

Let us see what the character is of an approximate represen
tation of a periodic function f(x) by trigonometric polynomials 
of the form

n

S„ (*) =  1? +  X  a k COS kx  +  6 *sin  k x >
k =  l

where a0, a„ bv a2, b2, . . .  , a„, bn are Fourier coefficients; that 
is, by the sum of the first n terms of a Fourier series. We first 
make several remarks.

Suppose we regard some func
tion y = f(x) on the interval [a, b] 
and want to evaluate the error 
when replacing this function by 
another function <p (at). For the 
measure of error we can, for in
stance, take max \f(x)—<p(x)| 
on the interval [a, b], which is 
the so-called maximum devia
tion of tp(x) from f(x). But it is 
sometimes more natural to take for the measure of error the 
so-called root mean square deviation 6 , which is defined by the 
equation

b
6* =  (£117) $ V M — 9 Ml*dx-

a

Fig. 369 illustrates the difference between the root mean square 
deviation and the maximum deviation.

Let the solid line depict the function y = f{x), the dashed lines 
the approximations <p, (x) and q>2 (x). The maximum deviation of 
the curve y = q>t (x) is less than of the curve y = <p2(x), but the 
root mean square deviation of the first curve is greater than the 
second because the curve y=̂ <p2(x) is considerably different from
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the curve y = f(x) only on a narrow section and for this reason 
characterises the curve y = f(x) better than the first.

Now let us return to our problem.
Let there be given a periodic function f (x) with period 2 ji. 

From among all the trigonometric polynomials of order n
n

Y +  £  (®a cos +  Pa sin
k  =  l

it is required to find (by choice of the coefficients ak and pA) that 
polynomial for which the root mean square deviation defined by 
the equation

ji r  n
6n =  -̂ j J  f (x) — ^ — ^ ( a kcos kx +  pA sin kx) | dx,

—Jt  ̂= 1 >1
has the smallest value.

The problem reduces to finding the minimum of the function
2 n + l of the variables a0, a„ . . .  , a„, p„ p............ P„.

Expanding the square under the integral sign and integrating 
termwise, we get

{ r ( x ) - 2f (x )
— Jt t

T  +  2  (aA cos kx +  Pa sin kx)
k  =  l

+

+ y  +  X  (“a cos kx +  Pa sin kx\ ,.
k = l

jd x  =

31 31
=  /*(*)<& —5 5 $ f(x)dx— ^ Y dak^ f(x)coskxdx +

—Jt —Jt k = l  —Jt
a Jt a * Jt n  ji

+  j f X  Pa f  /  (x) sin kxdx +  -^ x  j  dx +  J  cos* dx +
* = 1 —Jt —Jt k = l  —Jt

n  Jt n Jt

+  ^ £ P * J  sin’ todAC +  ̂ a . ^ a *  C cosftxdAc +
= l —jt ^= 1 —Jt

n  Jt n  n  Jt

+  5Sa<>Z,P*j Sinftxdx +  j J  cos fex cos jx dx +
* =  i —n  k=i j=i  —jt

n  n  Jt n  n  n

aAPyC cosfcx sin/* dx + -̂ - £ £ p  smkx sinjxdx.
k  =  i  i = l  —jx k  = i j s z i  —Jt
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We note that
ji ji

— j  f(x) dx — a0; — j  f (x) cos kx dx == aft;

sin kxdx = bt

are the Fourier coefficients of the function /(*).
Further, by formulas (I) and (II), Sec. 1, we have: for k = j

Jt SI

J  cos*kxdx = n t J  sin2 kxdx= n,

ji

J  sinkx cos jx dx = 0 ;

for k^=j

cos kx cos jxdx = 0, J  slnkxs\njxdx = 0.
—ji —ji

Thus, we obtain

^ dx— ^  —X  (akak+ ^ kbk) + f  + y X  (°a + Pa).
- ji *  =  > A =  i

Adding and subtracting the sum

4  +  j X  (°a +  ^ a ).
*=1

we will have

bn — ^  j  f* M  d x — — — 2 2 ^  (fl* +  f>A) +  (a0— £„)* +
—jt 4=1

n

+  T  2 1  [(a A— a *)8 +  (P*—  ^a)*]- ( 0
£=1

The first three terms of this sum are independent of the choice 
of coefficients a0, a ,.........a„, p,, . . .  , pn. The remaining terms

n

{ K —A.)* + yX [K—a*)S + (Pa— bk)'}
k  =  l
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are nonnegative. Their sum reaches the least value (equal to zero) 
if we put a# =  a0, a ,= a t, , a„=~a„, P, = b„ . . .  , P„ = b n.
With this choice of coefficients a0, a ,........... an, Pt..............Pn the
trigonometric polynomial

n

Y  +  X i  (a * cos +  P* sink-\
will least of all differ from the function f(x) in the sense that in 
such a choice of coefficients the square deviation 5„ will be least. 

We have thus proved the theorem:
Of all trigonometric polynomials of order n, that polynomial has 

the least root mean square deviation from the function f (x), the 
coefficients of which polynomial are the Fourier coefficients of the 
function f (x).

The least square deviation is

f  n * ) ^ - T H r i > * + 6*)- (2)
— j t  ^ _ 1

Since SnS^O, it follows that for any n we have
J t  2 n

^  J  F (*) dx 3s — +  y  Xi (a* +  bl).
— it  * = I

Hence, the series on the right converges (when n —*■ oo), and we 
can write

Jl a* 00

J  f* {x)dx s* y  4- ^  (ak +  b\). (3)
—jl A = I

This relation is called Bessel's inequality.
We note without proof that for any bounded and piecewise 

monotonic function the root mean square deviation obtained upon 
replacing the given function by the nth partial sum of the Fourier 
series tends to zero as n —► oo, that is, 6 * —► 0 as n —► oo. But 
then from formula (2 ) there follows the equation

a *  oo j i

T° +  £ (a* ’ +  f?I) =  i -  j  f*(x)dx, (3')
k-l —Jl

which is called the Lyapunov equation. (We note that A. M. 
Lyapunov proved this equation even for a broader class of func
tion than that which we here consider.)
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From what has been proved it follows that for a function 
which satisfies the Lyapunov equation (in particular, for any 
bounded piecewise monotonic function), the corresponding Fourier 
series yields a root mean square deviation equal to zero.

Note. Let us establish a property of Fourier coefficients that 
will be needed in the future. We first introduce a definition.

A function f(x) is called piecewise continuous on the interval 
[a, 6 ] if it has a definite number of discontinuities of the first 
kind on this interval (or is everywhere continuous).

We shall prove the following proposition.
If a function f ( x )  is piecewise continuous on the interval 

[—n, Jt], then its Fourier coefficients approach zero as n —>-oo; 
that is,

lim a„—-0, lim bn — 0. (4)
n-*- oo n-*oo

Proof. If the function f (*) is piecewise continuous on the in
terval [—n, jt], then the Junction f*(x) too is piecewise conti-

Jt

nuous on this interval. Then J  f*(x)dx exists and is a finite
— JT

number*). In this case, from the Bessel inequality (3) it follows
00

that the series 2 ( a* converges. But if the series conver-
n =l

ges then its general term approaches zero; in this case, 
lim(o£ +  b£) =  0 . Whence we get equations (4) directly. Thus, the
n->o
following equations are valid for a piecewise continuous and 
bounded function:

JT

lim I f  (x) cos nx dx = 0 ,
n->oo J

jt
lim f f(x )s innxdx  = 0.
n-+co J

If a function f(x) is periodic with period 2jx, then the latter 
equations may be written as follows (for any a):

a +  tn  a + 2 J t

lim J f (x) cos nxdx = 0\ lim { f  (x) sin nx dx — 0 .
a n- ĉo £

* This integral may be presented as the sum of definite integrals of con
tinuous functions over the subintervals into which the interval n] is
subdivided.
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We note that these equations continue to hold if in the integrals 
we take any arbitrary interval of integration [a, b], which is to 
say that the integrals

b b

J / (*) cos nx dx and J f (x) sin nx dx
a a

approach zero when n increases without bound if /  (jc ) is a bound
ed and piecewise continuous function.

Indeed, taking b — a<2jx for definiteness, we consider the auxi
liary function (p(x) with period 2ji defined as follows: _

<p(x) =  / (x) when a ^ x ^ b
<p (x) =  0 when b<x <  a +  2ji.

Then
b a +  2jt

J / (x) cos nxdx=  J <p (x) cos nx dx,
a a

b a + in

 ̂/ (x) sin nxdx=  J tp (x) sin nx dx.
a a

Since (p(x) is a bounded and piecewise continuous function, the 
integrals on the right approach zero as n —>-oo. Hence, the in
tegrals on the left approach zero as well. Thus, the proposition is 
proved; that is,

b b

lim \ / (x) cos nx dx =  0 ; lim \ / (x) sin nxdx = 0 (5)
n-t-co " n-*a> a

for any numbers a and b and any piecewise continuous function 
f(x) bounded on [a, £>].

SEC. 8 . THE DIRICHLET INTEGRAL

In this section we shall derive a formula that expresses the 
nth partial sum of a Fourier series in terms of a certain integral. 
This formula will be needed in the subsequent sections,

Consider the nth partial sum of a Fourier series for the peri
odic function f{x) with period 2jt:

s„ (x) =  ̂  +  £  (ak cos kx +  bk sin kx),

n n
f(t)cosktdt, =  —J  f (0 sin kt dt.

— TC — s i

where
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Putting these expressions into the formula for srt(x), we obtain

/(* )*  +
n

[— i j  f ( f) c o sk td t+ s- ^ l  f  (t) sin kt df j ,
— 31 — Jt

or bringing cos Ax and sin Ax under the integral sign (which is 
possible since cosAx and sin Ax are independent of the variable 
of integration and, hence, can be regarded as constants), we get

sn

J t

(*) — 2k J f (0 dt +
n n  n

+  fit) cos kx cos kt dt +  J  /  (t) sin kx sin kt dt^.
k ~ 1 —  J t . — J t

Now taking outside the brackets and replacing the sum of in
tegrals by the integral of the sum, we obtain

J t  ,  n

s„ (*)=  n- J  | +  Xi if ( 0  cos kx cos kt +  f (t) sin kx sin kt] i  dt,
—Jt V *=1 J

or
jt r n n

sn (*) =  J  f if) j  +  ̂  (cos kt cos kx +  sin kt sin kx) dt =
—ji L k=\ J

= ^ - ] > t i t )  ^ - + X c o s A (/ ——n L k = \
dt. ( 1)

Transform the expression in the brackets. Let

°n (z) =  j  +  cosz +  cos2 z + . . .  +  cos nz\

then
2 an (z) cos z =  cos z +  2  cos z cos z +  2  cos z cos 2z -f- . ."7 

. . .  +  2 cosz cos nz =  cosz +  (1 -j-cos 2z) +  (cosz +  cos3 z) 4 .
+  (cos 2z +  cos 4z) +  . . .  +  [cos (n— 1 )z -f cos (n +1) z] =

=  l + 2 cosz +  2 cos2z +  . . .  + 2  cos(n— l)z +  cosnz +  cos(n +  1) z
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or

But

2an (z) cos z =  2an (z) — cos nz -1- cos (n +  1) z,
,  .  _  C O S  « Z — C O S ( r t + l ) Z

' 2 (1  — cosz)

cos nz— cos (n +  1) z =  2  sin (2 n +  1) y  sin ,

1 — cosz =  2  sin2-;r .
Hence,

M * )  =
sin (2n +  l)-7r

2 sin ■—

Thus, equation (1) may be rewritten as
71 sln(2n +  l ) t- — ?

2 sin t —x dt.

Since the integrand is periodic (with period 2n), it follows 
that the integral retains its value on. any interval of integration 
of length 2 n. We can therefore write

s«(*) =
X +  Jl

x— n

sin (2n + 1) — -

o • * —X
2si" T

dt.

 ̂Introducing a new variable a, we put
t — x = at t = x + a.

Then we get the formula
« s t a ( 2 r » + l ) - §

s»W=-=-\ t(x + a)---------—  dot.
n i n 2 sin y

(2)

The integral on the right is Dirichlet’s integral.
In this formula put /(.*) =  1; then a0 =  2, ak = 0, 6 * =  0 when 

6 > 0 ; hence, sn(x)= 1 for any n and we get the identity

1 =
j 2  sln(2n +  l ) y  

n L  2 s l n |

which we will need later on.

da, (3)
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SEC. 9. THE CONVERGENCE OF A FOURIER SERIES 
AT A GIVEN POINT

Assume that the function f{x) is piecewise continuous on the 
interval [—Jt, n].

Multiplying both sides of the identity (3) of the preceding 
section by / ( x) and bringing f(x) under the integral sign, we get 
the equation

/(*) = ~ \  fix)
sin (2 /1 +  1) y  

2 sin |
da.

Subtract the terms of the latter equation from the corresponding 
terms of (2) of the preceding section; we get

«»(*)—/(*) = -S’J  \f(x + a) — f{x)]
sln(2n +  l ) y  

2sin|-
da.

Thus, the convergence of a Fourier series to the value of a func
tion f(x) at a given point depends on whether the integral on 
the right approaches zero as n —+ oo.

Let us break up this integral into two integrals:
^ cos ^

S„ (*)—/(*) = -S'J [Hx + a)— f(x)]-----sin na da +
—n 2 sin |

+  T  "H"! [/(* +  «)—/ (•«)] cos na da,
—n

taking advantage of the fact that sin (2 n + 1) y  =  sin na cosy  +

+  cos na sin-|-. Break up the first of the integrals on the right
of the latter equation into three integrals: 

e
s„W —/(*) =  1T J  \fix + a)— f(x)]

-6
- 0

a
C0ST

2sinl
a

C O S j

sin nada +

1 P 9
+  -jt j  [/(* +  «)—/(* )]------— +  sin na da -f-« . a

2smT
acos tt1 P 2 I P  1

+  \ [ / ( * + a ) — /(*)]--  s i n / i a d a  +  — J [/(x+ a ) — cosnada.
X 2 sin 2“ - j i

26—, 3388
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Put O, (a) =  ^*— —LlSl' Since f(x) is a bounded piecewise con
tinuous function, it follows that O, (a) is also a bounded and 
piecewise continuous periodic function of a. Hence, the latter 
integral approaches zero as n —*-oo, since it is a Fourier coeffi
cient of this function. The function

acos T

®,(a) =  [/(* +  a ) - / (*)]-----1-
2sl„ y

is bounded when —JtsS a< —6 and and

|(Dt (a)|< [/W + M ]—1— ,
2s l n |

where M is the upper limit of the quantity |/(* ) |. Also, the 
function 0 2(a) is likewise piecewise continuous. Hence, by for
mulas (5) of Sec. 7, the second and third integrals approach zero 
as n —► oo.

We can thus write
« a° CQg --

lim[s„(x) — f(*)] =  lim -j- f  \f(x + a)~~f(x)] -----^-sinnada. (1)
n-*  •  2 sin—

In the expression on the right, the integration is performed 
over the interval —6 ^ a ^ 6 ;  consequently, the integral is depen
dent on the values of the function f(x) only in the interval from 
x — 6 to x +  8. An important proposition thus follows from the 
latter equation: the convergence of a Fourier series at a given 
point x depends only on the behaviour of the function f (x )  in an 
arbitrarily small neighbourhood of this point.

Therein lies the so-called principle of localisation in the study 
of Fourier series. If two functions f x(x) and ft (x) coincide in the 
neighbourhood of some point x% then their Fourier series simulta
neously either converge or diverge at this point.

SEC. 10. CERTAIN SUFFICIENT CONDITIONS FOR THE 
CONVERGENCE OF A FOURIER SERIES

In the preceding section it was shown that if the function /(*) 
is piecewise continuous in the interval [—Jt, jt], then the conver
gence of a Fourier series at the given point x0 to a value of the 
function f (x0) depends on the behaviour of the function in a
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certain arbitrary small neighbourhood [x0—6, x0-|-8] with centre 
at the point x0.

Let us now prove that if in the neighbourhood of the point x0 
the function f(x) is such that there exist finite limits

iim

lim U*d2 k z m = k .

(1)'

(2)

while the function is continuous at the very point x0 (Fig. 370), 
then the Fourier series converges at this point to a correspond
ing value of the function f{x)*).

Proof. Let us consider the func
tion ®2(a) defined in the preced
ing section:

acos —
<M«) =  l/(*o +  a)—/(*,)]

2s14
since the function f(x) is piece- 
wise continuous on the interval 
[—it, it] and is continuous at the point x9, it is therefore con
tinuous in some neighbourhood [x0—6, x0 +  8] of the point x0.. 
For this reason, the function <D2(a) is continuous at all points 
where a^O and |a | ^ 6 .  When a —0 the function G>,(a) is not 
defined.

Let us find the limits lim®s (a) and lim®, (a), making us?
a-* o—o

of conditions (1) and (2):
a-*-o+o

a
cos 2

vo * i  v'vo/l aa-*o—o a-* o—o 2 sin ■—

a

lim ®,(a) =  lim [/(x0 +  a) —/ (x0)]

_  jjm f ( x 0 +  a ) — f ( X o ) _2 a
, a" C0S "2 =sin T

=  l i m  l i m  —  l i m  c o s 4 -  =  fc, • M  =  6 , .
ct—>-o—o a—>-0 o

*) H conditions (1) and (2) are fulfilled, then we say that the function 
f(x) has, at the point x, a derivative on the right and a derivative on the 
left. Fig. 370 shows a function where fc^tanq),, 62 =  tan<p2, If

=  that is, if the derivatives on the right and left are equal, then the 
function will be differentiable at the given point.

26*
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Thus, if we redefine the function ®2(ct) by putting 0 2 (()) =  &,, 
then it will be continuous on the interval [—6, 0], and, hence, 
bounded as well. Similarly we prove that

limOj (a) =  kt.
a-*o+o

Consequently, the function 0 2(a) is bounded and continuous 
on the interval [0, 6]. Thus, on the interval [—6, 6] the func
tion <D2(a) is bounded and piecewise continuous. Now let us 
return to equation (1), Sec. 9 (denoting x in terms of *„),

a au cos —
lim M * .) — /(*.)] =  lim 4" f \f(x„ +  o.)— f(xa)] - — sinnada 
«— »— ±6 2 s in -

or
6

lim [sn (*0) —/(a;0)] =  0>2 (a) sin na da.ao n~>co t)—0
From formulas (5) of Sec. 7 we conclude that the limit on the 
right is equal to zero, and therefore

lim [sn(x0)—f{xt)]=*Q
n-*oo

or
s„ (*.) =  /(*«)•n-+ qd

The theorem is proved.
This theorem differs from the theorem stated in Sec. 1 in that 

in the latter case it was required, for convergence of the Fou
rier series at a point xa to the value of the function f(xt), that 
the point x0 should be a point of continuity on the interval 
[—n, n], whereas the function should be piecewise monotonic; 
here, however, it is required that the function at the point x0 
should be a point of continuity and that the conditions (1) and 
(2) be fulfilled, while throughout the interval [—jt, ji] the func
tion should be piecewise continuous and bounded. It is obvious 
that these conditions are different.

Note 1. If a piecewise continuous function is differentiable at 
the point jc0, it is obvious that conditions (1) and (2) are ful
filled. Here, k t = k t. Hence, at points where the function f(x) 
is differentiable, the Fourier series converges to a value of the 
function at the corresponding point.

Note 2: a) The function considered in Example 2, Sec. 2 
(Fig. 358), satisfies conditions (1) and (2) at the points 0, ±2n, 
±4n, . . .  At all the other points it is differentiable. Consequent-
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ly, a Fourier series constructed for it converges to the value of 
this function at each point.

b) The function considered in Example 4, Sec. 2 (Fig. 361), 
satisfies conditions (1) and (2) at the points ± n , ±3n, ±5it. 
It is differentiable at all points. It is represented by a Fourier 
series at each point.

c) The function considered in Example 1, Sec. 2 (Fig. 357), 
is discontinuous at the points ±Jt, ±3n, ± 5 jt. At all other 
points it is differentiable. Hence, at all points, with the excep
tion of points of discontinuity, the Fourier series corresponding 
to it converges to the value of the function at the corresponding 
points. At the discontinuities, the sum of the Fourier series is 
equal to the arithmetical mean limit of the function on the right 
and on the left (in this case, zero).

The theory of expanding functions in Fourier series is called 
harmonic analysis. We shall now make several remarks about 
approximate computation of the coefficients of a Fourier series, 
that is to say, about practical harmonic analysis.

As we know, the Fourier coefficients of a function f(x) with , 
period 2n are defined by the formulas

In many practical cases, the function f(x) is represented either 
in tabular form (when the functional relation is obtained by 
experiment) or in the form of a curve which is plotted by some 
kind of instrument. In these cases the Fourier coefficients are 
calculated by means of approximate methods of integration (see 
Sec. 8, Ch. XI).

Let us consider the interval —n sS x sS n  of length 2n. This 
can always be done by proper choice of scale on the x-axis.

Divide the interval [—jt, n] into n equal parts by the points

SEC. 11. PRACTICAL HARMONIC ANALYSIS

n

*2,
Then the subinterval will be
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We denote the values of the function f(x) at the points xt, xlt 
xt, . . .  , xn (respectively) in terms of

0.. 0 i. 0». • • • . yn-

These values are determined either from a table or from the 
graph of the given function (by measuring the corresponding 
ordinates).

Then, taking advantage, for example, of the rectangular for
mula [see formula (1), Sec. 8, Ch. XI], we determine the Fourier 
coefficients:

n n n

°0 =  I S  0/. a k =  - S 0 /cos k x i ,  b k =  0i sin k x i-
i  =  1 i =  i i -1

Diagrams have been devised that simplify computation of Fou
rier coefficients (see, for instance, V. I. Smirnov, “Course of 
Higher Mathematics”, Vol. II; A. M. Lopshits, “Models for Har
monic Analysis”). We cannot deal here with the details but we 
can note that there are instruments (harmonic analysers) which 
permit approximating the values of Fourier coefficients from the 
graph of the function.

SEC. 12. FOURIER INTEGRAL

Let a function f(x) be defined in an infinite interval (—00, 
00) and absolutely integrable over it; that is, there exists an 
integral

00 *

J  \ f(x)\dx=Q.  (I)
—  00

Further, let the function f(x) be such that it is expandable 
into a Fourier series in any interval (—/, + /):

00

/ M  =  f  +  X  a* C0ST  * + & A s i n T * *  (2)k = l

I I
ak = j § f ( t ) c o s ^ t d t ,  &* =  y j  f(t)sin — + dt. (3)

where
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Putting into series (2) the expressions of the coefficients ak and 
bk from formulas (3), we can write

I  00 I

f(x) = Yi§ +  l  /(0  c o s ^ /d /)c o s ^ * - h
I

+  / (̂ ) sin t dt^sin -j~ x —
— I

=  j  f(t) j^cos^p/cos^x-p sin^p t sin ~  *J dt

or

f (*) = -% § f ( O d t + j i  { /(<) cos *n(t~ $ dt. (4)
-i *=' -i

Let us investigate what form expansion (4) will take when 
passing to the limit as I —>-oo.

We introduce the following notation:
it  2 jt k i t  i A rt /r-v— y  » — ~  > • • • * — ~  9 • • • ^nd AaA — — . (5)

Substituting into (4), we get
l  00 /

+  cosa4(* -* )d f) Aa*. (6)

As / —>-00, the first term on the right approaches zero. 
Indeed,

I  I  00
| ^ J / (0 d / [< ^ J | / (0 |d/C--  J | / (0 l^  = 5rQ—°-

—I  —I  — 00

For any fixed I, the expression in the parentheses is a function
of aft [see formula (5)], which takes on values from -y-to 00. We
will show, without proof, that if the function f  (x) is piecewise 
monotonic on every finite interval, is bounded on an infinite inter
val and satisfies condition (1), then as / —► +  00 formula (6) takes 
the form

/(*) =  -— j  ( ^ f{ t)cosa(t  — x)dt^da. (7)
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The expression on the right is known as the Fourier integral of 
the function fix). Equation (7) occurs for all points where the 
function is continuous. At points of discontinuity we have the 
equation

■5 - 1 ( j  f i t ) cos 0 V—x) dx'j =  K *+°)+f(*  0)  ̂(7 ')
0 — 00

Let us transform the integral on the right of (7) by expanding 
cosa(f—x):

cos a i t—x) =  cos at cos ax -(- sin at sin ax.

Putting this expession into formula (7) and taking cos a *  and 
sin out outside the integral signs, where the integration is performed 
with respect to the variable t, we get

qo 00
/(x) =  - j  J ( J f i t ) cos atdt^ cosajeda +

0  —  00

00 oo

H- -jj-J ( J  f i t)  sin at dt^ sin ax da. (8)
0 — 00

Each of the integrals in brackets with respect to t exists, since 
the function f i t)  is absolutely integrable in the interval ( — 00, 00), 
and therefore the functions f i t)  cos at and f i t)  sin at are also abso
lutely integrable.

Let us consider particular cases of formula (8).
1. Let fix)  be even. Then f  it) cosat is an even function, while 

f  it) sin at is odd and we have
00 ' 00 
J f  it) cosat dt = 2  ̂f i t )  cosat dt,

— 00 0
00
 ̂ f  it) sin at dt =  0.

Formula (8) in this case takes the form
00 00

f  (t) cos at dt'j cos ax da.
0 0' w - H l ( 9 )
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2. Let /(x) be odd. Analysing the character of the integrals in 
formula (8) in this case, we obtain

co 00
/(x) — ^ { \ f (  0 sinaf di'j sin ax da. (10)

0 0
If /(x) is defined only in the interval (0, oo), then for x > 0  

it may be represented by either formula (9) or (10). In the first 
case we redefine it in the interval (—oo, 0) in even fashion; in 
the latter case, in odd fashion.

Let it be noted once again that at the points of discontinuity 
we should write the following expression in place of /(x) in the 
left-hand members of (9) and (10):

f(x+0) + f(x-Q)
2

Let us return to formula (8). The integrals in brackets are func
tions of a. We introduce the following notation:

00
A (a) =  -i- J  /  (t) cos at dt,

B(a) =  -^ J  /(O sin  a tdt.
— ao

Then formula (8) may be rewritten as follows:
oo

/(* )=  J [A (a )cosax -|- B (a) sin ax] da. (11)
0

We say the formula (11) yields an expansion of the function/(x) 
into harmonics with a frequency a that continuously varies from 
0 to oo. The law of distribution of amplitudes and initial phases 
as dependent upon the frequency a is expressed in terms of the 
functions A (a) and B (a).

Let us return to formula (9). We set
/—  *

F (a) =  y  cos at dt\
0

then formula (9) takes the form

(12)
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The function F (a) is called the Fourier cosine transform of the 
function f(x).

If in (12) we consider F (a) as given and /(/) as the unknown 
function, then it is an integral equation of the function /(/). 
Formula (13) gives the solution of this equation.

On the basis of formula (10) we can write the following equations:
/ — 00

(a) = y  sinaidt> (14>
0

/--- 00
} (x) —~y "S' J ® (•*) s'n axda. (15)

0
The function ®(a) is called the Fourier sine transform.

Example. Let
/ (x) =  e~Pc ( p > 0 f *:^0).

From (12) we determine the Fourier cosine transform:
___ GO ___

f Y\ \ e'p< cos a/ dt=Y 4 Yh •0
From (14) we determine the Fourier sine transform:

_ 00 _

®(a)= *-*si™tdt=Y 4 ftp-o
From formulas (13) and (15) we find the reciprocal relationships!

00
2 8 f* cos ax , M ^  m
i i ) V + * da= t *  (̂ 0)i0

CO
2 C a sin ax , M  ̂ ^^ \ j T ^ c l a  =  e ^  (x>0).

 ̂ SEC. 13. THE FOURIER INTEGRAL IN COMPLEX FORM

In the Fourier integral [formula (7), Sec. 12], the brackets con
tain an even function of a; hence, it is defined for negative values 
of a as well. On the basis of the foregoing, formula (7) can be 
rewritten as follows:

00 00

=  J  ( J  f'(Ocoso(<—x)dt^da. ( 1)
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Let us now consider the following expression, which is identically 
equal to zero:

M oo
s in a ( /—x)dt^j da =  0.

~ M  - o o

The expression on the left is identically equal to zero because 
the function of a in the brackets ;s an odd function, and an in
tegral, of an odd function from — M to + M  is equal to zero. It 
is obvious that

lirn
M  -*• oo

M  oo 

— M  — oo

sin a (t —x) dt) da = 0

or

J ( J /  (O s ina(/—x)dtsjda  — 0 . (2)
— 00 — 00

Note. It is necessary to point to the following. A convergent 
integral with infinite limits is defined as follows:

J cp (a) da =  J <p (a) da +   ̂<p (a) da =
— 00 — 00 c

c M

=  lim \ q) (a) da +  lim [ q) (a) da
A 1 - + 0 0  ^  J

- M M  -*• oo
(*)

provided that each of the limits to the right exists (see Sec. 7, 
Ch. XI). But in equation (2) we wrote

oo M

f q)(a)da= lim [ q>(a)da. (**)
-M

Obviously, it may happen that the limit (**) exists, while the 
limits on the right side of equation (*) do not exist. The expres
sion on the right of (**) is called the principal value of the in
tegral. Thus, in equation (2) we consider the principal value of 
the improper (outer) integral. The subsequent integrals of this section 
will be written in this sense.

Let us multiply the terms of (2) by and add them to the 
corresponding terms of (1); we then get

00 00

/W  =  ^  $ [ $  f ( t ) (cosa ( t -x )  + i sina(^—*))d/| da
— 00 —CO
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or
CD 00/(*) = ̂  $ [J (3)

— 00 —CO

This is the Fourier integral in complex form. Formula (3) may be 
rewritten as follows:

'< * > - 7 1 5  I  (7TSI
—  00 “ 00

On the basis of this latter equation we can write
00

F*(a) = ^ =  J  f ( t )eMdt, (4)
— 00

co

f{x) = —  j  F* (a)e-™da. (5)
— 00

The function F* (a) defined by formula (4) is called the Fourier 
transform of the function fit).  The function f(x) defined by for
mula (5) is called the Fourier inverse transform of the function 
F* (a) (the transforms differ in the sign in front of i).

Exercises on Chapter XVII

1 . Expand the following function in a Fourier series in the interval(— jt, Jt); 
/(*) =  2x for 0 < x < j t ,  
f(x) =  x f o r — jtC jc^ O .

i x  sin 2a: .„ 1 2 /  cos.
Ans-

jc . cos 3j c  , cos 5j c  , \  , 0 /  sin j
3* 5*  ̂• • • J + 3

, sin3x
52

. . . )
2 . Taking advantage of the expansion of the function / ( * ) =  1 in the inter

val (0, J t )  in the sines of multiple arcs, calculate the sum of the series

1- T - 4 - T + - "  Ans- T -
3. Utilising the expansion of the function j(x) =  x2 in a Fourier series, 

compute ihe sum of the seri es - p— —- 5+ • . .  Ans.
jt*

4. Expand the function f ( x ) = j ^ — — in a Fourier series in the interval
. . - cos 2x , cos 3x cos 4x ,
( —jt, J t ) .  Ans. cosx ------^r~ +  — z--------- 37“ + - . .3*
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5. Expand the following function in a Fourier series in the interval ( — jt, jt) 

/  (* )=  — — ~^X-  for — jt< * < 0 ,

f (x) =  — ( j t^x)  for 0 < * < j t .

Ans. sin x +  — sin 2x +  y  sin 3x + .  . .
6. Expand in a Fourier series, in the interval ( — jt, jt), the function 

f ( x ) = —x for — jt < 0 ,
f ( x ) =  0 for 0 < * ^ j t .

Ans. —  
4

00 00
2 c o s (2 /i+ l)*  tt_ 1sinnx
jt Zd (2/i + l)« iLit ^ n •

m =o n - i

7. Expand in a Fourier series, in the interval ( —jt, jt), the function 
/(*) =  1 for — jt < * < 0 ,  
f (*) =  —2 for 0 <  x ^  jt.

Ans. 1 6 sin (2 /i+ l)  x
2 jtZ* 2/i +  ln=o

8. Expand the function f(x) =  x*f in the interval (0, jt), in a series of sines.
00

Ans. - I l - r l J + j K - l M ] )  starts
n=l ' '

9. Expand the function y =  cos 2x in a series of sines in the interval (0, jt).
A 4 f  sin x , 3 sin 3x , 5 sin 5jc , 1

AnS’ ~n [2*= I +  2*— 3, +  2‘—5* +,,,J ‘
10. Expand the function y  =  sin x in a series of cosines in the interval (0, jt).

- 4 f  1 cos 2x cos 4x 1
A  ~n L'2''+ r ^ 2 5 + r ^ 4 » + " 'J  ’

11. Expand the function y — ex in a Fourier series in the interval /),

Ans,' 21 1-/ (e‘ — e~l) £ i  111

00 (—l^-'nsln
+  n{el —e - 1) ^

nnx
I

/2 +  /l2 JT*

12. Expand the function /(*) =  2x in a series of sines in the interval (0, 1).
00

2 sin 2/zjtx„ , 2 sin innx
Ans• 1— n L — r ~ '

)
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13. Expand the function f ( x ) = x  in a series of sines in the interval

a n ? ”

14. Expand the function

w - {  2_ *  ! " ? < * < ! .-X  for 1 <  x <  2

In the interval (0, 2): a) in a series of sines; b) in a series of cosines.

sin (2 n -f-1) jpg
* v 8 V V  2 ux 1 4 cos (2n - \ - \ )nx
Atis. a ) n , 2 * (  (2n 4-1)* 1 2 n* (2/t +  l)* ’



C H A P T E R  XVIII

EQUATIONS OF MATHEMATICAL PHYSICS

SEC. 1. BASIC TYPES OF EQUATIONS OF MATHEMATICAL PHYSICS

The basic equations of mathematical' physics (for the case of 
functions of two independent variables) are the following second- 
order partial differential equations.

I. Wave Equation:
dhi_ t&u 
dt‘~ a dx‘ ' ( 1)

This equation is invoked in the study of processes of transversal 
vibrations of a string, the longitudinal vibrations of rods, electric 
oscillations in conductors, the torsional oscillations of shafts, gas 
vibrations, and so forth. This equation is the simplest of the^class 
of hyperbolic equations.

II. Fourier Equation for Heat Conduction:
du_ 2 dhi
d t ~ a a P - (2)

This equation is invoked in the study of processes of the propa
gation of heat, the filtration of liquids and gases in a porous 
medium (for example, the filtration of oil and gas in subterranean 
sandstones), some problems in probability theory, etc. This equation 
is the simplest of the class of parabolic equation.

III. Laplace’s Equation:

dx2 ~*~ dy2~~U' (3)

This equation is invoked in the study of problems dealing with 
electric and magnetic fields, stationary thermal states, problems 
in hydrodynamics, diffusion, and so on. This equation is the simplest 
in the class of elliptic equations.

In equations (1), (2), and (3), the unknown function u depends 
on two variables. Also considered are appropriate equations of 
functions with a larger number of variables. Thus, the wave
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equation in three independent variables is of the form

the heat-conduction equation in three independent variables is of 
the form

the Laplace equation in three independent variables has the form
d2u , d2u , d2u _
dP+ di2 +  ~d?~ O ' )

SEC. 2. DERIVATION OF THE EQUATION OF OSCILLATION OF A STRING. 
FORMULATION OF THE BOUNDARY-VALUE PROBLEM. 

DERIVATION OF EQUATIONS OF ELECTRIC OSCILLATIONS IN WIRES

Fig. 371.

In mathematical physics a string is understood to be a flexible 
and elastic thread. The tensions that arise in a string at any 
instant of time are directed along a tangent to its profile. Let a 
string of length / be, at the initial instant, directed along a seg
ment of the x-axis from 0 to I. Assume that the ends of the

string are fixed at the points x =  0 
and x =  l.  If the string is deflected 
from its original position and then 
let loose; or if without deflecting the 
string we impart to its points a cer
tain velocity at the initial time, or 
if we deflect the string and impart 
a velocity to its points, then the 
points of the string will perform 

certain motions; we say that the string is set into oscillation. 
The problem is to determine the shape of the string at any instant 
of time and to determine the law of motion of every point of the 
string as a function of time.

Let us consider small deflections of the points of the string from 
the initial position. We may suppose that the motion of the points 
of the string is perpendicular to the x-axis and in a single plane. 
On this assumption, the process of oscillation of the string is 
described by a single function u{x,  t), which yields the amount 
that a point of the string with abscissa x  has moved at time t 
(Fig. 371).

Since we consider small deflections of the string in the (x, u)- 
plane, we shall assume that the length of an element of string
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is equal to its projection on the *-axis, that is,*) M 1M t — 
=■ xt—xt. We also assume that the tension of the string at all 
points is the same; we denote it 
by T.

Consider an element of the string 
MM'  (Fig. 372). Forces T act at the 
ends of this element along tangents 
to the string. Let the tangents form 
with the Jt-axis angles cp and (p -f- Acp.
Then the projection on the u-axis of Fig. 372.
forces acting on the element MM'
will be equal to T sin (<p-|- Acp)— T sin<p. Since the angle tp is small, 
we can put tan<p^=sin<p, and we will have 
T sin (cp+Acp)— T sinq>^=

= r i a n ( 9 + 4 f ) - r t a n < p - r  _

=  J. a*»(* +  6A*. t) . rp d2u(x , y) 
dx1 dx2 Ax,

o < e < i
(here, we applied the Lagrange theorem to the expression in the 
square brackets).

In order to obtain the equation of motion, we must equate to 
the force of inertia the external forces applied to the element. 
Let e be the linear density of the string. Then the mass of the 
element of the string will be pAx. The acceleration of the element

d̂t&is Hence, by d’Alembert’s principle we will have
a d*U r r.  d2U .

Q*x w = T  d ? Ax-
I rp

Cancelling out Ax and denoting — =  a2, 
motion:

(Fu_ t -&u 
dt2 ~ a dx2 '

we get the equation of

( 1)

This is the wave equation, the equation of vibrations of a string. 
Equation (1) by itself is not sufficient for a complete definition

*) This assumption is equivalent to neglecting u* as compared with 1. 
Indeed,

x a x 2 x 2

MtMt = J V  l+w't’ d x =  J  ^ + 1 ^ ’ — •••) dx^= J  dx — xt — x1.
x t  x , *,
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of the motion of a string. The desired function u(x, t) must also 
satisfy boundary conditions that indicate what occurs at the ends 
of the string (x =  0 and jc =  /) and initial conditions, which 
describe the state of the string at the initial time (/ =  0). The bound
ary and initial conditions are referred to collectively as boundary- 
vallie conditions.

For example, as we assumed, let the ends of the string at x = 0 
and * =  / be fixed. Then for any t the following equalities must 
hold:

u(0, 0 =  0, (2')
u{l, 0 =  0. (2")

These equations are the boundary conditions for our problem.
At / =  0 the string has a definite shape, that which we gave it. 

Let this shape be defined by a function f(x). We should then 
have

u(x, 0) =  u | ,=0 =  /(*). (3')
Further, at the initial instant the velocity at each point of the 
string must be given; it is defined by the function (p(*). Thus, 
we should have

S | , < 3->
The conditions (3') and (3") are the initial conditions.

Note. For a special case we may have f(x) =  0 or <p(*) =  0.
But if f(x) =  0 and q>(*) =  0, then the string will be in a state 
of rest; hence, u(x, t) =  0.

As has already been pointed out, the problem of electric oscil
lations in wires likewise leads to equation (1). Let us show this 
to be the case. The electric current in a wire is characterised by 
the current flow i (*, t) and the voltage v (x, t), which are depen
dent on the coordinate x of the point of the wire and on the 
time t. Regarding an element of wire Ax, we can write that the 
voltage drop on the element Ax is equal to v(x, t) — v (x-{-Ax, t)=s=
=  —^  Ax. This voltage drop consists of the ohmic drop, equal 

to iRAx, and the inductive drop, equal to ^LAx. Thus,

- ^ A x  = iRAx + %LAx, (4)

where R and L are the resistance and the coefficient of self-induc
tion reckoned per unit length of wire. The minus sign indicates
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that the current flow is in a direction opposite to the build-up 
of v. Cancelling out Ax, we get the equation

*L + iR + L % - 0. (5)

Further, the difference between the current leaving element A* 
and entering it during time At will be

i(x, t) — i(x + Ax, t ) ^ — ^ A x  At.

It is taken up in charging the element ^this is equal to CAx— At ĵ
and in leakage through the lateral surface of the wire due to 
imperfect insulation, equal to AvAxAt (here A is the leak coeffi
cient). Equating these expressions and cancelling out AxA/, we 
get the equation

& + Cdi  + Av = 0. (6)

Equations (5) and (6) are generally called telegraph equations.
From the system of equations (5) and (6) we can obtain an 

equation that contains only the desired function i(x, /), and an 
equation containing only the desired function v(x> /). Differentiate 
the terms of equation (6) with respect to x\ differentiate the terms 
of (5) with respect to t and multiply them by C. Subtracting, 
we get

| - - C l £  =  0.

Substituting into the latter equation the expression ^  from 
we get

dx1+  4 - C L

(5),

or

^ C L ^  + (CR+AL)pt + ARi. (7)

Similarly, we obtain an equation for determining v(x, t):

% - C L g + « : R  +  A l ) %  +  ARv. (8)

If we neglect the leakage through the insulation (4 =  0) and 
the resistance (R =  0), then equations (7) and (8) pass into the
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wave equations
2 dH__dĤ  2 d* v__cPv

°  ~dx*~dfi ' a  'dxt ~ d t r >

where — The physical conditions dictate the formulation 
of the boundary and initial conditions of the problem.

SEC. 3. SOLUTION OF THE EQUATION OF OSCILLATIONS 
OF A STRING BY THE METHOD OF SEPARATION OF VARIABLES 

(THE FOURIER METHOD)

The method of separation of variables (or the Fourier method), 
which we shall now discuss, is typical of the solution of many 
problems of mathematical physics. Let it be required to find the 
solution of the equation

d*u t &u . . .
W ~ a dx* W

which satisfies the boundary-value conditions
«(0, 0  =  0, (2)
«(/, 0  =  0, (3)

«(x , 0) = f (x), (4)

I I , < 5>
We shall seek a particular solution (not identically equal to zero) 
of equation (1) that satisfies the boundary conditions (2) and (3), 
in the form of a product of two functions X(x)  and T{t), of 
which the former is dependent only on x, and the latter, only 
on t:

u(x, t) = X(x)T(t) .  (6)
Substituting into equation (1), we get X\x)T" {t) = alX" (x)T {t), 
and dividing the terms of the equation by a*XT,

The left member of this equation is a function that does not 
depend on x, the right member is a function that does not depend 
on t. Equation (7) is possible only when the left and right mem
bers are not dependent either on x or on t, that is, are equal to 
a constant number. We denote it by —X, where A,>0 (later on 
we will consider the case A,<0). Thus,
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From these equations we get two equations:
X" +XX =  0, y (8)
T" +  alKT — 0. (9)

The general solutions of these equations are (see Ch. XIII, Sec. 21) 
X  (x) = A cos Y'kx +  B sin Y^x ,  (10)

T (x) = C cos a V fo  -f- D sin aV%t, (11)
where A, B, C, and D are arbitrary constants.

Substituting the expressions X (x) and T (t) into (6), we get
u (x, t) = (A cos Y ^ x  +  B sin Y ^ x )  (C cos aY^-t +  D sin aYM).

Now choose the constants A and B so that the conditions (2) and
(3) are satisfied. Since T (t)j£0 (otherwise we would have u (x, t)=Q, 
which contradicts the hypothesis), the function X (x) must satisfy 
the conditions (2) and (3); that is, we must have X (0) =  0, X (/) =  0. 
Putting the values x =  0 and x — l into (10), we obtain, on the 
basis of (2) and (3),

0 =  y4‘ 1 +  B-0,
0 =  A cosl/A./ +  fl sinl/M  =  0.

From the first equation we find j4 =  0. From the second it follows 
that

B sin Y M  =  0.
B=£ 0, since otherwise we would have X =  0 and u =  0, which 
contradicts the hypothesis. Consequently, we must have

sin Y M ~  0.
whence

( n = l ,  2, . . . )  (12)

(we do not take the value n =  0, since then we would have X =  0 
and u =  0). And so we have

X =  B s in ^ x . (13)

These values of K are called eigenvalues of the given boundary- 
value problem. The functions X(x) corresponding to them are 
called eigenfunctions.

Note. If in place of — % we took the expression +?» =  &*, then 
equation (8) would take the form

X"— kiX = 0 .
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The general solution of this equation is
X = Ae*x + Be-*x.

A nonzero solution in this form cannot satisfy the boundary 
conditions (2)_and (3).

Knowing we can [utilising (11)] write

T (t) = Ccos— t + D  sin—t- t  (n=  1, 2, ...)•  (14)

For each value of n, hence for every X, we put the expressions 
(13) and (14) into (6) and obtain a solution of equation (1) that 
satisfies the boundary conditions (2) and (3). We denote this so
lution by un(x, t):

, . nn ' (  ^  ann , . ~  . ann , \  /irvun(xf t) = sin — x ( Cn cos ~j~t + Dn sin —  t). (15)

For each value of n we can take the constants C and D and thus 
write Cn and Dn (the constant B is included in Cn and Dn). 
Since equation (1) is linear and homogeneous, the sum of the 
solutions is also a solution, and therefore the function represent
ed by the series

CO
u (x, t) =  2  (*> t)

n - i
or

/ v i  / p  arm . . r-v . ann , \  . nn0 =  2j ^ « cos~  t + Dn sin—  t j  sm — x (16)

will likewise be a solution of the differential equation (1), which 
will satisfy the boundary conditions (2) and (3). Series (16) will 
obviously be a solution of equation (1) only if the coefficients 
Cn and Dn are such that this series converges and that the series 
resulting from a double term-by-term differentiation with respect 
to x and to t converge as well.

The solution (16) should also satisfy the initial conditions (4) 
and (5). We shall try to do this by choosing the constants Cn 
and Dn. Substituting into (16) * =  0, we get [see condition (4)]:

os
f(x) = 'EtC„sin — x. (17)

n= l
If the function f(x) is such that in the interval (0, /) it may be 
expanded in a Fourier series (see Sec. 1, Ch. XVII), the condition 
(17) will be fulfilled if we put

i
Cn = Y ^ f ( x )  sin ’— xdx. (18)
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We then differentiate the terms of (16) with respect to t and 
substitute t = 0. From condition (5) we get the equality

oo
q>(*)=2- Ai — sin ~ x-

n =  l

We define the Fourier coefficients of this series:
i

T̂ arut 2 f  , v . rut , ■D„ —  = sin-y-xdx
0

or
i

A. =  *P W sin T  * ***• (19)
0

Thus, we have proved that the series (16), where the coefficients 
Cn and Dn are defined by formulas (18) and (19) [if it admits 
double termwise differentiation], is a function u(x, /), which is 
the solution of equation (1) and satisfies the boundary and initial 
conditions (2) to (5).

Note. Solving the problem at hand for the wave equation by 
a different method, we can prove that the series (16) is a solution 
even when it does not admit termwise differentiation. In this case 
the function f(x) must be twice differentiable and cp(jc) must be 
once differentiable*).

SEC. 4. THE EQUATION FOR PROPAGATION OF HEAT IN A ROD. 
FORMULATION OF THE BOUNDARY-VALUE PROBLEM

Let us consider a homogeneous rod of length /. We assume 
that the lateral surface of the rod is impenetrable to heat transfer 
and that the temperature is the same
at all points of any cross-sectional area I I I I
of the rod. Let us study the process of 0 xi xz 1
propagation of heat in the rod. F. n79

We place the *-axis so that one 
end of the rod coincides with the
point x =  0, the other with the point x = l (Fig. 373). Let 
u (x9 t) be the temperature in the cross section of the rod with 
abscissa x at time t . Experiment tells us that the rate of propa-

* These conditions are dealt with in detail in "Equations of Mathematical
Physics”, A. N. Tikhonov and A. A. Samarsky, Gostekhizdat, 1954 (Russian
edition).
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gation of heat (that is, the quantity of heat passing through a 
cross section with abscissa x in unit time) is given by the formula

( 1)

where 5 is the cross-sectional area of the rod and k is the coef
ficient of heat conduction*).

Let us examine an element of rod contained between cross 
sections with abscissas xt and —x, =  Ax). The quantity of
heat passing through the cross section with abscissa xt during 
time At will be equal to

=  ( 2 )

and the same for the cross section with abscissa jc2:

The influx of heat AQ, — AQt into the rod element during time 
At will be

AQ -  A« . -  [ - 4  £ |„ „ S A ( ]  -  [ - f t  | | „  W |  =

*=k AxSAt (4)

(we applied the Lagrange theorem to the difference — ^ —

—3x\ -  ) ‘ This ‘n^ux during time At was spent in
raising the temperature of the rod element by Au:

AQj—AQ2 = cqAxSAu

or AQt - A Q ^ c q A x S p x At, (5)

where c is the thermal capacity of the substance of the rod and 
q is the density of the substance (qAxS is the mass of an element 
of rod).

*) The rate of propagation of heat, or the rate of the thermal flux, is 
determined by

where AQ is the quantity of heat that has passed through a cross section S 
during a time At.
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Equating expressions (4) and (5) of one and the same quantity 
of heat AQt—AQ„ we get

k ^ A x S A t ^ C Q A x S ^  A*

or
du ^  k <Pu 
d i ~  c q  d x 2 *

Denoting — =a*, we finally get
du __ 2 (Pu
T t ~ a  ~d.? • (6)

This is the equation for the propagation of heat (the equation of 
heat conduction) in a homogeneous rod.

For the solution of equation (6) to be definite, the function u(x, t) 
must satisfy the boundary-value conditions corresponding to the 
physical conditions of the problem. For the solution of equation (6), 
the boundary-value conditions may differ. The conditions which 
correspond to the so-called first boundary-value problem for Osg/s^T 
are as follows:

u{x, 0) =  q>(j:), (7)
«(0, 0  =  ̂ ( 0 .  (8)
u(l, =  (9)

Physically, condition (7) (the initial condition) corresponds to 
the fact that for / =  0 a temperature is given in various cross 
sections of the rod equal to <p(jt). Conditions (8) and (9) (the 
boundary conditions) correspond to the fact that at the ends of 
the rod, x = 0 and x = l, a temperature is maintained equal to 
t|), (t) and •>]>,(<), respectively.

It is proved that the equation (6) has only one solution in the 
region O ^ x ^ l ,  O ^ t ^ T ,  which satisfies the conditions (7), (8), 
and (9).

SEC. 5. HEAT PROPAGATION IN SPACE

Let us further consider the process of propagation of heat in 
three-dimensional space. Let u{x, y, z, t) be the temperature at 
a point with coordinates (x , y, z) at time t. Experiment states 
that the rate of heat passage through an area As, that is, the 
quantity of heat passing through in unit time is governed by the 
formula [similar to formula (1) of the preceding section]

( i )
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where k is the coefficient of heat conductivity of the medium 
under consideration, which we regard as homogeneous and isotro
pic, rt is the unit vector directed normally to the area As in the 
direction of motion of the heat. Taking advantage of Sec. 14, 
Ch. VIII, we can write

du du . d a  Q . du
_ = _ c o s a + _ c o s P + _ c ° S Y >

where cos a, cos[J, cosy are the direction cosines of the vector it, or
du ,^  =  «gradu.

Substituting the expression ^  into formula (1), we get 

A Q =  — kn grad u As.
The quantity of heat passing in time At through the elementary 
area As will be

AQAt = — kn grad u At As.

Now let us return to the problem posed at the beginning of 
the section. In the medium at hand we pick out a small volume V 
bounded by the surface S. The quantity of heat passing through 
the surface S will be

Q =  — At J J kngvad uds, (2)

where n is the unit vector directed along the external normal to 
the surface S. It is obvious that formula (2) yields the quantity 
of heat entering the volume V (or leaving the volume V) during 
time A/. The quantity of heat entering V is spent in raising the 
temperature of the substance of this volume.

Let us consider an elementary volume Av. Let its temperature 
rise by Au in time At . Obviously, the quantity of heat expended 
on raising the temperature of the element Av will be

cAuq Au^zcAvq ̂  At,

where c is the heat capacity of the substance and q is the density. 
The total quantity of heat consumed in raising the temperature 
in the volume V during time At will be

du j  .
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But this is the heat that has entered the volume V during the 
time At\ it is defined by formula (2). Thus, we have the equality

At Jj* kngraduds = At ^ j c g  — dv. / 
s v

Cancelling out At, we get

J j>£/tgrad«ds =  (3)
s v

The surface integral on the left-hand side of this equation we 
transform by the Ostrogradsky formula (see Sec. 8, Ch. XV), 
assuming F=fcgrad«:

grad u)nds~  div (fegrad u)dv.
s v

Replacing the double integral on the left of (3) by a triple inte
gral, we get

J J J  div (k grad u)dv =  cq~(dv 
v- v

or

I I I  [div(fe6radu)—ce |f ]  dv = 0. (4)

Applying the mean-value theorem to the triple integral on the 
left (see Sec. 12, Ch. XIV), we get

[div(* grad u ) - c Q ^  =  0, (5)

where the point P (x, y , z) is some point of the volume V.
Since we can pick out an arbitrary volume V in three-dimen

sional space where propagation of heat is taking place, and since 
we assume that the integrand in (4) is continuous, equality (5) 
will be fulfilled at each point of the space. Thus,

eg — =  div (fe grad «). (6)
But

kgTadu = k - i + k ^ j + k ^ f c  

(see Sec. 14, Ch. VIII) and

Civ(*grad » > - £ ( * g ) + | ( * | ) + I ( ‘ l )
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(see Sec. 9, Ch. XV). Substituting into (6), we obtain

« • * - £ ( *  I ) + 4  ( * « ) + £ ( * * ) •
If k is a constant, then

div {k grad u) =  k div (grad u) =  k + S )
and equation (6) then yields

du , ( d2u , d*u , d‘u \
C(* T t = k  W + W '  +  d ? )

or, putting -  = a \

Equation (8) is briefly written
du * \
Tt =  aA u>

where =  +  +  the Laplace operator. Equation (8)
is the equation of heat conduction in space. To find its unique 
solution that corresponds to the problem posed here, it is necessary 
to specify the boundary-value conditions.

Let there be a body Q with a surface a. In this body we con
sider the process of propagation of heat. At the initial time the 
temperature of the body is specified, which means that the solu
tion is known for / =  0 (the initial condition):

u(x, y, z, 0) =  <p(*, y, z). (9
In addition to that we must know the temperature at any point M 
of the surface a of the body at any time t (the boundary condi
tion):

u(M, f) =  iJ>(M, t). (10)
(Other boundary conditions are possible too.)

If the desired function u(x, y, z, t) is independent of z, which 
corresponds to the temperature being independent of z, we obtain 
the equation

which is the equation of heat propagation in a plane.
If we consider heat propagation in a flat region D with bound

ary C, then the boundary conditions, like (9) and (10), are
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formulated as follows:
u{x, y, 0) =  <p(*, y), 
u (Af, t),

where <p and i|) are specified functions and Af is a point on the 
boundary C.

But if the function u does not depend either on z or on y, 
then we get the equation

d u  2 
T t = a  dx*

which is the equation of heat propagation in a rod.

SEC. 6. SOLUTION OF T H E  F IR S T  B OU N D A R Y -V A LU E 
PR O B L E M  FO R  T H E  HEAT-CONDUCTIVITY EQUATION 

BY T H E  METHOD OF F IN IT E  D IF F E R E N C E S

When we solve partial differential equations by the method of 
finite differences, the derivatives, as in the case of ordinary 
differential equations, are replaced by appropriate differences 
(see Fig. 374):

d u ( x ,  t ) _ u ( x  +  h t t) — u (x f t) 
d x  h ’

d 2u (.x , t) 1 [ u  (x +  h ,  t ) — u (.x , t) u (  x,  t ) — u ( x  —  h,  t)~\

or

1 |"u (x +  h ,  t ) — u (x,  t) u ( x , t ) — u ( x  —  h,  f)“]
~dx2 ~ h i  h h J

d 2u ( x ,  t) u ( x  +  h , t ) — 2 u ( x ,  t) +  u ( x  —  h, t) # 
d x 2 h 2

similarly,
du (x,  t) u ( x ,  t  +  l ) —u ( x ,  t)  

d t  ~  I

(2)

(3)
The first boundary-value problem for the heat-conductivity equa
tion is stated (see Sec. 4) as follows. It is required to find the 
solution of the equation

du  2 d*u
d t ~ a  d x 1

that satisfies the boundary-value conditions
u(x, 0) =  <p (jc), Os^jts^ L ,
u (0, 0  = ^ 1. 0 < / < 7 \
u(l, 0  =  ^ ( 0 .  < 7 \

that is, we have to find the solution u (*, t) in a rectangle boun
ded by the straight lines t = 0 , x = 0 , x = L, t ^ T ,  if the values

(4)

(5)
(6) 

(7)
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of the desired function are given on three of its sides: / =  0, 
at =  0, x = L (Fig. 375). We cover our region with a grid formed 
by the straight lines

x = ih, i = 1,2, , . . ,  
t = kl, 6 =  1, 2.........

and approximate the values at the nodes of the grid, that is, at 
the points of intersection of these lines. Introducing the notation

t

j (x,t<P

(x-h .t) (x,t) (x+ h,t)

Fig. 374.

u(ih, kl) = ui h, we write (in place of equation (4)] a corresponding 
difference equation for the point {ih, kl). In accord with (3) 
and (2), we get

ut, A + i u /, k _ s u / + t, k 2*i/, j  +  —l, k /m
J a /,« • \°)

We determine uit A+1:

+ l =  k~̂ ~a hi(Ui+i, *)• ( )̂

From (9) it follows that if we know three values in the Ath 
row: uit k, ul+1( k, u,_ti k, we can determine the value uit ft+1 in 
the (&+l)st  row. We know all the values on the straight line 
f =  0 [see formula (5)]. By formula (9) determine the values at 
all the interior points of the segment t = l. We know the values 
of the end points of this segment by virtue of (6) and (7). In this 
way, row by row, we determine the values of the desired solution 
at all nodes of the grid.

It is proved that from formula (9) we can obtain an approxi
mate value of the solution not for an arbitrary relationship between

h*the steps h and I, but only if Formula (9) is greatly sim
plified if the step I along the /-axis is chosen so that

i 2 a‘l n
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or

1 2a2 ‘
In this case, (9) takes the form

Uly k + \ ~  ~2 Ûi + *» k Ui~ ^ ( 10)

This formula is particularly convenient for computations (Fig. 376). 
This method gives the solution at the nodes of the grid. Solutions 
between the nodes may be obtained, for exam
ple, by extrapolation, by drawing a plane 
through every three points in the space (x, t , u).
Let us denote by uh(x} t) a solution obtained 
by formula (10) and this extrapolation. It is 
proved that ([-

lim uh (x, t) =  u (x, t),h-*- o
where u (x , t) is the solution of our problem. It is also proved *) 
that

I uh(x, t) — u(x, t) \<Mh\  

where M is a constant independent of h.

(i.k+1)

W  ? e+w
Fig. 376.

SEC. 7. PROPAGATION OF HEAT IN AN UNBOUNDED ROD

Let the temperature be given at various sections of an unboun
ded rod at an initial instant of time. It is required to determine 
the temperature distribution in the rod at subsequent instants of 
time. (Physical problems reduce to that of heat propagation in 
an unbounded rod when the rod is so long that the temperature 
in the interior points of the rod at the instants of time under 
consideration are but slightly dependent on the conditions at 
the ends of the rod.)

If the rod coincides with the x-axis, the problem is stated 
mathematically as follows. Find the solution to the equation

du_ t d*u
d t ~ a dx* (1)

*) This question is dealt with in more detail in D. Yu. Panov’s “Ref
erence on Numerical Solution of Partial Differential Equations”, Gostekhizdat, 
1951; Lothar Collatz, “Numerische Behandlung von Differentialgluchungen”, 
1955.
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in the region — oo < .* < ; oo, 0 < /  which satisfies the initial 
condition

u(x, 0) =  <p (jc). (2)
To find the solution, we apply the method of separation of 

variables (see Sec. 3); that is, we shall seek a particular solution 
of equation (1) in the form of a product of two functions:

u(x, t) = X{x)T(t)._ (3)
Putting this into equation (1) we have X {x)T'(t) = a*X" (x)T (t) 
or

r
a‘T (4)

Neither of these relations can be dependent either on x or 
on /; therefore, we equate them to a constant, *)—X*. From (4) 
we get two equations:

r + a W T  =  0, (5)
A" +  ̂ A- =  0. (6)

Solving them we find
T = Ce-a'M ,

X = A cos Xx +  B sin Xx.
Substituting into (3), we obtain

ux(x, t) = e-a*n [A(X)cosXx + B(X)sinXx] (7)
[the constant C is included in i4(A,) and in B (A,)].

For each value of X we obtain a solution of the form (7). 
For each value of X the arbitrary constants A and B have defi
nite values. We can therefore consider A and B functions of X. 
The sum of the solutions of form (7) is likewise a solution 
[since equation (1) is linear]:

e~atm [A (X) cos Xx-\-B (A,) sin tat];

Integrating expression (7) with respect to the parameter X between 0 
and oo, we also get a solution

u(x, t) =  J e~anzt [i4 (X) cos A,x-[- B (X) sin Xx\dX, (8)
0

*) Since from the meaning of the problem T (t ) must- be bounded for
T'any t, if cp(jc) is bounded, it follows that — must be negative. And so we

write — A,2.
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if A (k) and B(k) are such that this integral, its derivative with 
respect to t and the second derivative with respect to x exist 
and are obtained by differentiation of the integral with respect 
to t and x. We choose A (k) and B (k) such that the solution u (x, () 
satisfies the condition (2). Putting / =  0 in (8), we get [on the 
basis of condition (2)]: oo

u (x, 0) =  <p (jc) =  J [ A (k) cos kx + B '(k) sin kx]dk. (9) 
0

Suppose that the function <p(x) is such that it may be represented 
by the Fourier integral (see Sec. 12, Ch. XVII):

00 OO

00 OO
cp (*) == -L J   ̂ ^ cp (a) cos K (a— x) da] dK 

0 — 00

o

cp (a) cos tax da}j cos Kx +
00

+  ( J  cp (a) sin kada) sinXxj dk. (10)

Comparing the right sides of (9) and (10), we get
00

A (k) =  J cp (a) cos ka da,
— 00 

OO

^  (^) =  ■“  j* <p (a) sin ka da.
— 00

Putting the expressions thus found of A (k) and B (k) into (8), 
we obtain 00 oo
u (xt t) = ^  J g“a2X2t ^  J cp (a) cos tax da ̂  costae-f- 

0 — 00

ji

00
-aMt

o
[ ] <f> («) 
L— 00

+ 00
-J-( j cp (a) sin ka da j sin kx cM. =

^  — CO '  J

(cos tax cos Kx 4- sin Ka sin Kx) daj dK =>

00 00
= ̂ - -( J  cp(a)cosX(a—x)da)dk

0 —GO

27— i 3 3 8 8
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or, changing the order of integration, we finally get
GO CO

u(x , 0  =  ~- J £<p(a) cosh(a— x) da. (12)
— 00 0

This Is the solution of the problem.
Let us transform formula (12). Compute the integral in the 

parentheses:
00 oo
J e-a*m cos% (a—x) dX ==~j-=. J e~z% cos fizdz. (13) 
0 0

The integral is transformed by substitution:

alV~t = z, =  (14)a y t
We denote

00
K (P) =  J s~zi cos Pz dz. (15)

0
Differentiating, *) we get

00

K' (P) =  — $ e~zi z sin |iz dz.
0

Integrating by parts, we find
00

K' (P) =  j  [e"*asin pz]"— J  e~zt cos Pz dz
0

or
/ c ' ( P ) = - 4 ^(P).

Integrating this differential equation, we obtain

K($) = Ce *. (10)
Determine the constant C. From (15) it follows that

oo
K(0) = §e~ztdz = Q

*) Differentiation here is easily justified.
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(see Sec. 5, Ch. XIV). Hence, in (16) we must have
r  _  V  n

And so

K(P) =  ^ " * .  07)

Put the value (17) of the integral (15) into (13):
»   p*
f e -a?M c o s % /a — x \ ^  — —L_ V n e *.
J V ' a f t  20

In place of (} we substitute its expression (14) and finally get the 
value of the integral (13):

ar  , / —  . <«-«>’
l e -aJWcosX(a—x)d‘k = 2̂  l / J L e  iaH . (18)
0

Putting this expression of the integral into the solution (12), we 
finally get

u (x, t) =  ^  j  <p(«)c” iaH da. (19)
— 00

This formula, called the Poisson integral, is the solution to 
the problem of heat propagation in an unbounded rod.

Note. It may be proved that the function u(x, t), defined by 
integral (19), is a solution of equation (1) and satisfies condition 
(2) if the function <{>(.*:) is bounded on an infinite interval 
(—oo, oo).

Let us., establish the physical meaning of formula (19). We 
consider the function

( 0 for — oo < * < * „ ,
<p (a:) for x0 x x0 +  A*, (20)

0 for +  Ax<Zx<.oo.
Then the function

u* (x, t) =  — =  j  <p* (a) e ' ^ d a  (21)
— 00

is the solution to equation (1), which solution takes on the value 
27*
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<p* {x) when t — 0. Taking (20) into consideration, we can write
* 0 +  A a:

*o

(a-*)*
da.

Applying the mean-value theorem to the latter integral, we get 

u*(x, 0 = ^ y ^  e~~^r , x l)< t < x 0 +  Ax. (22)

Formula (22) gives the value of temperature at a point in the 
rod at any time if for t =  0 the temperature in the rod is every
where u* = 0, with the exception of the interval [jc0, x̂  +  Ax:], 
where it is cp (jc). The sum of temperatures of form (22) is what 
yields the solution of (19). It will be noted that if q is the linear 
density of the rod, c the heat capacity of the material, then the 
quantity of heat in the element [x0, x:0 +  Ax] for < =  0 will be

AQ«=>tp(£) Axqc. (23)
Let us now consider the function

i (5-*)1
1 g 4a2t

2a V n t
(24)

Comparing it with the right side of (22) and taking into ac
count (23), we may say that it yields the temperature at any 
point of the rod at any instant of time t if for £ =  0 there was 
an instantaneous heat source with quantity of heat Q=cq >n the 
cross section I (the limiting case as A*—*-0).

SEC. 8. PROBLEMS THAT REDUCE TO INVESTIGATING 
SOLUTIONS OF THE LAPLACE EQUATION. STATING 

BOUNDARY-VALUE PROBLEMS

In this section we shall consider certain problems that reduce 
to the solution of the Laplace equation:

dzu . d‘u . d*u _ 
dxz dti2 ■ dz2 ( 1)

As already pointed out, the left side of equation (1),
d2u , d2u , d2u
dT2+W* + M =  A u

is called the Laplacian operator. The functions u which satisfy the 
Laplace equation are called harmonic functions.

I. A stationary (steady-state) distribution of temperature in a 
homogeneous body. Let there be a homogeneous body Q bounded
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by a surface a. In Sec. 7 it was shown that the temperature at 
various points of the body statisfies equation (8):

d u _ * ( & u  | d*u d2a \
d t ~ a  \ d x 2 +  d y 2 ~ * 'd z2 )  *

If the process is steady-state, that is, if the temperature is not 
dependent on the time, but only on the coordinates of the points
of the body, then ^  =  0 and, consequently, the temperature
satisfies the Laplace equation

<Pu , d̂ u , <Pu_
dx2 "t" dy2 ' dz2 ( i )

To determine the temperature in the body uniquely from this 
equation, one has to know the temperature of the surface o. Thus, 
for equation (1), the boundary-value problem is formulated as 
follows.

To find the function u(x, y, z) that satisfies equation (1) inside 
the volume £  and that takes on specified values at each point M 
of the surface a:

U|, =  t|>(M). (2)
This problem is called the Dirichlet problem or the first boundary- 
value problem of equation (1).

If the temperature on the surface of the body is not known, 
but the heat flux at every point of the surface is, which is pro-

duportional to ^  (see Sec. 5), then in place of the boundary-value 
condition (2) on the surface a we will have the condition

du
dn = ty* (M). (3)

The problem of finding the solution to (1) that satisfies the boun
dary-value condition (3) is called the Neumann problem or the 
second boundary-value problem.

If we consider the temperature distribution in a two-dimensi
onal region D bounded by a contour C, then the function u will 
depend on two variables x and y and will satisfy the equation

d2u . d2« n
=  (4)

which is called the Laplace equation in a plane. The boundary- 
value conditions (2) and (3) must be fulfilled on the contour C.

II. The potential flow of a fluid. Equation'of continuity. Let 
there be a flow of liquid inside a volume Q bounded by a sur
face o (in a particular case, Q may also be unbounded). Let q
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be the density of the liquid. We denote the velocity of the liquid by
v =  vxi + 1y - f  v2k, (5)

where vx, vy, vz are the projections of the vector v on the coor
dinate axes. In the body Q pick out a small volume <b, bounded 
by the surface S. The following quantity of liquid will pass through 
each element As of the surface S in a time At:

AQ = vn Asq At,
where n is the unit vector directed along the outer normal to 
the surface S. The total quantity of liquid Q entering the volume to 
(or flowing out of the volume to) is expressed by the integral

Q = At\)^gvnds  (6)
s

(see Secs. 5 and 6, Ch. XV). The quantity of liquid in the 
volume w at time t was

JJjQdcO.
CD

During time At the quantity of liquid will change (due to 
changes in density) by the amount

Q=I I J AeA“~A/I J I S d“- w
CO (0

Assuming that there are no sources in the volume co, we con
clude that this change is brought about by an influx of liquid to 
an amount that is determined by equation (6). Equating the right 
sides of (6) and (7) and cancelling out A/, we get

(8)
S CD

We transform the iterated integral on the left by Ostrogradsky’s 
formula (Sec. 8, Ch. XV). Then (8) will assume the form

CD CD
or

J I K S + div(e ® ))^ = o .
CD

Since the volume co is arbitrary and the integrand is continuous 
we obtain

^  +  div(Q©) =  0 (9)
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or

<9'>
This is the equation of continuous flow of a compressible liquid.

Note. In certain problems, for instance when considering the 
movement of oil or gas in a subterranean porous medium to a 
well, it may be taken that

® =  —-g rad  p,

where p is the pressure and k is the coefficient of permeability 
and

X = const. Substituting into the continuity equation (9), we get 

X ^ — diw(k grad p) =  0
or

15F-s (*2)+ s (*jE)+I(*£)- <«»
If k is a constant, then this equation takes on the form

dJ. — L(^PjL.^£.A.^£\  n n
dt ~  X \  dxi ~r dyi ~r  dz‘ )  ’ I*l '

and we arrive at Fourier’s equation.
Let us return to equation (9). If the liquid is noncompres-

sible, then q —const, §j =  0, and (9) becomes
div(®) =  0. (12)

If the motion is potential, that is, if the vector © is a gradient 
of some function tp:

© =  grad «p,
then equation (12) takes the form

div (grad <p) = 0
or

^24 .^2  j .^2  — n- 
dx2 *r  dy2 *T~ dz‘ ~  ’ (13)

that is, the potential function of the velocity <p must satisfy the 
Laplace equation.
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In many problems, as, for example, those dealing with filtra
tion, we can put

•o— — &,grad p.
where p is the pressure and k t is a constant; we then get the 
Laplace equation for the determination of the pressure:

< ^ , F p , F p _ n
dx2 ~t~ dy2 dz2~ (13')

The boundary-value conditions for equation (13) or (13') may 
be the following:

1. On the surface a are specified the values of the desired 
function p—pressure [condition (2)1. This is the Dirichlet problem.

2. On the surface a are specified the values of the normal
derivative ; the flow through the surface is specified [condition (3)].
This is the Neumann problem.

3. On parts of the surface a are specified the values of the 
desired function p — pressure, and on parts of the surface are
specified the values of the normal derivative —the flow through
the surface. This is the Dirichlet-Neumann problem.

If the motion is two-dimensional-parallel— that, is, the func
tion <p (or p) does not depend on z — then we get the Laplace 
equation in a two-dimensional region D with boundary C:

dx2 *~ dy2~ (14)

Boundary-value conditions of type (2), the Dirichlet problem, 
or of type (3), the Neumann problem, are specified on the con
tour C.

111. The potential of a steady-state electric current. Let a ho
mogeneous medium fill some volume V, and let an electric cur
rent pass through it whose density at each point is given by the 
vector J(x, y, z) = Jxi + Jyj + J 2k. Suppose that the current den
sity is independent of the time t. Further assume that there are 
no current sources in the volume under consideration. Thus, the 
flux or a vector J through any closed surface S lying inside the 
volume V will be equal to zero:

 ̂  ̂Jn ds =  0, 
s

where n is a unit vector directed along the outer normal to the 
surface.
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From Ostrogradsky’s formula we conclude that
div « /=0. (15)

The electric force E  in the conducting medium at hand is, on the 
basis of Ohm’s generalised law,

(16)
or

J=XE,
where X is the conductivity of the medium, which we shall con
sider constant.

From the general electromagnetic-field equations it follows 
that if the process is stationary, then the vector field E  is irro- 
tational, that is, rot £  — 0. Then, like the case we had when 
considering the velocity field of a liquid, the vector field is po
tential (see Sec. 9, Ch. XV). There is a function 9 such that

£  =  grad<p. (17)
From (16) we get

./=A,grad<p. (18)
From (15) and (18) we have

X div (grad 9) =  0
or

dx‘ ^  dz* U>
We get the Laplace equation.

Solving this equation for appropriate boundary-value conditions, 
we find the function 9 , and from formulas (18) and (17) we find 
the current J and the electric force E.

SEC. 9. THE LAPLACE EQUATION IN CYLINDRICAL COORDINATES.
SOLUTION OF THE DIRICHLET PROBLEM FOR A RING WITH 

CONSTANT VALUES OF THE DESIRED FUNCTION ON THE INNER 
AND OUTER CIRCUMFERENCES

Let u{x, y, z) be a harmonic function of three variables. Then
3^ 3^ 0 H)

dx‘ ^  dy*^  dz‘ V '
We introduce the cylindrical coordinates (r, cp, z): 

x = r cosq), je =  rsinq>, z = z,
whence

r = V x 2 + yzt <p =  arc t a n - ,  z =  z. (2)
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Replacing the independent variables x, y, and z by r, <p, and z, 
we arrive at the function u *:

u{x, y , z) = u*(r, <p, z).
Let us find the equation that will be satisfied by u* (r, q>, z) 
as a function of the arguments r, <p, and z; we have

du_du* dr . du* dq)
dx dr dx dq) dx 9

d2u __ d2u* f d r \ 2 . du* d2r . 0 d*u* dr dq) d2u* /dcp\ 2 . du* d2q> . 
dx2 dr2 \ d x )  ‘ dr dx2 ‘ drdq)dxdx ' dtp2 \dx  )  ' dy dxz 9

similarly,
d2u  d2u* ( d r \*  . du* d2r . 0 d2u* dr dq) . d2*/* /dq) V  . dM* d2q)
dy2 dr2 \ d y )  dr dy2 ' dr dy dy dy dq)2 \ dy  )  9 dy dy29

besides,
d2u _  d2u* 
dz2 dz2 *

(3)

(4)

(5) -

We find the expressions for
dr dr d2r d2r dy dy  d2q) d2q)
dx * dr/ * dx2 * dy2 9 dx 9 dy 9 dx2 9 dy2

from equations (2). Adding the right sides of (3), (4) and (5), 
and equating the sum to zero [since the sum of the left-hand 
sides of these equations are zero by virtue of (1)], we get

d2u* . 1 du* , 1 d2u* . d2u*__
dr2 ' r dr ' r2 dq)2 ' dz2

This is the Laplace equation in cylindrical coordinates.
If the function u is independent of z and is dependent on x 

and y , then the function u*t dependent only on r and (p, satisfies 
the equation

d 2u *  . 1 d u * . 1 d 2u *  ~
dr2 ' r d r  ' r2 dq)2 9 (7)

where r and cp are polar coordinates in a plane.
Now let us find the solution to Laplace’s equation in the region 

D (ring) bounded by the circles C^.x^-j-y* = R\ and CyXl -\-y* — R\ 
with the following boundary values imposed:

u\Ct = uv 
u\Ct =-.u„ 

where «, and ut are constants.

(8)

(9)
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We will solve the problem in polar coordinates. Obviously, it 
is desirable to seek a solution that is independent of q>. Equation
(7) in this case takes the form

d2u , 1 d u _~
d ^ + T  dr“"U*

Integrating this equation we find
u =  Cj In t  -f* C2.

We determine C1 and C2 from conditions (8) and (9):
ux =  C, In R x +  C#f 
u2 =  C, In R2 +  C2.

Whence we find

,n ^
C, =  «, —(«, —«t)

In /?,

In

( 10)

Substituting the values of C, and C2 thus found into (10), we 
finally get

l n -

,n *:
(ii)

Note. We have actually solved the following problem. To find 
the function u that satisfies the Laplace equation in a fegion 
bounded by the surfaces (in cylindrical coordinates)

r = R xy r = R„ z =  0, z = Hy
and that satisfies the following boundary conditions:

 ̂lr —̂2 == ^2’
=  0

U \ r = R i =  U l 

du
dz = o  -*=o ’ az

(the Dirichlet-Neumann problem). It is obvious that the desired 
solution does not depend either on z or on tp and is given by 
formula (11).

SEC. 10. THE SOLUTION OF DIRICHLET’S PROBLEM 
FOR A CIRCLE

In an xy-plane, let there be a circle of radius R with centre 
at the origin and let there be a certain function /(<p), where q> 
is the polar angle, be given on its circumference. It is required 
to find the function u(r9 q>) continuous in the circle (including
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the boundary) and satisfying (inside the circle) the Laplace equa-

"  B * B -
and, on the circumference, assuming the specified values

«|r=« =  /(cp). (2)
We shall solve the problem in polar coordinates. Rewrite equation 
(1) in these coordinates:

m  T- r dr ^  r2 dtp2
or

drz

2 dzu . du . d2u n
(!')

We shall seek the solution by the method of separation of variables, 
placing

u =  <D((p)R(r). (3)
Substituting into equation (T), we get

rs<D (<p) R" (r) +  r<D (tp) R' (r) +  <D" (<p) R(r) = 0
or

^ ( ( p ) ^  r*R" (r) +  rR'  (r)
«X> (q>) ~  . R (r) ~ (4)

Since the left side of this equation is independent of r and the 
right is independent of <p, it follows that they are equal to a 
constant which we denote by —k2. Thus, equation (4) yields two 
equations:

a>"(cj>) +  620((i,) =  O, (5)
r*R" + rR' — k*R = 0. (5')

The complete integral of (5) will be
Q> — A coskq> + B sinfop. (6)

We seek the solution of (5') in the form R = rm. Substituting 
R = rm into (5'), we get

r2m (m— 1) rm~z +  rmrm~1 — k2rm =  0
or

mi — k2 =  0.
We can write two particular linearly independent solutions rk and 
r~ \ The general solution of equation (5') is

R = Crk+Dr~k. (7)
We substitute expressions (6) and (7) into (3):

uk = i Ak cos k<P +  Bk sin k(f) (Ckrk+ TV"*). (8)



The Solution of Dirichlet's Problem for a Circle 845

Function (8) will be the solution of (T) for any value of k different 
from zero. If k — 0, then equations (5) and (5') take the form

<D" =  0, rR" + R' =  0,
and, consequently,

u0 = (A0 +  B0<p)(C»+D,\nr). (8')
The solution must be a periodic function of cp, since for one and 
the same value of r for cp and <p +  2n we must have the same 
solution, because one and the same point of the circle is considered. 
It is therefore obvious that in formula (8') we must have 0. 
To continue, we seek a solution that is continuous and finite in 
the circle. Hence, in the centre of the circle the solution must 
be final for r — 0, and for that reason we must have D0 =,0 in (8') and 
Dk = 0 in (8).

Thus, the right side of (8') becomes the product 4̂0C0, which 
we denote by AJ2. Thus, ;

(8")

We shall form the,solution to our problem as a sum of solutions 
of the form (8), since a sum of solutions is a solution. The sum 
must be a periodic function of tp. This will be the case if each 
term is a periodic function of qj. For this, k must take on integral 
values. [We note that if we equated the sides of (4) to the number 
+ kl, we would not obtain a periodic solution.] We shall confine 
ourselves only to positive values:

ft 1, 2, • • ., n, • . .
because the constants A, B, C, D are arbitrary and therefore the 
negative values of k do not yield new particular solutions.

Thus, x
00

U (r, cp) =  -5 +  (A„ cos tup +  Bn sin tup) rn (9)
n = i

(the constant Cn is included in An and Bn). Let us now choose 
arbitrary constants A n and Bn so as to satisfy the boundary-value 
condition (2). Putting into (9) r = R, we get, from condition (2),

oo
f  (<P) =  4 * +  £  (An C0S n<P +  B n Sin n<P) £*• (10)

n  =i
For us to have equality (10), it is necessary that the function 
should be expandable in a Fourier series in the interval (—n, n) 
and that AnR n and BnRn should be its Fourier coefficients. Hence,
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An and Bn must be defined by the formulas
J l

A" ==nkn cos n t d t , \
- J l

Jl >
=  sinntdt. ^

(ID

Thus, the series (9) with coefficients defined by formulas (11) 
will be the solution of our problem if it admits termwise iterated 
differentiation with respect to r and <p (but we have not proved 
this). Let us transform formula (9). Putting, in place of An and 

their expressions (11) and performing the trigonometric trans
formations, we get

Jl CO Jl

<P)a=35 +  — j /(0 co sn (< —<p)*»(-£)" =
- J l  n  =  1 - J l

J l  p  CD

I  fW  [l + 2 ^  ( ^ ) " cos« ( ' - ? ) ]  dt. (12)

Let us transform the expression in the square brackets: *
' OO 00

1 + 2 X  (-£)"cosn(/—<p) =  l +  £  ( - ^ ) V n(' - <p> +  e-'n <'-*>] =
n = i ' '  n= l  ̂ '

= 1+ E  [ ( i - e‘ (,-*>)" ■+ ( t =

JLe-nt-9)
=  1+ ——-------------1 R

1— L e/(*-<p> i — L  p)

- w fl2- r 2
0 r (  r \ 2 ft2 — 2ftrcos (* — cp)+r2 *l _ 2_cos(^--cp )+ ^J

(13)

*) In the derivation we determine the sum of an. infinite geometric prog
ression whose ratio is a complex number the modulus of which is less than 
unity. This formula of the sum of a geometric progression is derived in the 
same way as in the case of real numbers. It is also necessary to take into 
account the definition of the limit of the complex function of a real argu
ment. Here, the argument is n (see Sec. 4, Ch. VII).
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Replacing the expression in square brackets in (12) by expres
sion (13), we get

U(r> <p) =  '2ir I  /(*) g ’—2r/?cos(f— cp) +  r*d^ (14)
- J t

Formula (14) is called Poisson’s integral. By an analysis of this 
formula it is possible to prove that if the function f((p) is con
tinuous, then the function u(r, cp) defined by the integral (14) 
also satisfies equation (1') and u(r, <p)—<-/(<p) as r —>-R. That is, 
it is a solution of the Dirichlet problem for a circle.

SEC. 11. SOLUTION OF THE DIRICHLET PROBLEM 
BY THE METHOD OF FINITE DIFFERENCES

In an xy-plane, let there be given a region D bounded by 
a contour C. Let there be given a continuous function f on the 
contour C. It is required to find an approximate solution to 
the Laplace equation

dx* ^  dy*

that satisfies the boundary condition
u \c = f. (2)

We draw two families of straight lines:
x = ih and y = kh, (3)

where h is the given number, and i and k assume successive 
integral values. We shall say that the region D is covered with 
a grid. We call the points of intersection of the straight lines 
nodes of the grid.

We denote by ul<k the approximate value of the desired 
function at the point x —ih, y — kh\ that is, u{ih, kh) = uitk. 
We approximate the region D by the grid region D*, which 
consists of all the squares that lie completely in D and of some 
that are crossed by the boundary C (these may be disregarded). 
Here, the contour C is approximated by the contour C*, which 
consists of segments of straight lines of type (3). In each node 
lying on the contour C* we specify the value /*, which is equal 
to the value of the function / at the closest point of the con
tour C (Fig. 377).

The values of the desired function will be considered only at 
the nodes of the grid. As has already been pointed out in Sec. 6,
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the derivatives in this approximate method are replaced by finite 
differences:

d 2u  

d x 2 
d 2u  

d y 2

__ u i  + i, k  +  u i - i, k

x  =  i h ,  y = k h  h 2

U i , k  +  i  —  2 “ i , k  +  “ i , k - i  

x = i h ,  y — k h  ~  h 2

The differential equation (1) is replaced by a difference equation 
(after cancelling out h2):

or (Fig. 378)
a =  T  (“ /+».  * +  u h  a+» +  A +  « / ,  a - , ) -  (4 )

For each node of the grid lying inside D* (and not lying on the 
boundary C*), we form an equation (4). If the point (x = ih ,. 
y = kh) is adjacent to the point of the contour C*, then the 
right side of (4) will contain known values of /*. Thus, we 
obtain a nonhomogeneous system of N equations in N unknowns,

where N is the number of nodes 
of the grid lying inside the 
region D*.

We shall prove that the sys
tem (4) has one, and only one,

c* c

I

;
2 - $

;a

Ct.k+fi

Fig. 377.

( i -w w (i+W

h - v

Fig. 378.
X

solution. This is a system of N linear equations in N unknowns. 
It has a unique solution if the determinant of the system is not 
zero. The determinant of the system is nonzero if the homoge
neous system has only a trivial solution. The system will be 
homogeneous if /* =  0 at the nodes on the boundary of the 
contour C*. We shall prove that in this case all the values ui>k 
at all interior nodes of the grid are equal to zero. Inside the 
region, let there be uit k different from zero. For the sake of 
definiteness, we suppose that the greatest of them is positive. 
Let us designate it by uitk> 0.
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By (4) we write

Ui, * = 4' ( “i + t, k + Ui, A + i +  Ui-i, k + Ui. ft-i)* (40

This equation is possible only if all the values of u on the 
right are equal to the greatest uit k. We now have five points 
at which the values of the desired function are uitk. If none of 
these points is a boundary point, then, taking one of them and 
writing for it the equation (4), we will prove that at certain 
other points the value of the desired function will be equal to 
uit k. Continuing in this fashion, we will reach the boundary and 
will prove that at_the boundary point the value of the function 
will be equal to uitk, which is contrary to the fact that f* = 0 
at boundary points.

Assuming that inside the region there is a least negative 
value, we will prove that on the boundary the value of the 
function is negative, which contradicts the hypothesis.

And so system (4) has a solution which is unique.
The values uitk defined from the system (4) are approximate 

values of the solution of the Dirichlet problem formulated above. 
It was proved that if the solution of the Dirichlet problem for 
a given region D and a given function f exists [we denote it by 
u (*> !/)] and if «/, k is solution of (4), then we have the relation

Iu(x, y )— uitk \ < A h i (5)

where A is a constant independent of h.
Note. It is sometimes justified (though this has not been 

rigorously proved) to use the following procedure for evaluating 
the error of the approximate solution. Let be an approximate 
solution for a step 2h, u^\ an approximate solution for a step h, 
and let Eh (x, y) be the error of the solution uf^k. Then we have 
the approximate equality

Eh (x, y) «  -  (uth)k — ul£\)

in the common nodes of the grids. Thus, in order to determine 
the error of the approximate solution for a step h, it is necessary 
to find the solution for a step 2h. One third of the difference 
of these approximate solutions is the error evaluation of the 
solution for a step (mesh-length) of h. This remark also refers 
to the solution of the heat-conduction equation by the finite- 
difference method.
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Exercises on Chapter XVIII

1. Derive an equation of torsional oscillations of a homogeneous cylin
drical rod.

Hint. The torque in a cross section of the rod with abscissa x is determined 
^0by the formula M =  GI where 0 (*, t) is the angle of torque of a cross

section with abscissa x at time /, G is the shear modulus, and / is the polar 
moment of inertia of a cross section of the rod.2̂0 q j

Ans. -Qir =  a2 » where a2= — , and k is the moment of inertia of unit 
length of the rod. 2̂0 2̂0

2. Find a solution of the equation - ^ -  =  a2 that satisfies the con

ditions 0(0, / ) =  0, 0 (/, 0  =  0, 0 (jc, 0) =  qp (jc), d- --- =  0, where

/ s 20ox f n /cp(x) =  — -  for 0 < * <  y ,

9fl Y 1
<p(*) = -------—— f- 20o for

Give a mechanical interpretation of the problem.

Ans. <-«*
A  (2fe+1)2

sln (2ft +  l)ru  cos W  +  \)nat

3. Derive an equation of longitudinal oscillations of a homogeneous cylin
drical rod.

Hint. If u (xt t) is the translation of a cross section of rod with abscissa x 
at time t, then the tensile stress T in a cross section x is defined by the
formula T =  E S ^ t w h e r i s  the elasticity modulus of the material and S
is the cross-sectional area of the rod.

Ans. — ^ -= a 2 , where a2="^ * and Q is the density of the rod material.
4. A homogeneous rod of length 21 was shorted by 2X under the action 

of forces applied to its ends. At f =  0 it is free of forces acting externally. 
Determine the displacement u (xt t) of a cross section of the rod with abscis
sa x at time t (the mid-point' of the axis of the rod has abscissa * =  0).

Ans. u(x,  Q =  —
ft = 0

( - 1)*+' 
(2ft+  1)* sin (2k -f-1) nx 

21 cos (2fc +  l)n  at 
21

5. One end of a rod of length / is fixed, the other end is acted upon by 
a tensile force P . Find the longitudinal oscillations of the rod if the force P

. ,  . . a r\ a 8P/ (— 1)” . (2n + \ )n x  (2n +\ )n a t
does no! operate when t = 0 . -4ns. — -8 2 ^  /gn+ iy  sIn -----21—  C0S 1-----2 /-----

/l = 0 ' '
(E and 5 as in Problem 3).
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d̂ u d*u6. Find a solution to the equation ~ a2 that’ satisfies the con
ditions

u(0, 0  =  0, tf(/, t) — Asma>tt

Give a mechanical interpretation of the problem 
o

(— I)""1A sin — jc sin nt n „. . a , 2Acoa
Ans. u(x, 0  = ----------------------- h-

sin — / a S
( -  n " - , nnat . aijiaj \2 sI" —— sin —

\ I )
Hint. Seek the solution in the form of a sum of two solutions;

u =  v-\-w, where w =  ■

is the solution that satisfies the conditions

0(0, 0 = 0. v(l, 0 = 0

A sin — x sin cot _____ a________

sin — / a

^It is assumed that sin T ' - < 0
7. Find a solution to the equation - ^ - = a 2 that satisfies the con

ditions
u(0, 0  =  0, a(/, 0 = 0 ,  t >  0,

« (a:, 0) =
x when ■

/ —jc when y < x < l .

Ans. *(*.
n=o

Hint. Solve the problem by the method of separation of variables.
8. Find a solution to the equation ~  =  a2 — - that satisfies the con

ditions

a (0, t) =  u (0, /) =  0. «(*, 0) =_  *(/-*)

(2n + i)2jt2a2/
sin

/2
(2n -f- 1) jtjo 

i
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9. Find a solution to the equation ^  — that satisfies the con
ditions

—  = 0 ,  u ( l , l )  =  u0, u(x,  0) =  <p(x).l/A * = 0
Point out the physical meaning of the problem.

Ans. u (x , l) =  u0 +  Y ^ A ne n cosa ' f y  (2ft+ 1 ) Jt
2/

where . 2 f  (2ft-f 1) Jtx (— l)"4ft0
An =  - j  \ <P W cos  -----— —  dx — ------ ------52/ Jt (2ft +  1) '

Hint. Seek the solution in the form u =  u0 +  v (x, t).
10. Find a solution to the equation ^  =  a2 that satisfies .the con

ditions
du u=  — Hu

x = l  X = l
«(0.O = 0, , u(x,  0) =  <P(*).

Point out the physical meaning of the problem.

t o .
p ( p + l ) + l ^

sin VnX

I
where =  ^  <p (x)sin dx, p =  Hl, jLtlf p,2, . . . ,  \in are positive*roots

0
of the equation tan jx = ----—-.

Hint. At the end of the rod (when * =  /) a heat exchange occurs with the 
environment, which has a temperature of zero.

11. Find [by formula (10), Sec. 6, putting h =  0.2\ an approximate solution
to the equation — ■ = 2  - [that satisfies the conditions

u (x, 0) =  x — x j  , u (0 ,t)  =  0, a ( l ,  /) =  — , 0 < f < 4 / .

d û d2u
12. Find a solution to the Laplace equation - ^ ^ + - ^ r :=0» in a s*riP 

O ^ x ^ a ,  0 ^ y < < x >  that satisfies the conditions

u (0, y) =  0, u (a , y )  =  0, a (*, 0) =  A  ̂ 1 — , u(x t oo) =  0.

_ , oo rm
A ,  2A 1 —  0  . f t f t xAfts. w (x, t) =  —  > — e a sin-----.v 1 jt jLu ft a

Hint. Use the method of the separation of variables.
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d2u d2u13. Find a solution to the Laplace equation + = 0 in the rec-dx2 ' dy
tangle ()< :* < ; a, 0 that  satisfies the conditions

u(x,  0) =  0, u(x t b) =  0, u(0, y) =  Ay (b—y), u {a t y) =  0.

® -m /i(2 ft+ 1 )jt(a~ Jc) -in (2n+ 1)jIy, , ,, 8yl6s b bAns. u(x,  0  =  V
n = o

d2u d2u14. Find a solution to the equation =  0 inside a ring bounded

by the circles x2+ y 2=  R\, x2-\~y2= R \  that satisfies the conditions

(2n +  \)* . , (2n + 1) Jta sin /i -— —  o

du
W =  4- , *

r=Rt X2nR1 / = ua.

Give a hydrodynamic interpretation of the problem. 
Hint. Solve the problem in polar coordinates.

• _«_ ln-5a.2 In rAns. u =  il
ls.  The function u(x, y) =  e~y sin* is a solution of the equation 

d2u d2u
’dx2 ~̂m~dy2 ^z 0 *n scIuare 0 ^ * < 1 ,  that satisfies the conditions

u (0, y) =  0, u ( l , y) =  e~y s in l, u(x , 0) =  sinxf a (x, 1) =  e“ 1 sin jc.

In Problems 12-15 solve the Laplace equations for given boundary condi
tions by the finite-difference method for /i =  0.25. Compare the approximate 
solution with the exact solution.



CHAPTER XIX

OPERATIONAL CALCULUS AND 
CERTAIN OF ITS APPLICATIONS

Operational calculus is an important branch of mathematical analysis. 
The methods of operational calculus are used in physics, mechanics, electrical 
engineering and elsewhere. Operational calculus finds especially broad appli
cation's in automation and telemechanics. In this chapter we give (on the 
basis of the foregoing material of this text) the fundamental concepts of 
operational calculus and operational methods of solving ordinary differential 
equations.

SEC. 1. THE INITIAL FUNCTION AND ITS TRANSFORM

Let' there be given the function of a real variable t defined for [we
shall sometimes consider that the function f (t) is defined on an infinite 
interval— oo <  / <  oo, but f(t) =  0 when t <  0]. We shall assume that the 
function f (t) is piecewise continuous, that' is, such that in any finite interval 
it has a finite number of discontinuities of the first kind (see Sec. 9, Ch. II). 
To ensure the existence of certain integrals in the infinite interval 0 ^ /  <  oo 
we impose an additional restriction on the function f (t): namely, we suppose 
that there exist constant positive numbers M and s0 such that

I / (0  I <  Mes<f (1)
for any value t in the interval 0 < : /  <  o o .

Let us consider the product of the function f(t)  by the complex function 
e~pt of a real variable*) t, where p =  a-\-ib is some complex number:

e - P ‘f ( t ) .  (2)
Function (2) is also a complex function of a real variable t :

e~ptf (t) =  e - {a+lt,) V (t) — e~atf (t) e~ibt= e - atf (t) cos b t —ie~ai[( t )  sin bt.
Let us further consider the improper integral

OD CD CO

e-ptf  (t) dt =  J e~tttf (t) cos bt d t —i J e~atf (t ) sin bt dt. (3)
0 0 0

We shall show that if the function f (t) satisfies condition (1) and a > s Qt 
then the integrals on the right of (3) exist and the convergence of the inte
grals is absolute. Let us begin by evaluating the first of .these integrals:

CO

j J e“ atf (t ) cos bt dt 
0

00
<  (Ocos b t \ d t  <

0

< MJ  e~a,es<f dt <  M 
0

00
^ e-ia.-sjt dt = 
0

M
a—s0

*) See Sec. 4, Ch. VII, concerning complex functions of a real variable.
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In similar fashion 
00

J e~Pl f i t)  dt exists, 

by F (p):

we evaluate the second integral. 

It defines a certain function of p,

00

F(p) = \ e - ptf (0
0

Thus, the integral* 

which we denote *)

(4)

The function F(p) is called the Laplace transform, or the L-iransform, or 
simply the transform of the function f (t). The function f (t) is known as the 
initial function, or the original. If F (p) is the .transform of f (t), then we

“ r'fc f(P> +  /«>, <5)
or

nt)-trF(p), (6)
or

L{f ( t ) \  =  F(p). (7)
As we shall presently see, the meaning of transforms consists in the fact 

that with their help it is possible to simplify the solution of many problems, 
for instance, to reduce the solution of differential equations to simple algeb
raic operations in finding a transform. Knowing the transform one can find 
the original either from specially prepared “original-transform” tables or by 
methods that will be given below. Certain natural questions arise.

Let there be given a certain function F (p). Does there exist a function 
f (t) for which F (p) is a transform? If there does, then is this function the 
only one? The answer is yes to both questions, given certain definite assump
tions with respect to F(p) and f (t). For example, the following theorem, 
which we give without proof, establishes that the transform is unique:

Uniqueness Theorem. / /  two continuous functions (p ( t )  and (7 ) have one
and the same L-transform F (p),  then these functions are identically equal.

This theorem will play an important’ role throughout the subsequent text. 
Indeed, if in the solution of some practical problem we have determined, in 
some way, the transform of a desired function, and from the transform the 
original function, then on the basis of the foregoing theorem we conclude 
that the function we have found is the solution of the given problem and 
that no other solutions exist.

SEC. 2. TRANSFORMS OF THE FUNCTIONS o0(t), SIN t, COS i

1. The function f (t), defined as
/ ( 0  =  1 for t ^ O ,
/ ( / ) =  0 for t <  0,

is called the Heaviside unit function and is denoted by a0 (t). The graph of 
this function is given in Fig. 379. Let us find the L-transform of the Heavi
side function:

_____________ 0
*) The function F(p), for p ^  0, is the function of a complex variable 

(for example, see V. I. Smirnov’s “Course of Higher Mathematics”, Vol. Ill, 
Part 2) (Russian edition).
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f
' 60(t)

0
Fig. 379.

Thus, *)

i ^ i
• P

or, more precisely,

( 8)

In some books on operational calculus the following expression is called 
the transform of the function f (t): 00

F * ( p ) = p ^ e - P tf ( t )  dt.
0

With this definition we have a0 (t) 1 and, consequently, C f C ,  more
exactly, Co0 (t) C.

II. Let f ( t )=s in t ;  then

And so

00

L {sin t) =  J e~pt sin t dt 
0

e pt ( —p sin x — cos x)
F + l

sin t +- 1
P2 + 1 *

III. Let /  (/) =  cos t\ then

00 __ 1 
o ~ P 2 +  1

(9)

And so

L {cos t} =   ̂
0

e pt cos t dt = e^pt (t sin t —p cos t) 
PM7!

cos t -f p
p2+ r ( 10)

SEC. 3. THE TRANSFORM OF A FUNCTION WITH CHANGED 
SCALE OF THE INDEPENDENT VARIABLE. TRANSFORMS 

OF THE FUNCTIONS SINaf, COS a t

Let us consider the transform of the function f (at), where a >  0:
00

L{f (a t ) }  =  (at) dt.
0

We change the variable in the latter integral, putting z =  at\ hence, dz =  a d t ; 
then we get 09 P

L { f ( a =  a /  (z) dz

*) In computing the integral Je~pidt one might represent’ if as the sum o
0

integrals of real functions; the same result would be obtained. This also holds 
for the two subsequent integrals.
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or

Thus, if 

then
F ( p ) - 5 - / ( 0

Example 1. From (9), by (11), we straightway get
. . .  1sin at +— 1

■ ■ w + 1

sin at *- p2 +  a2'
Example 2. From (10), by (11), we obtain

1 .acos at —

• ( f ) ' + i
or

cos at ‘ P‘ + aJ

(11)

( 12)

(13)

SEC. 4. THE LINEARITY PROPERTY OF A TRANSFORM

Theorem. The transform of a sum of several functions multiplied by constants 
is equal to the sum of the transforms of these functions multiplied by the 
corresponding constants, that is, if

/ ( 0 - S  C/MO (14)
1 = 1

(C.- are constants) and
F(P) -T f (0> F{ (p) ■? fi (t),

then

F (P) = 2  CiFtlP)- (M')
1 =  1

Proof. Multiplying all the terms of (14) by e~pl and integrating with res
pect :to t from 0 to oo (taking the factors Ct outside the integral sign), we 
get (14').

Example 1. Find the transform of the function 
f (t) =  3 sin M— 2 cos 51.

Solution. Applying formulas (12), (13), and (15), we have

L if  f/U == 3 — i _  9  E._______ 1̂  ^p
p2 +  16 p2 +  25"’ p2 +  16“ ^2 +  25-
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Example 2. Find the original function whose transform is expressed 
ithe formula

F(p) = 5 20p

P2 + 4  p2 +  9 *

by

Solution. We represent F (p) as

f ( p ) = T p H  (2 )4 +  2 0  p 2 +  (3 )*  •

Hence, by (12), (13), and (14') we have

/ ( 0  =  ysin 2<  +  20cos3t.

From the uniqueness theorem, Sec. 1, it follows that this is the only original 
function that corresponds to the given F (p).

SEC. 5. THE SHIFT THEOREM

Theorem. If F(p) is the transform of the function f ( t ) ,  then F (p +  a) is 
the transform of the function e - atf ( t ) ,  that is,

i[ (0  \ -
then F (p +  a) •? e~*lf (t). ) '

[If is assumed here that Re (p +  a) >  V l
Proof. Find the transform of the function e~at f (t)i

L {e - at[  (*)} =  J e - V - r t f  (<) dt =  J e - (' + a> * f (t) dt.
0 0

Thus,
L { e - atf (t)} =  F(p +  a).

This theorem makes if possible to expand considerably the class of trans
forms for which it is easy to find the original functions.

SEC. 6. TRANSFORMS OF THE FUNCTIONS 
e - at, SINH at,  COSH at, e~at SIN at,  e~at COS at

From (8), on the basis of (15), we straightway get

1

Similarly,
p +  a • 

1
p —a •

(16)

(16')

Subsfracfing from the terms of (16') the corresponding terms of (16) and divid
ing the results by two, we get

I f - L
2 \ p —a P +
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or
-V sinh at.p2 —a2 *

Similarly, by adding (16) and (16'), we obtain

—r 1-—, +  cosh at. p2 — a2 *

From (12), by (15), we have

. (P  +  a ) 2 +  a 2 •

Using formula (15) we get from (13)

+ sin at.

P +  a ■V e“ ai cos at.(p +  a)2 +  a2 *

(17)

(18)

(19)

(20)

Example 1. Find the original function whose transform is given by the 
formula

7
F (/̂ =V +io/>+2<r

Solution. Transform F (p) to the form of expression on the left-hand side 
of (19):

7 7 7 4

Thus
p2+10p +  41 (p +  5)2 +  16 4 (p +  5)2 +  42V

7 4
F (P) = 4 (p +  5)2 +  42*

Hence, by formula (19) we will have

F (p) -V —• e - 5* sin At.

Example 2. Find the original function whose transform .is given by the 
formula

p  / v_ P +  3
F ( p ) - p8+ 2 p  +  10'

Solution. Transform the function F (p):

P +  3 __ (p +  1) +  2 __ p + 1  ._____ 2______
P2 +  2p + 10 ( p + l ) 2 +  9 (p +  l)2 +  32 i ' (p  +  l)2 +  32“

^  P + 1  , 2 3
(p + l)2 +  32i - 3 (p +  1)2 + 32.

using formulas (19) and (20) we find the original function:

F (p) ?  e~x cos 3/ +  e - x sin 3/.
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SEC. 7. DIFFERENTIATION OF TRANSFORMS

Theorem. If F (p) -+f  (t), then

{-\)nj^„F {p)+tnf(t). (21)

Proof. We first prove that if f (t) satisfies condition (1), then the integral 
00

5 «-* 1-0*7 (0 <M (22)
0

exists.
By hypothesis \ f (t) \ <  Mesol\ p =  a +  ibt a > s 0; and a >  0, s0 >  0. Obvi

ously, there will be an e >  0 such that the inequality a < s 0 +  e will be ful
filled. As in Sec. 1, it is proved that the following integral exists:

00
J «-<*-•>*I/(/)!<«.

We then evaluate the integral (22)
00 00
 ̂ | e-PHnf (t) | d t  =   ̂ | f (<) | dt.

0 0
Since the function e~zttn is bounded and, in absolute value, is less than 

some number N for any value t >  0, we can write
00 00 00
$ | e-PUnf (t) | dt <  N $ | ( 0 1 dt =  N J e ~ | /  (/) | dt  <  oo.
0 0 0

If is thus proved that the integral (22) exists. But this integral may be 
regarded as an nth-order derivative with respect to the parameter *) p of the 
integral 00

$ « - '* /(* )  dt.
0

And so, from formula
00

F(p) =  $«-/>*/(<) dt  
0

we gef the formula
00 00
J e -pt  d t - £ H  e~P‘ /  (0 dt.
0 0

*) Earlier we found a formula for differentiating a definite integral with 
respect to a real parameter (see Sec. 10, Ch. XI). Here, the parameter p is a ) 
complex number, but the differentiation formula holds true*
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From these two equations we have

d n

which is formula (21).
Let us use (22) to find the transform of a power function. We write the 

formula (8):
-Vl.

P •

or

Using formula (21), from this formula we get

Similarly

For any n we have
P3

n\ + tn. (23)

Example 1. From the formula [see (12)]
00

~2 ^ a 2 =  J  e ~ P ‘ sin a t  d t ,

0
by differentiating the left’ and right’ sides with respect to the parameter p, 
we get

2 pa .
—  -+1 sin at. (24)
(p2 +  fl2)2

Example 2. From (13), on the basis of (21), we have
a2 — p2

(p2 +  a2)2
Example 3. From (16), by (12), we have

1

■V t cos at .

(P +  a ) 2 *
-at

(25)

(26)

SEC. 8. THE TRANSFORMS OF DERIVATIVES 

Theorem. If F ( p ) f  (t), then
pF(p)—f ( 0) -V/' (0 . (27)

Proof. From the definition of a transform we can write
CO

M/' (0} = $ * -" /' (0 (28)
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We shall assume that all the derivatives /' (/)> T (0» •••» f{n) (0 which we 
encounter satisfy the condition (1), and, consequently, the integral (28) and 
similar integrals for subsequent derivatives exist. Computing by parts .the in
tegral on the right of (28), we find

00 00

L  { / ' (0 }  =  $ e - " / '  ( 0  dt =  e-Pf f (/) | "  +  p $ e-P* f (f) dt.
0 0

But by condition (1)

and

Therefore *

lim e-P* fi t)  =  0t-+ 00

l e - P * f ( t )  dt =  F (p).
0

L { r  (t)} =  - f ( 0 )  +  pF(pf.

The theorem is proved. Let us now consider the transforms of derivatives 
of any order. Substituting into (27) the expression pF(p)-— / (0) in place of 
F (p) and the expression /' (0 in place of fit) ,  we get

'p[p/7(p )-/(0)i~ /, (0)-vr(o
or, removing brackets,

p‘F (p) — Pf (0)—/' (O )-rf(O . (29)
The fransform for a derivative of order n will be

PnF ( p ) - [ p " - 7  (0) +  pn~ r  (0) + . . .  +  p/(" -2> (0) +  /<"-» (0)] -r /<n> (0- (30)

Note. Formulas (27), (29), and (30) are simplified if /(0) =  /' (0)=  . . .  
=  . . .  = / (n- I> (0) =  0. In this case we get:

F (p ) -r /(0 .  
pF (p) ■? {' (0.

PnF ( p ) + f <n) (I).

SEC. 9. TABLE OF TRANSFORMS

For convenience, the transforms which we obtained are here given in the 
form of a table.

Note. Formulas 13 and 15 of this table will be derived later on.
Note. If for the transform of the function / it) we take

00

F*(p) =  p ^ e - P t Ht )dt ,
0

then in the formulas 1-13 of the table the expressions in the first column 
must be multiplied by p, and formulas 14 and 15 will take on the following 
form. Since F*(p) =  pF(p), it follows that by substituting into the left side



Table of Transforms 863

Table 1

No. g n
°

^
8

fit)

1 1
T

1

2 a
P* +  a*

sin at i

3 P
P* +  a*

cos al

4 1
p + a « - a<

5 a
p2—a2 sin /i a/

6 P
p2—a2 cos h at

7 a
(P + a )’+ a* e~ai sin at

8 p-J-a 
(p +  a)2 +  a2 e- at cos at

9 n\
pn+1 t n

10 2 pa 
(p* +  a*)*

t sin at

11 aJ— ps 
(P* +  a*j*

t cos at

12 1
(P +  a)* 

1
(P *+ a*)*

1 B

13 ^  (sin at —at cos at)

14 ( - D n —  F(P) t nn i )
t

15 Fi(p)Ft (P) $ /i (*) ! A i — x) dr 
0

F* (p)of 14 the expression — —  in place of F (p) and multiplying by p, we get)

14'.
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Substituting into the left side of 15

Fi (P) =
F*(P)

P '
Fi (p) = fU p)

P
and multiplying this product by p, we have

15'. f U p ) f U p ) —  t )  dx.

SEC. 10. AN AUXILIARY EQUATION FOR A GIVEN 
DIFFERENTIAL EQUATION

Suppose we have a linear differential equation of order n with constant 
coefficients a0, alf . . .  , an- x, an\

dnx dn- 1x . , dx . ... .... /01.
a o n  4" a \ 1 "I" • • • 4 “ a n — l ^  4™ a n x  ( 0  — f  (0* (31)

It is required to find a solution of this equation x =  x(t)  for t ^ O  that sati
sfies the initial conditions

* (0) =  jf0, x' (0 )= * ', . . . .  jc<n-" (0 )  =  ̂ n-1). (32)
Before, we used to solve this problem as follows: we found the general solu
tion of equation (31) containing n arbitrary constants; then we determined .the 
constants so that they should satisfy the initial conditions (32).

Here we give a simpler method of solving this problem using operational 
calculus. We seek the L-transform of the solution x (t) of (31) satisfying the 
conditions (32). We designate this L-transform by x (p); thus, x ( p ) - + x( t ) .

Let us suppose .that .there exist transforms of .the solution of (31) and of 
its derivatives of order n (after finding the solution we can test the truth of 
{this assumption). We multiply all terms of (31) by e~pt, where p =  a +  ib, and 
integrate with respect to t from 0 to oo;

OO 00 OO 00

f d nX f* dn~*X (* P
ao y ~ pt i t" dt +  ai )  j p n r r d i +  . . . + a ny ~ P t x ( t ) d t = ^  e-P*f(t)dt .  (33) 

0  0  0  0

On the left-hand side of the equation are the L-transforms of the function x (t) 
and its derivatives, on the right, the L-transform of the function f (t), which 
we denote by F (p). Hence, equation (33) may be rewritten as

aojL |  j p i  j  4 - a \L  j - j p n r i  j  4- • • • 4 - {x  (0 }  =  L {f  (*)}•

Substituting into this equation the expressions (27), (29), and (30) in place of 
ithe transforms of the function and of its derivatives, we get

Oo{Pnx (P) — [Pn~lx o +  Pn~Mxo +  Pn~*x"Q+  ••• + * in” l,l}4-

4-fli {pn~ ' x (p) — [pn~2*o +  Pn~9x'0 +  ... 4-*1>'i“2)]} 4-

+  {Px (P) — W } 4 -  anx (p) =  f  {ph (34)
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Equation (34) is known as the auxiliary equation, or the transform equation. 
The unknown in this equation is the transform x(p),  which is ^determined 
from it. Transform it leaving on the left the terms that contain x (p)i

x(P) [a*Pn +  alpn- l + . . .  +  an_ xp +  an] =
=  o„ [pn " 1* 0 +  pn“ 2 x'0+ . .  ■ + 4 n - , , ] +

+  «, [p""* *„ +  Pn~‘ * „ + •• •  + < n~ 2)] +

+  a n - 2  [P*o + * o l  +

+  a»-.[*ol +  ^(P)- (34')
The coefficient of x(p)  on the left of (34') is an nth-degree polynomial in p, 
which results when in place of the derivatives we put the corresponding 
degrees of p into the left-hand member of equation (31). We denote the poly
nomial by <p„(p):

?«( P) =  “oP" +  “l P" “ ' +  • • • +  «n+ 1P +  °»- (35)
The right-hand side of (34') is formed as follows: 

the coefficient an_ x is multiplied by x0, 
the coefficient is multiplied by px0 +  x

the coefficient a, is multiplied by p"“ 2x0 +  pn~l *' +  . . .  +  x[n~t\  

the coefficient a0 is multiplied by pn~ 1 x0 +  pn-*x'Q +  . . .  + *Jn“ 1)-
All these products are combined. To this is also added the transform of the 
right side of the differential equation F (p). All terms of the right side of (34'), 
with the exception of F (p), form, after collecting like terms, a polynomial 
in p of degree n — 1 with known coefficients. We denote it by tyn- i (p) -  And 
so equation (34') can be written as follows:

*~(P) <Pn (P) =  t n - i  (P) +  F (P).

From this equation we determine x (p ):

* ( P )
f r w - i  (P ) 

<P#*(P)

F(p)
< P n(P )’

(36)

Determined in this way, x (p) is the transform of the solution x (t) of the 
equation (31), which solution satisfies the initial conditions (32). If we now 
find the function x* (t) whose transform is the function x (p) determined by 
equation (36), then by the uniqueness theorem formulated in Sec. 1 it will 
follow that x* (t) is the solution of equation (31) that satisfies the conditions 
(32), that is,

x* (/) =  *(/).
If we seek the solution of (31) for zero initial conditions: x0=>x'0 = * * . . .  =

*Jn~ 1)==0, then in (36) we will have ^„-,(p) =  0  and the equation will take 
the form

*(P)
F(p)  
<Pn (P)

28^ 3388
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or

*(P) =  :
F(P)

'atpn+ a lpn- , +  . . . + a n 

Example 1. Find Ihe solution of the equation
dx
dt + * = 1

satisfying the conditions x =  0 for f =  0 .
Solution. Form the auxiliary equation

*(P) ( p + l ) —0 =  - -  or * (P )=  -(py 1)p •

Decomposing the fraction on the right into partial fractions, we get
, 1 1 

’ W — p - f + T -
Using formulas 1 and 4 of Table 1, we find the solution:

x(t) =  \ —e - i.
Example 2. Find the solution of the equation

i ? + 9x= l
that satisfies the initial conditions: xo =  x ' = 0  for t =  Q.

Solution. Write the auxiliary equation (34')

X(p) (p* +  9 ) = l  or *{p) =  p J + g ) .

Decomposing this fraction into partial fractions, we get
1 1

x(p)-. 9 P . 9
P*+9 +  p '

Using formulas 1 and 3 of Table 1 we find the solution: 

* ( < ) = - - C O S  3/ +  i  .

Example 3. Find the solution of the equation

d*x kdx
dT*+ 3 d i + 2 x = i

that satisfies the initial conditions x0= x ' = 0  for / =  0 . 
Solution. Write ithe auxiliary equation (34')

*(P)(p* +  3p +  2 ) = p

or
' 1  1_____________ 1______

"((P P* (P* +  3p +  2) P* (P + 1) (P +  2)

(36')
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Decomposing this fraction into partial fractions by the method of undetermined 
coefficients, we obtain

-  1 1 3 1 1  1
X{P)- 2 p* 4 p + p +  l 4(p  +  2) •

From formulas 9, l,and 4 of Table 1 we find the solution:

* ( 0  =  y < - 4 + e"t - T e"21,
Example 4. Find the solution of the equation

d2x . n dx . c ,^  +  5* =  sln/

satisfying the conditions x0= l ,  x'0 =  2 for t =  0.
Solution. Write the auxiliary equation (34'):

*”(p) (pi +  2p +  5) =  p -l +  2 +  2 - l+ L {  s in /}
or

x(p) (p*+2p +  5) =  p +  4 + — -j ,

whence we find x  (p):
—l \ P"F4 1
* W - p ’ +  2p +  5 +  (p * + l) (p ’ +  2p +  5) •

Decomposing the latter fraction on the right into partial fractions, we can 
write

11 , . 1 , 1  
, 10P +  4  , 10P +  5

x ( p > -p *  +  2p +  5 +  p * + l
or

-  < 11 P +  1 . 2 9  2 1 p i I
* W ~ 1 0  ' ( p + l ) i + 2 i + 10-2 ’ (p +  l)* +  2* l O V + l ^ S  * p * + l *

Applying formulas 8 , 7, 3, and 2 of Table 1, we get the solution 

x (0 = j g « " ‘ cos2/ +  — e - <sin2/ —— co s /+ -g -sin /

or, finally, /II OQ \ 1 1
x  (t )  = e ~ ‘  ^  cos 2 t  + 2 0  sin 2/ J  - yg cos t +  y  sin / .

SEC. 11. DECOMPOSITION THEOREM

From formula (36) of the previous section it follows that the transform of 
•the solution of a linear differential equation consists of two terms: the first 
term is a proper rational fraction in p, the second term is a fraction whose 
numerator is the transform of the right side of the equation F(p), while the 
denominator is the polynomial <p„(p). ! If F(p) is a rational fraction, then 
the second term will also be a rational fraction. It is thus necessary to be 
able to find the original function whose transform is the proper rational

28*
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fraction. We shall deal with this question in the present section. Let the 
L-transform of some function be a proper rational fraction in p:

^n-1 (P)- 
<P« (P)

It is required to find the original function. In Sec. 7, Ch. X, it was shown 
Ithat any proper rational fraction may be represented in the form of a sum 
of elementary fractions of four types:

II.

III.

A
(P— a)k ’

A P +  B 
P*+aiP +  <*t

where the roofs in the denominator are complex, that

is, -j^ — a2< 0 , 4

IV.- Ap +  B -  where k ^ s 2 , the roots of the denominator are complex. 
(p2 +  axp +  a2)k

Let us find the original functions for these elementary fractions. For 
fraction type 1 we get (on the basis of formula 4 of Table I)

— —  ^  A eat.
p — a  ■

For a type II fraction, by formulas 9 and 4 of Table 1, we have
1

(ft-1) 1 (37)
(P— <*)*

Let us now consider the type III fraction. We perform identical transforma
tions:

Ap +  B A p + B

" ( , + * ) + ( / * - < ) ■
«i

p + 2

( - + * ) ■ + + * - 4 )

+ ( • - £ )

+

Denoting the first and second terms by M and N respectively, we get 
(from formulas 8 and 7 of Table 1)
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And, finally, 

P2 + fliP +  ̂ 2

We shall not consider the case of elementary fraction IV, since it would in
volve considerable calculations. We shall consider certain special cases' below.

SEC. 12. E X AM PLES OF SOLUTIONS OF D IF F E R E N T I A L  
EQUATIONS A N D  SYSTEMS OF D IF F E R E N T I A L  EQUATIONS 

BY TH E  O PE R A T IO N A L  M ETHOD

Example 1. Find the solution of the equation

+  4x =  sin 3x

that satisfies the initial conditions * 0 =  0 , * ’ = 0  when t — 0 . 
Solution. Form the auxiliary equation (34')

3 — . 3
* ( p ) ( P ! + 4 )  =  p - 0  +  0  +  - *(P) =Ps +  9  ’ ( p* +  W  +  4 )

_  3_ 3_
—, . _ 5 - 5    1 3 3 2
* W - p i + 9 - t - p l  +  4  5  , p l  +  9 + l 0 * p * + 4 '

whence we get the solution
x (t) =  ̂  sin 2 / — sin3£.

Example 2 . Find the solution of the equation
d9 x
dt9+ x = 0

that satisfies the initial conditions x0 =  I, x '0 =  3, j£ =  8 when  ̂=  0. 
Solution. Form the auxiliary equation (34')

*(p) (p* +  l) =  p M + p -3  +  8 ,
we find

P 2 +  3p +  8 P 2 +  3p +  8
* (P )= - P2 +  l ( p  +  l ) ( p * - p + l )
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Decomposing the rational fraction obtained into partial fractions, we get
pz -f~ 3p &

(p +  l)(p»-p  +  l) 

1

— p +  6
p + i  n p2—p +  r

i
-+■

= 2 • p - j
- — \T +

11 2

'+' m m / d ^ (-w '
Using Table 1, we write the solution:

k (t) =  2e~i-\-e t  * ( v  3 ii , y~i \
V — cos —  1 +  yqjSln —  1 J •

Example 3. Find the solution of the equation
d2x , .—  +  x = t  cos 21

that satisfies the initial conditions x =  0 , * 0 =  0 when t = 0 . 
Solution. Write the auxiliary equation (34')

1 8

whence

Consequently,
* (P) =  -

X (p )(p*+ l) =  

5 1
9 p * + l  +  9 p2 + 4 ' r  3 ( p * + 4 f

p* +  4 (pl +  4)2 

5 1 . 8 1

x ( t )  =  — sin /+  jg sin 2/ +  -̂ - s'n %  — /cos 2/^ •
Obviously, the operational method may also be used to solve systems of 

linear differential equations. The following is an illustration.
Example 4. Find the solutions of the set of equations

57 +  4 ^ f+ 3 p  =  ° 

that satisfy the initial conditions x =  0 , y =  0 when f =  0 .
Solution. We denote x (t) ^  x (p), y (t) ~y (p) and write the system of 

auxiliary equations:
(3p +  2) T  (p) +  p ~y (p) =  y  ,

P~x (p) +  (4p +  3) 7  (P) =  0.
Solving Ihis syslem, we find

4p +  3 1 1 1
* (P) =

y  (p)=—

P ( p + l ) ( l l p  +  6)  2p 5(p +  l )  10 (Up +  6)  ’

1 1 / 1
( l l p  +  6 ) ( p + l )

= - ( — _____
5 Vp +  1 llp +  6 ;
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From the transforms we find the original functions—the sought-for solutions 
of the system:

/A 1 1 t 3 - 77'
x ^  = ^ —s e - i o e

- - t
y ( t ) =  5 e - ‘ - e  11

Linear systems of higher orders are solved in similar fashion.

SEC 13. THE CONVOLUTION THEOREM

The following convolution theorem is frequently useful when solving 
differential equations by the operational method.

Convolution Theorem. If Fl (p) and F2(p) are the transforms of the functions 
ft (t) and f2 (t), that is,

Ft (P) —*■ h  (0  and Ft (p) ft (t),
then F1(p)'Fi (p) is the transform of the function

t

J fi (1 ) ft V —1 ) dx.

that is,

F, (P) Ft (p) —* ^ f i  (t) ft ( t —r) dx. (39)

Proof. We find the transform of the function
t
\ f t  ( t ) / ,  ( t - x ) d x

from the definition of a transform: 
t

L {  S M 'O M *—'*)dx } =  $ * “* [  (■!)/,(*—■x ) d x l d t .
' 0 ' 0 0

The integral on the right is a double integral of the form J J <D (t, t) dt dt,
D

which is taken over a region bounded by the straight lines t  =  0 , t  =  t 
(Fig. 380). Changing the order of integration in this double integral, we gefi

t CO 00

fi {  $ M l ) - * ) * } = $  [ / ,  (t) \ e ~ pt f t<t—x) dt ]  dx.
0 0 x

Changing ihe variable t —x =  z in the inner integral, we obtain
00 00 00
J e~pt U ( t - t )  =  $ e~P <*+t> / ,  (z) dz = e - /n  ̂e~P* ft (z) dz =e-P* Fz (p).
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Hence,

l {  < T )M * -T )d t}  = ^ f 1 (x)e -J»F,(p)  dx =  Ft ( p ) j e - ^ f l ( r )dx  =

=  Ft [p) iP)-
And so

This is formula 15 in Table 1.
t

Flip)-
0
in Table 1.

t
Note 1. The expression —t) dx is called the convolution

o
(Faltung, resultant) of two functions fx (t) and f2 (t). 
The operation of obtaining it is also known as the 
convolution of two functions; here

t t
J h  (T) « - T )  dx =  J h  i t - X )  ft (t) dx.

I 0 0
Fig. 380. That this equation is true is evident if we change

the variable t —% =  z in the right-hand integral. 
Example. Find the solution to the equation

d*x
dt2 + x = f (f)

that satisfies the initial conditions xo= * o =  0  for f = 0 . 
Solution. Write the auxiliary equation (34')

7  (p) (p2 +  1) =  F (p),
1

where F (p) is the transform of the function f(t) .  Hence, x(p) =  —^   ̂ F (p ) , 

but t , !  , sin t and F ( p ) ^ f ( t ) .  Applying the convolution formula (39)
P2+ l  

and denoting 
we get

1
P2 + 1

=M p ). F(p) =  F 1 (p),

x(t) =  (t) sin { t —t) dx. (40)

Note 2 . On the basis of the convolution theorem if is easy to find the 
transform of the integral of the given function if we know the transform of 
this function; namely, if F (p) f*- /  (f), then

t
-  F (p) (t) dx. (41)
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Indeed, if we denote

M 0  =  / ( 0 .  M 0  =  1. then F, (p) =  F (p), Ft (p) =  - . 

Putting these functions into (39), we get formula (41).

SEC. 14. THE DIFFERENTIAL EQUATIONS OF MECHANICAL 
OSCILLATIONS. THE DIFFERENTIAL EQUATIONS 

OF ELECTRIC-CIRCUIT THEORY

From mechanics we know that the oscillations of a material point of mass 
m are described by the equation *)

d2x , X dx
dt2 ~̂ m dt^~ m X m ^ ( 4 2 )

where x is the deflection of the point from a certain position and k is the 
rigidity of the elastic system, for instance, a spring (a car spring), the force 
of resistance to motion is proportional (the proportionality constant is X) 
to the first power of the velocity, and fx (t) is the 
outer (or disturbing) force.

Equations of type (42) describe small vibrations 
of other mechanical systems with one degree of free
dom, for example, the torsional oscillations of a fly
wheel on an elastic shaft, if x is the angle of rotation 
of the flywheel, m is the moment of inertia of the 
flywheel, k is the torsional rigidity of the shaft, and 
mfl (f) is the moment of the outer forces relative to 
the axis of rotation. Equations of type (42) describe 
not only mechanical vibrations but also phenomena 
that occur in electric circuits.

Suppose we have an electric circuit consisting of an 
resistance R and a capacitance C, to which is applied an e.m.f. E (Fig. 381). 
We denote by i the current in the circuit, by Q the charge of the capacitor; 
then, as we know from electrical engineering, i 
equations:

L% + m + 7 - E‘

Fig. 381. 
inductance L,

and Q satisfy the following

(43)

dQ
dt = i.

From (44) we get
d2Q _ d i  
dt2 ~ d t

(44)

(44')

Substituting (44) and (44') into (43), we get for Q an equation of type (42):

(45)L dt1 + R  dt +  C Q E-

*) See, for example, Ch. XIII, Sec. 26, where such an equation is derived 
in considering the oscillation of a weight on a car spring.
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Differentiating both sides of (43) and utilising (44), we obtain an equation 
for determining the current i:

, d H  di 1 
L di*+ R d i + -C

dE_ 
dt • (46)

Equations (45) and (46) are type (42) equations.

SEC. 15. SOLUTION OF THE DIFFERENTIAL OSCILLATION 
EQUATION

Let us write the oscillation equation in the form
d2x . dx , . . . .

+  +  =  (47)

where the mechanical and physical meaning of the desired function x, of the 
coefficients alt a2, and of the function f (t) is readily established by comparing 
this equation with equations (42), (45), (46). Let us find the solution to 
equation (47) that satisfies the initial conditions x =  xQ, x ' = x 0 when f =  0. 

We form the auxiliary equation for equation (47):

~X (p)(p‘ +  alp +  a,) =  x0p + x lt +  a , * 0 +  F ( p ) ,  (4 8 )

where F (p) is the transform of the function f (t). From (48) we find 

T  *.p+*;+«,*. F(p)
^  Pa +  a iP +  a t + Pt +  o lp  +  a t  • ( *

Thus, for a solution Q (/) of equation (45) that satisfies the initial conditions 
Q =  Qo» Q/ =  Q0 when  ̂=  0 , the transform will have the form

L (QoP +  Q0) +^Qo
Q (P )= -

Lp2-t-Rp + 1
E  ( P )

Lp2 -j- Rp + 1

The type of solution is significantly dependent on whether the roots of the 
trinomial p2 +  a1p +  a2 are complex, or real and distinct, or real and equal. 
Let us examine in detail the case when the roots of the trinomial are complex,
that is, when — a2 <  0. The other cases are considered in similar fashion.

Since the transform of a sum of two functions is equal to the sum of their 
transforms, it follows from formula (38) that the original function for the 
first fraction on the right of (49) will have the form

*.P+*0 +  «1*0 . — t '—\—;---------------;- CP* + <JiP + a« x0 cos t
a2

— r +

+ sin i
(50)
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Let us then find the original function corresponding to the fraction

F(P)
P*

Here, we take advantage of the convolution theorem, first noting that

1
P2+  <*!? + a*

Hence, from (39) we get

a\

F(P)
P2+  0^  +  02 ‘

t

4” °

f &)e sin(/—x)

And so, from (49), taking into account (50) and (51), we get

(51)

+

(52)

If the external force f ( t ) =  0, which means that if we have free mechanical 
or electrical oscillations, then the solution is given by the first term on the 
right-hand side of expression (52). If the initial data are equal to zero, i.e ., 
if x0=x'0= O t then the solution is given by the second term on the right side 
of (52). Let us consider these cases in more detail.

SEC. 16. INVESTIGATING FREE OSCILLATIONS

Let equation (47) describe free oscillations, that is, / ( / ) a 0 .  For con
venience in writing we introduce the notation al =  2nt a2 =  k2, k\ =  k2 — n2. 
Then (47) will have the form

3F+2nW +k*x=0- (53)
The solution of this equation Xfr that satisfies the initial conditions x =  xQt 

x ' = x Q for * =  0 is given by the formula (50) or by the first term of (52):

T x0+ x 0n
x/r ( 0  = « ~  * I xQ cos kxt ------- -----sin kxt (54)
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x0 +  x0n
We denote x0 =  a, ---- r----- =  6 . It is obvious that for any a and b we can/Cl
select M and 6 such that the following equalities will be fulAiled:

a = M s in 6 , b =  M cos 6 ,
here,

M2 =  a2 +  b2t tan 6 =  -̂ - .

We rewrite formula (54) as
Xfr — e~nt [M cos kxt sin 6 +  M sin kxt cos 6 ], 

or, in final form, the solution may be written thus:

xfr=  V a 2 + b 2e~nt sin ( V  +  fy- (55)
Solution (55) corresponds to damped oscillations.

If 2/i =  a1 =  0, that is, if there is no internal friction, then the solution
will be of the form ______

Xfr=  ^ a 2 +  b2 sin (kxt +  6 ).

In this case harmonic oscillations occur. (In Ch. XIII, Sec. 27, Figs. 270 and 
271 give graphs of harmonic and damped oscillations.)

SEC. 17. INVESTIGATING MECHANICAL AND ELECTRICAL 
OSCILLATIONS IN THE CASE OF A PERIODIC EXTERNAL FORCE

When studying elastic oscillations of mechanical systems and, in particular, 
when studying electrical oscillations, one has to consider different types of 
external force f (t). Let us consider in detail the case of a periodic external 
iorce. Let equation (47) have the form

~  -j- 2n ^  +  k2x =  A sin oat. (56)

To determine the nature of the motion it is sufficient to consider the case 
when £o =  £ q = 0 . One could obtain the solution of the equation by formula 
(52), but pedagogically speaking, it is more convenient to obtain the solution 
by carrying out all the intermediate calculations.

Let us write the transform equation
~X (p) (p*+2np +  k1) =  A ,

from which we get
— , N Aco
* {P> ~  (P* +  2np +  ft*) (p* +  to*) • ( )

We consider the case when 2n 9= 0 (n2 <  k*). Decompose the fraction on 
the right into partial fractions:

_________ Aco____________  Np +  B Cp +  D
(p2 - f  2np +  k2) (p2 +  o)2) p2 +  2np +  k2 p2 +  o*

(58)

We determine the constants B , C, D by the method of undetermined 
coefficients. Using formula (38), we find the original function from its
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L-transform (57):

A Ix (t) =  -tt?----- gxg , , g < (k2— co2) sin cô  — 2nco cos co/-f
w  (fc2— G)2)2 +  4rt2G)2 \

+  e“ £ (2/i2 — k2 +  co2) sin kxt +  2nco cos j  | ; (59)

here again, kl — y  k2 — n2. This is the solution of equation (56) that satisfies 
the initial conditions xQ =  xo =  0 when / = 0 .

Let us consider a special case when 2rt =  0. This corresponds to a mecha
nical system with no internal resistance, or to an electric circuit where R =  0  
(no internal resistance in the circuit). Equation (56) then takes the form

d2x +  k2x =  A sin co/, (60)at*
and we get. the solution of this equation satisfying the conditions x0 =  ̂  =  0 
for / =  0 if in (59) we put n =  0:

X ( 0  =  k I— m sin kt +  k sin toll- (61)

Here we have the sum of two harmonic oscilla
tions: natural oscillations with frequency k:

X A co .
------k siakt’

and forced oscillations with frequency co:

xforV)=pZIt f
The type of oscillations for the case k ^ x o  is 
shown in Fig. 382.

Let us again return to formula (59).
If 2n >  0 (which occurs in the mechanical and 
electrical forces under consideration), then the 
term containing the factor e~ntt which represents 
damped natural oscillations for increasing t, 
rapidly decreases. For t sufficiently large, the character of the oscillations 
will be determined by the term that does not contain the factor e~ ni; that is, 
by the term

* ( 0  = (k*—J)+*nfa  sin tot—2™ cos at}. (62)

0

*Cn
(
l i j j i l i i i T f

0

X(t)n

M M M M m m  
i i i  111 
i i i 11j M j  j i

1 i j
0 '"VI r i\ L j  

F ig . 382 .

We introduce the notations

A {k2— CD2)
{k2—CD2)2 +  4/i2co2 M cos 6 ; A-2nd)

(k2 — co2)2 -f- 4n2co2
=  M sin 6 , (63)

where

M =
______ A______
V (£ 2 —co2)2 +  4n2co2
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The solution (62) may be rewritten as follows:

* '0 =
k2

sin (cot +  6). (64)

From formula (64) if follows that the frequency of forced oscillations coincides 
with that of .the external force. If the internal resistance, characterised by 
the number n, is small and the frequency of the external force co is not very 
different from that of the natural oscillations k% then the amplitude of oscil
lations may be made as great as one pleases, since the denominator may be 
arbitrarily small. For /i =  0, (o2 =  fc2, the solution is not expressed by for
mula (64).

SEC. 18. SOLVING THE OSCILLATION EQUATION 
IN THE CASE OF RESONANCE

Let us consider the special case when a1 =  2/i =  0, that is, when there is 
no resistance and the frequency of the external force coincides with that of 
the natural oscillations fc =  G). The equation then takes the form

d2K~  -\-k2x =  A sin kt. (65)

We shall seek the solution that satisfies the initial conditions x0 =  0, *o= 0  
for / =  0. The auxiliary equation will be

*(P) (p* +  *2)=>4 — ^j-.
whence

+**)»• ^
We have a proper rational fraction of type IV, which we have not considered 
in the general form. To find the original function for the transform of (66), 
we take advantage of the following procedure. We write the identity (formula 2 
of Table 1) GO

kt dt. (67)
0

We differentiate both sides of this equation with respect to k (the integral on 
the right may be represented in the form of a sum of two integrals of a real 
variable, each of which depends on the parameter k):

- 2- -I .-j —; b2v2=  [  e ~ * t c o s k t  dt.p2 +  k2 (p2 +  k2)2 Jo
Utilising (67) we can rewrite this equation as

00
- & T W = $ e- Pi [ ' c o s « - i s t a w ]  dt.
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Whence it follows directly that

W T F r ^ A { T slnkt- Uoskt)

(from this formula we have formula 13, Table 1). Thus, the solution of equa
tion (65) satisfying the initial conditions xQ =  x'o =  0 for t =  0 will be

x (t) =  —  (-£- sin kt — t cos kt ĵ . (68)

Let us study the second term of this equation:

*, (*)=— (68')

this quantity is not bounded as t increases. The amplitude of oscillations that 
correspond to formula (68 ') increases without bound as t increases without 
bound. Hence, the amplitude of oscillations corresponding to formula (68) also 
increases without bound. This is resonance; it occurs when the frequency of 
ithe natural oscillations coincides with that of the external force (see also 
Ch. XIII, Sec. 29, Fig. 273).

SEC. 19. THE DELAY THEOREM

Let the function f ( t ), for t < 0 ,  be identically equal to zero (Fig. 383, a). 
Then the function f ( t—10) will be identically zero for t <  t0 (Fig. 383, b). 
We shall prove a theorem which is known as the delay theorem.

Fig. 383.

Theorem. If F (p) is the transform of the function f (t), then e~pt°F(p) is 
the transform of the function f (t — t0)\ that is, if f (t) 4- F (p), then

Proof. By the definition of a transform we have
OD tQ 00

L { / ( < -< .) }  =  J e~pt f ( / - I , )  dt =  j  e~pt f (t - g  dt +  $ e~p t f  (t - g  dt.
0  0  to
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The first integral on the right of the equation is zero since f( t—t0) =  0 for 
t < t 0. In the last integral we change the variable, putting t — t0 =  z:

00 00

L {/ ( t— *0)} =  J e~p{z+to) f (z) dz =  e~pt° J e~Pz f (z) dz =  e~pt° F (p).
o o

Thus, f ( t ~ t 0) +  e - pt°F(p).

C0(t-h )

0 h t

Fig. 348.

Example. In Sec. 2 it was established for the 
Heaviside unit function that

It follows, from the theorem that has just been 
proved, that for the function a0 (/ — h) depicted 
in Fig. 384, the L-transform is

(hat is,

o . ( t - h )  +  - e - P h.

Exercises on Chapter XIX

Find solutions to the following equations for the indicated initial condi
tions:

/f2y ft Y
1. +  3 -fa +  =  0 , * =  1, x' =  2 for f =  0. Ans. x =  4e~l — 3e~2t.

2 . —  — —  ==0 , x =  2, x' — 0 , x " = l  for / =  0. Ans. x = l  — t + e l.dt9 dt2

3. ~ 2 o -  +  (fl2 +  ^ )^  =  0 , * =  *0, for / =  0 . Ans. x =
oat

=  —  [x06 cos bt +  (x0 — x0a } sin bt\.

4. — 3 j^ +  2x =  eiX, x =  1, x ' = 2  for / =  0. .4ns. x =  ~ e 5/-|-

4__L ot__~ e 2t+ 4 * •
d2x t5. - £ p + m tx = a c o s n t ,  x = x 0, x' = x Q for / =  0. Ans. x- m^ r * x

X (cos nt —cos mt) +  x0 cos n t ~|—£ cos m t .m

6 . =  x =  0, x' = 0  for * =  0. Ans. x =  3e‘—^- l *— t6 i —2 t —3.dt2 at 6
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7 . x =  x' = x '  =  0 for / = 0 . Ans. j c = | | / 2- 3( |

+  T ) e' - i e" ' - T { C0S( ^  ^ ) }  ‘7 ‘ •

8 . —  + 1 =  I, *#= * j  =  * i = 0  for ( = 0 .  Ans. x =  1— i - e - 1—

2 4 i £ 3— j  e cos 2 *

9. 2 ^ r  +  * =  sln<. * „ = * i = * o  =  *o = 0  for < =  0- 4ns. * =

=  1 ( 3  — 1‘) sin t — % t cos t.O O

10. Find solutions to the system of differential equations

d2x , d2y 
■ d f i + y - 1’ 2 T 2 + x = 0 '

that satisfy the initial conditions x0 =  y0 =  x'Q =  y'Q =  0 for * =  0. Ans. x (t) 

2=  — 4 *c°s *+  -j*e‘ + y ( t )  =  ~  cost  + et +  e - t — l.



A

Abel’s theorem, 742, 743 
Absolute constants, 16 
Absolute value, 15 
Absolutely convergent integral, 420 
Absolutely convergent series, 731 
Acceleration 

average, 125 
at a given instant, 125 
of linear motion, 125 

Adam’s formula, 587 
Algebra

fundamental theorem of, 245 
Algebraic equation, 225, 245 
Algebraic functions, 26, 28 
Alternating series, 727 
Amplitude (of a complex number), 234 
Amplitude (of oscillation), 558 
Analysis 

harmonic, 805 
Analytical expression, 21 
Angle of contingence (of an arc), 210 
Antiderivative, 342 
Arc length of a curve, 447-452 
Archimedes 

spiral of, 29 
Argument, 19 

of a complex number, 234 
intermediate, 85 

Astroid, 107 
Asymptote, 189 

inclined, 191 
vertical, 190

Auxiliary equation, 535, 865 
Average acceleration, 125 
Average curvature, 211, 327 
Axis 

imaginary, 233 
of imaginaries, 233 
of reals, 233 
polar, 28 
real, 233

B

Bernoulli’s equation, 480-492 
Bernstein, S. N., 252 
Bernstein’s polynomial, 252 
Bessel function of the first kind, 765 
Bessel function of the second kind, 767 
Bessel’s equation, 763, 764 
Bessel’s inequality, 796 
Binomial differential, 375 
Binomial series, 754-756 
Binormal, 331
Boundary conditions, 818, 825, 828 
Boundary of a domain, 256 
Boundary-value conditions, 818 
Boundary-value problem 

first, 825, 837 
second, 837 

Bounded function, 40, 41 
Bounded variable, 18 
Briggs, 56 
Broken line 

Euler’s, 583 
Bunyakovsky, 647
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Bunyakovsky’s inequality, 647 
Burgi, 56

C

Calculus
operational, 854 

Catenary, 471 
Cauchy’s test, 721, 722 
Cauchy’s theorem, 143 
Centre of curvature, 217 
Centre of a neighbourhood, 18 
Change of variable, 348 
Characteristic equation, 570 
Chebyshev, P. L., 253 
Chebyshev polynomials, 253 
Chebyshev’s formula, 430-435 
Circle of curvature, 217 
Circulation (of a vector), 673 
Clairaut’s equation, 505-507 
Closed contour, 672 
Closed domain, 256 
Closed interval, 17 
Closed region, 608 
Coefficient, 27 
Coefficients 

Fourier, 779
of a trigonometric series, 776 

Combined method, 229 
Common logarithms, 758 
Complete integral (of a differential 

equation), 475, 515 
Complex function of a real variable, 

242
Complex number

imaginary part of, 233 
real part of, 233 

Complex numbers, 233 
addition of, 234 
conjugate, 233 
division of, 236 
exponential form of, 243 
geometric representation of, 233 
multiplication of, 235

powers of, 237 
roots of, 238 
subtraction of, 235 
trigonometric form of, 234 

Complex plane, 240 
Complex roots, 248, 249 
Complex variable, 240 
Composite exponential function, 93 
Composite function, 25 
Concave curve, 183 
Cancavity (of a curve), 183 
Conditions

boundary, 818, 825, 828 
boundary-value, 818 
initial, 474, 514, 818, 825, 828 

Conditional extremum, 300 
Conditionally convergent series, 731 
Conjugate complex numbers, 233 
Conjugate pairs (of complex roots), 249 
Constant, 16 

absolute, 16 
Continuous function, 57, 58 
Contour 

closed, 672 
Convergence of a series

necessary condition for, 713 
Convergent integral, 421 
Convergent series 

absolutely, 731 
conditionally, 731 

Convex curve, 183 
Convex down (downwards), 183 
Convex up (upwards), 183 
Convexity (of a curve), 183 
Convolution, 872 
Convolution formula, 872 
Convolution theorem, 871 
Coordinate 

polar, 28 
Coordinate system 

polar, 28 
Correspondance 

one-to-one, 634 
Critical points (values), 168, 294
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Curl (of a vector function), 694 
Curve 

concave, 183 
convex, 183
convex downwards (upwards) 183 
Gaussian, 187 
smooth, 528 
space, 450 

Curves
integral, 475, 515 
resonance, 561 

Curvature, 211, 212, 215, 216, 327 
average, 211, 327 
centre of, 217 
circle of, 217 
at a point, 2 1 1 , 212  
radius of, 217 

Curvilinear trapezoid, 400 
Cusp 

double, 309 
Cusp of the first kind, 308 
Cusp of the second kind, 309 
Cycloid, 106, 107

D
D ’Alembert’s test, 718 
Decomposition (of a rational fraction 

into partial fractions), 361 
Decomposition theorem, 867 
Decreasing function, 20 
Decreasing variable, 18 
Definite integral, 396, 398, 399 
Degree of a polynomial, 27, 244, 246 
Del operator, 700 
Delay theorem, 879, 880 
De Moivre’s formula, 237 
Density 

linear, 459 
surface, 642 

Derivative, 71, 72, 78, 79, 80, 114 
of a composite function, 85, 86  
directional, 284-286 
discontinuous, 168 
of a fraction, 83

of a function defined implicitly, 
276, 277 
logarithmic, 94 
of a logarithmic function, 84 

Derivative 
of nth order, 119 
partial, 263-265 
of a product, 82 
second, 119 
of second order, 119 
of a sum, 81 
symbols of, 71 
third, 119 
total, 275 

Determinant 
functional, 636 

Deviation 
maximum, 793 
root-mean-square, 793 

Diameter of a subregion, 650 
Differentiable function, 74 
Differentiable at a point, 267 
Differential, 113, 114, 116, 117, 118, 

267
of an arc, 210  
binomial, 375 
nth, 121
second (second-order), 121 
third (third-order), 121 
total, 267 

Differential equation, 469, 472 
exact, 492 
first-order, 473-478 
higher-order, 514-516 
linear, 528, 529 
ordinary, 472 

Differentials 
error approximation by, 270 

Differentiation, 71 
Direction of circulation, 672 
Direction-field, 476, 477 
Directional derivative, 284-286 
Dirichlet-Neumann problem, 840, 843 
Dirichlet problem, 837



S u b j e c t  I n d e x 885

Dirichlet’s integral, 800 
Discontinuity (see point of d.) 
Discontinuous derivative, 168 
Discontinuous function, 60 
Divergence (of a vector, or of a vector 

function), 699 
Divergent integral, 421 
Domain 

closed, 256
of convergence (of a series) 733 
of definition (of a function), 19, 256 
natural, 2 1 , 22  
open, 256 

Dominated series, 734-736 
Double cusp, 309 
Double integral, 609 
Double root, 546

E

Eigenfunctions, 821 
Eigenvalues, 821 
Element of integration, 343 
Elementary function, 26 
Ellipse of inertia, 645-648 
Elliptic equations, 815 
Elliptic integral, 385 
End points of an interval, 17 
Envelope (of a family of lines), 498, 

501 
Equation 

algebraic, 225, 245 
auxiliary, 535, 865 
Bernoulli’s 490-492 
Bessel’s, 763, 764 
characteristic, 570 
Clairaut’s 505-507 
of continuity, 837 
of continuous flow of a compressible 
liquid, 839 
differential, 469, 472 
elliptic, 815 
exact differential, 492 
first-order linear, 487

Fourier (for heat conduction), 815 
heat-conduction, 815, 816, 825, 828 

Equation (cont.) 
of heat propagation 
in a plane, 828
higher-order differential, 514-516 
homogeneous, 482 
homogeneous linear, 529 
hyperbolic, 815 
Lagrange’s, 507-509 
Laplace’s 703, 815, 836

in cylindrical coordinates, 842 
linear, 487
linear differential, 528, 529 
Lyapunov’s, 796 
nonhomogeneous linear, 529 
of a normal, 126 
ordinary differential, 472 
parabolic, 815 
partial differential, 472 
parabolic, 815 
partial differential, 472 
of a tangent, 126 
transform, 865 
vector, 314 
wave, 815, 817
with a right-hand member, 529 
with separated variables, 479 
with variables separable, 479 
without a right-hand member, 529 

Equations 
parametric, 103, 104, 314 
telegraph, 819 

Equipotential lines, 510 
Equivalent infinitesimals, 64, 65 
Error
maximum absolute, 270 
maximum relative, 272 
relative, 272 
Euler substitution 

first, 372 
second, 373 
third, 374, 375 

Euler’s broken line, 583 
Euler’s formula, 243, 753
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Euler’s method (of approximate 
solution of first-order differential 
equations), 581-584 

Evolute, 219 
Evolvent, 219
Exact differential equation, 492 
Existence theorem of a line integral, 

673
Expansion (of a function), 156-159 in 

a Taylor’s series, 156 
Explicit function, 90, 91 
Exponential form (of a complex num

ber), 243
Exponential function, 22, 24, 93, 102 

properties of, 241 
Exponential-power function, 93 
Expression 

analytical, 21 
Extreme values (of a function), 166 
Extremum (extrema) (of a function), 

166, 292 
conditional, 300

F

Factor 
integrating, 495-497 

Faltung, 872 
Family of curves, 475 

one-parameter, 498 
Family of functions, 343 
Family of orthogonal trajectories, 510 
Field 

scalar, 283
vector, of gradients, 287 

First Euler substitution, 372 
Flow lines, 510
Flux (of a vector field through a sur

face), 688  
Forced oscillations, 557, 559-563 
Formula 

Adams*, 587 
Chebyshev’s, 430-435 
convolution, 872 
De Moivre’s, 237 
Euler’s, 243, 753

Formula (cont.)
Green’s, 679-681 
of integration by parts, 354 
Lagrange’s interpolation, 250, 251 
Leibniz’, 120, 436 
Maclaurin’s, 155 
Newton-Leibniz, 410, 411 
Ostrogradsky’s, 697-700 
parabolic, 426 
rectangular, 424, 425 
Simpson’s, 428 
Stokes’, 692-697 
Taylor's, 152, 155 
for transformations of coordinates 

, in a double integral, 636 
trapezoidal, 426 
Wallis’, 415, 416 

Formulas 
Serret-Frenet, 335 

Fourier coefficients, 779 
Fourier cosine transform, 810 
Fourier equation for heat conduction, 

815
Fourier integral, 806-808 

in complex form, 810-812 
Fourier inverse transform, 812 
Fourier series, 776-812 

definition of, 779 
Fourier sine transform, 810 
Fourier transform, 812 
Fraction 

improper, 357 
partial, 358 
proper, 357 

Fractional rational function, 27 
Free oscillations, 557, 875-876 
Frenet (see Serret-Frenet formulas, 

335)
Frequency, 558 
Function, 19 

algebraic, 26, 28 
analytical representation of, 21 
basic elementary, 22 
Bessel, of the first kind, 765
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Bessel, of the second kind, 767 
Bounded, 40, 41 
composite, 25
composite exponential, 93 
continued in even fashion, 791 
continued in odd fashion, 792 
continuous, 57, 58 
continuous in a domain, 261 
continuous over an interval, 59 
continuous on the left, 59 
continuous at a point, 261 
continuous on the right, 59 
decrease of, 163 
decreasing, 20  
differentiable, 74

Function (cont.)
differentiable at a point, 267 
discontinuous, 60 
elementary, 26 
explicit, 90, 91 
explicitly defined, 90 
exponential, 22, 24, 93, 102 
exponential-power, 93 
fractional rational, 27 
of a function, 25 
Gauss, 385
graphical representation of, 21 
harmonic, 703, 836 
Heaviside unit, 855 
homogenous, 482 
implicit, 90, 91, 122 
increase of, 163 
increasing, 20 
infinitesimal, 42, 44, 45 
initial, 855 
inverse, 95
inverse trigonometric, 2 2 , 102 
investigation of, 194-198 
irrational, 27 
linear, 27
logarithmic, 22, 24, 103 
multiple-valued, 20  
periodic, 24

Function (cont.) 
piecewise continuous, 797 
piecewise monotonic, 779 
power, 22, 23, 93, 102 
power-exponential, 93 
quadratic, 27 
rational integral, 27, 244 
represented parametrically, 104, 123 
of several variables, 255 
single-valued, 20  
tabular representation of, 20  
transcendental, 28 
trigonometric, 22, 24, 102 
unbounded, 41 

Functional determinant, 636 
Functional relation, 19 
Functional series, 733 
Functions 

hyperbolic, 110 , 111 
linearly dependent, 539 
linearly independent, 539 
rational, 357 

Fundamental theorem of algebra, 245

G
Gauss function, 385 
Gaussian curve, 187 
General solution (of a differential 

equation), 474, 475, 515 
Geometric mean, 305 
Ceometric progression, 710 
Gradient, 286, 287 
Graph, 21
Greatest value (of a function), 61
Green, D., 681
Green’s formula, 679-681

H
Hamiltonian operator, 700 
Harmonic analysis, 805 
Harmonic function, 703, 836 
Harmonic oscillations, 558 
Harmonic series, 714, 715
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Heat-conduction equation, 815, 816, 
825, 828 

Heaviside unit function, 855 
Helicoid, 316 
Helix, 315, 316 
Hodograph, 314 
Homogeneous equation, 482 
Homogeneous function, 482 
Homogeneous linear equation, 529 
Hyperbolic equations, 815 
Hyperbolic functions (sine, cosine, 

tangent, cotangent), 110 , 111 
Hypocycloid, 449

I
Identity, 364 
Imaginary 

pure, 233 
Imaginary axis, 233 
Imaginary part of complex number, 

233
Implicit function, 90, 91, 122 
Improper fraction, 357 
Improper integral, 416, 417 
Improper iterated integral, 631 
Inclined asymptotes, 191 
Increasing function, 20 
Increasing variable, 18 
Increment 

partial (of a function), 259 
total (of a function), 259, 265 

Indefinite integral, 343 
Independent variable, 19 
Indeterminate forms, 144-147, 150-152 
Inequality 

Bessel’s, 796 
Bunyakovsky’s, 647 
Schwarz’, 647 

Infinitely large quantity, 39 
Infinitely large variable, 34 
Infinitesimal, 42-45 
Infinitesimal function, 42, 44, 45 
Infinitesimal of higher order, 64 
Infinitesimal of kth order, 64

Infinitesimal of lower order, 64 
Infinitesimal quantity, 45 
Infinitesimals 

equivalent, 64, 65 
of same order, 63 

Inflection (point of inflection), 186 
Initial condition, 474, 514 
Initial conditions, 8 , 18, 825, 828 
Initial function, 855 
Initial phase, 558
Integrable (said of a function), 399 
Integral, 473 

absolutely convergent, 420 
complete, 475, 515 
convergent, 421 
definite, 396, 398, 399 
Dirichlet’s, 800 
divergent, 421 
double, 609 
elliptic, 385 
Fourier, 806-808 
improper, 416, 417 
improper iterated, 631 
indefinite, 343 
iterated, 611 
line, 671, 674 
particular, 475 
Poisson’s, 835, 846 

three-fold iterated, 651-655 
triple, 650, 654, 656, 658, 659 

Integral curves, 475, 515 
Integral sign, 343 
Integral sum, 398, 608 
Integral test (for convergence), 723-726 
Integrals

table of, 345 
Integrals of irrational functions, 371, 

383
Integrand, 343
Integrate (a differential equation), 476 
Integrating factor, 495-497 
Integration (of a function), 344 
Integration of binomial differentials, 

375
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Integration by parts, 354-356, 413-416 
Integration of rational fractions, 365 
Integration by substitution, 348-351 
Integration of trigonometric functions, 

378-383
Interior point (of a region), 610 
Interior points (of a domain), 256 
Intermediate argument, 85 
Interpolation, 250 
Interval, 17 

closed, 17 
of integration, 399 
open, 17

Invariance (of form of differential), 117 
Inverse function, 95 
Inverse trigonometric function, 22, 102 
Investigation of a function, 194-198 
Involute, 219 
Irrational function, 27 
Irrational numbers, 13 
Irrotational vector field, 702 
Isogonal trajectories, 509, 512-514
Isolated singular point, 310 
Iterated integral, 611 

evaluation of, 615, 616 
improper, 631 
three-fold, 651-655

J

Jacobi, 636 
Jacobian, 636, 659

K
Krylov, A. N., 435

L

L-transform, 855 
Lagrange form of remainder, 155 
Lagrange’s interpolation formula, 

250, 251 
Langrange’s theorem, 142 
Laplace equation in cylindrical coor

dinates, 842

Laplace transform, 855 
Laplace’s equation, 507-509, 703, 815, 

836
Laplacian operator, 703, 836 
Least value (of a function), 61 
Leibniz (see Newton-Leibniz formula» 

410, 411)
Leibniz’ formula, 436 
Leibniz’ rule (formula), 120 
Leibniz’ theorem, 727, 728 
Length of 

an arc, 208 
a normal, 127 
a subnormal, 127 
a subtangent, 127 
a tangent, 127 

Level lines, 283 
Level surfaces, 283 
L’Hospital’s theorem (rule), 145 
Limit

lower (of an integral), 399 
upper (of an integral), 399 

Limit of
an algebraic sum of variables, 46 
a function, 35, 261 
a product, 46 
a quotient, 46 
a variable, 32 

Line 
secant, 265 

Line integral, 671, 674 
Line tangent, 73 
Linear density, 459 
Linear differential equation, 528, 529 
Linear equation, 487 
Linear function, 27 
Linearity property (of a transform), 

857
Linearly dependent functions, 539 
Linearly dependent solutions, 530 
Linearly independent functions, 539 
Linearly independent solutions, 530 
Lines 

flow, 510
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level, 283 
equipotential, 510 

Logarithm 
common, 258 
Napierian, 56 
natural, 56, 758 

Logarithmic derivative, 94 
Logarithmic function, 22, 24, 103 
Lopshits, A. M., 806 
Lower limit (of an integral), 399 
Lower (integral) sum, 397 
Lyapunov, A. M., 576, 581 
Lyapunov stable (about solutions, 

conditions), 577 
Lyapunov equation, 796 
Lyapunov’s theory of stability, 576

M
Maclaurin’s formula, 155 
Maclaurin’s series, 751-753 
Mapping

one-to-one, 634 
Maxima (see maximum)
Maximum (of a function), 164, 169, 

178, 292, 297 
Maximum absolute error, 270 
Maximum deviation, 793 
Maximum relative error, 272 
Mean 

geometric, 305 
Mean-value theorem, 406, 616, 653 
Member

right-hand (of an equation), 529 
Method

of chords, 225 
combined, 229 
Euler’s, 581-584 
Newton’s, 227 
Ostrogradsky’s, 368 
of tangent’s, 227 
of variation of arbitrary • 

constants (parameters), 543 
Minima (see Minimum)
Minimax, 297, 299

Minimum (of a function), 165, 169, 
178, 292, 297 

Modulus, 15 
of a complex number, 234 
of logarithms, 56 

Moments 
static, 649 

Monotonicity, 226, 227 
Multiple roots (of a polynomial), 

247
Multiple-value function, 20 
Multiplicity (of roots), 247-249

N

Nth partial sum of a series, 710 
Napier, 56
Napierian logarithms, 56 
Natural logarithms, 56, 758 
Necessary condition (for existence of 

extremum), 166 
Necessary conditions of an extremum, 

294
Neumann problem, 837 
Newton-Leibniz formula, 410, 411 
Newton’s method, 227 
Neighbourhood (of a point), 17, 260 

centre of, 18 
radius of, 18 

Nodal point, 307
Nonhomogeneous linear equation, 529 
Normal, 221, 320

principal (of a curve), 328 
Normal to a curve, 126 
Normal to a surface, 339 
Normal plane, 320 
Normal system of equations, 564 
Number 

complex, 233 
e, 51, 53 
irrational, 13 
rational, 13 

Number (cont.) 
real, 13
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Number pair, 256 
Number quadruple, 258 
Number scale, 13 
Number (triple, 257 
Numerical series, 710

0
Operator 
V-operator, 700 

del, 700
Hamiltonian, 700 
Laplacian, 703, 836 

One-to-one correspondence (mapping), 
634

One-parameter family of curves, 498
Open domain, 256
Open interval, 17
Operational calculus, 854
Order of a differential equation, 472
Ordered variable quantity, 18
Ordinary differential equation, 472
Ordinary point, 305, 336
Origin (of a vector), 314
Original, 855
Original-transform tables, 855 
Orthogonal trajectories, 509-512 
Oscillations 

forced, 557, 559-563 
free, 557, 875-876 

Oscillations (cont.)
harmonic, 558 

Osculating plane, 331 
Osculation (see Point of osculation‘309) 
Ostrogradsky, M. V., 368, 636, 681, 

699
Ostrogradsky's formula, 697-700 
Ostrogradsky’s method, 368

P
Parabola 

safety, 502 
Parabolic equations, 815 
Parabolic formula, 426 
Parabolic trapezoid, 426

Parameter, 103 
Parametric, 103 

equations, 103, 104, 314 
Part

principal (of an increment), 113 
Partial derivative, 263-265 
Partial derivatives 

of different orders, 279-283 
Partial differential equations, 472 
Partial fractions, 358 
Partial increment (of a function), 259 
Particular integral, 475 
Particular solution, 475, 515 
Partition unit, 401 
Period, 24 

of oscillation, 558 
Periodic function, 24 
Piecewise continuous function, 797 
Piecewise monotonic function, 779 
Phase

of a complex number, 234 
initial, 558 

Plane 
complex, 240 
normal, 320 
osculating, 331 
(tangent, 338 

Plus-and-minus series, 729 
Point 

critical, 168, 294 
of discontinuity, 60, 75 
of inflection (of a curve), 186 
interior (of a region), 610 
isolated singular, 310 
nodal, 307 
ordinary, 305, 336 
of osculation, 309 
singular, 306, 322, 336 

Points
interior (of a domain), 256 

Poisson’s integral, 835, 847 
Polar axis, 28 
Polar coordinate system, 28 
Polar coordinates, 28
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Pole, 28
Polynomial, 27, 244 

Bernstein’s, 252 
Chebyshev, 253 

Potential of a field, 459 
Potential of a gravitational field, 696 
Potential of a vector, 684 
Potential vector field, 701 
Power-exponential function, 93 
Power function, 22, 23, 93, 102 
Power series, 742
Principal normal (of a curve), 328 
Principal part (of an increment), 113 
Principal value (of an integral), 811 
Principle of localisation, 802 
Problem 

Dirichlet, 837 
Dirichlet-Neumann 840, 843 
First boundary-value, 825, 837 
of interpolating a function, 250 
Neumann, 837 
second boundary-value, 837 
of a simple pendulum, 522-525 

Product 
Wallis’, 416 

Progression 
geometric, 710 

Proper fraction, 357 
Property 

linearity (of a transform), 857 
Pure imaginary, 233

Q
Quadratic function, 27 
Quadratic trinomial, 351 
Quantity 

infinitely large, 39 
infinitesimal, 45 
monotonic, 18 
ordered variable, 18 

R
Radius of convergence, 744 
Radius of curvature, 217, 328 
Radius of a neighbourhood, 18

Radius of torsion (of a curve), 333
Radius vector, 314
Range of a variable, 17
Rate of motion, 70
Ratio (of a geometric progression), 710
Rational functions, 357
Rational integral function, 27, 244
Rational numbers, 13
Ray, 626
Real axis, 233
Real number, 13
Real part of complex number, 233 
Rectangular formula, 424, 425 
Region 

closed, 608 
of integration, 609 
regular, 64, 611, 626 
regular in the x-direction, 611 
regular in the y-direction, 611 

Relative error, 272 
Relation 

functional, 19 
Remainder, 154 

Lagrange form of, 155 
Remainder theorem, 244 
Resonance, 563, 879 
Resonance curves, 561 
Resultant, 872
Right-hand member (of an equation), 

529
Rolle’s theorem, 140
Root 

double, 546 
of an equation, 244 
kj-tuple, 247
of multiplicity k, 247-249 
of a polynomial, 244 
simple (single), 546 

Rooll-mean-square deviation, 793
Roofs 

complex, 248, 249 
multiple (of a polynomial), 247 

Rotation (of a vector function), 694
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Rule
Leibniz, 120 
L’Hospital’s, 145 
Simpson’s, 426, 428 
trapezoidal, 425, 426

S

Safety parabola, 502 
Scalar field, 283 
Scale

number, 13 
Schwarz’ inequality, 647 
Secant line, 265 
Second derivative 

mechanical significance of, 124 
Second Euler substitution, 373 
Sense of description, 672 
Sense of integration, 671 
Separated variables, 479 
Series

absolutely convergent', 731 
alternating, 727 
binomial, 754-756 
conditionally convergent, 731 
dominated, 734-736 
Fourier, 776-812 

definition of, 779 
functional, 733 
harmonic, 714, 715 
Maclaurin’s, 751-753 
numerical, 710 
plus-and-minus, 729 
power, 742 
Taylor’s, 750, 751 
trigonometric, 776 

Serret-Frenet formulas, 335 
Shift theorem, 858 
Sign

of double substitution, 411 
integral, 343 

Simple (single) root, 546 
Simpson's formula, 428 
Simpson’s rule, 426, 428 
Single (simple) root, 546

Single-valued function, 20 
Singular point, 306, 322, 336 

isolated, 310 
Singular solution (of differential equa

tion), 504 
Smallest value (of a function), 61 
Smirnov, V. I., 806 
Smooth curve, 528 
Solenoidal vector field, 702 
Solid of revolution, 455 
Solution 

of a differential equation, 473 
general, 474, 475, 515 
particular, 475, 515 
singular, 504 
stable, 577, 579, 580 
unstable, 579, 580 

Solutions
linearly dependent, 530 
linearly independent, 530 

Solve (a differential equation), 476 
Space curve, 450 
Spiral of Archimedes, 29 
Stable

Lyapunov (about solutions, condi
tions), 577 

Stable solution, 577, 579, 580 
Static moments, 649 
Stokes, D., 694 
Stokes’ formula, 692-697 
Stokes’ theorem, 694-695 
Subinterval, 401 
Subnormal, 127 
Subregions, 608 
Substitution 

Euler, 372-375 
universal trigonometric, 379 

Subtangent, 127
Sufficient conditions (for existence 

of an extremum), 169 
Sum

integral, 398, 608 
lower (integral), 397  
upper (integral), 397 

Sum of a series, 710



S u b j e c t  I n d e xCO-1

nth partial, 710 
Surface density, 642 
Surfaces 

level, 283 
Symbolic vector, 700

T
Table of integrals, 345 
Table of transforms, 862, 863 
Tables 

original-transform, 855 
Tacnode, 309 
Tangent, 73, 336 

line, 73 
Tangent plane, 338 
Taylor’s formula, 152, 155 

for a function of two variables, 290 
Taylor’s series, 750, 751 
Telegraph equations, 819 
Terminus (of a vector), 314 
Terms of a series, 710 
Test

Cauchy’s, 721, 722 
d’Alembert’s, 718
integral (for convergence), 723-726 

Theorem 
Abel’s, 742, 743 
Cauchy’s, 143 
convolution, 871 
decomposition, 867 
delay, 879, 880
existence (of a line integral), 673 

Theorem (cont.) 
on finite increments, 142 
fundamental (of algebra), 245 
^'Hospital's, 145 
Lagrange’s, 142 
Leibniz’, 727, 728 
mean-value, 406, 616, 653 
on ratio of increments of two fun
ctions, 143 
remainder, 244 
Rolle’s, 140 
shift, 858

Stokes’, 694, 695 
uniqueness, 855
Weierstrass’ approximation, 252 

Theory of stability 
Lyapunov’s, 576 

Third Euler substitution, 374, 375 
Threefold iterated integral, 651-655 
Torsion (of a curve), 333 

radius of, 333 
Total derivative, 275 
Total differential, 267 
Total differentials

approximation by, 268, 269 
Total increment (of a function),259,265 
Trajectories

isogonal, 509, 512-514 
orthogonal, 509-512 

Transcendental function, 28 
Transform (L-transform), 855 
Transform, 855, 856 

Fourier, 812 
Fourier cosine, 810 
Fourier inverse, 812 
Fourier sine, 810 
Laplace, 855 

Transform equation, 865 
Transforms 

of derivatives, 861, 862 
differentiation of, 860, 861 

Trapezoid 
curvilinear, 400 
parabolic, 426 

Trapezoidal formula, 426 
Trapezoidal rule, 425, 426 
Trigonometric function, 22, 24, 102 
Trigonometric series, 776 
Trinomial

quadratic, 351 
Triple integral, 650, 654, 656, 658, 659 
Triple product (of vectors), 333, 334

U
Unbounded function, 41 
Uniqueness theorem, 855
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Universal trigonometric substitution, 
379

Unstable solution, 679, 580 
Upper limit (of an integral), 399 
Upper (integral) sum, 397

V
Value 

absolute, 15 
critical, 168
greatest (of a function), 61 
least (of a function), 61 
principal (of an integral), 811 
smallest (of a function), 61 

Values
extreme (of a function), 166 

Variable, 16 
bounded, 18 
complex, 240 
decreasing, 18 
increasing, 18 
independent, 19 
infinitely large, 34

of integration, 399 
monotonically varying, 18 

Variables separable, 479 
Variables 

separated, 479 
Vector, 233 

symbolic, 700 
Vector equation, 314 
Vector field 

of gradients, 287 
irrofational, 702 
potential, 701 
solenoidal, 702 

Velocity of motion, 70 
Vertical asymptotes, 190

W
Wallis’formula, 415, 416 
Wallis’product, 416 
Wave equation, 815, 817 
Weierstrass* approximation theorem, 

252
Wronkskian, 530-533, 542, 544, 552.
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